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Abstract Twitter has become an important data source for detecting events, especially
tracking detailed information for events of a specific domain. Previous studies on targeted-
domain Twitter information extraction have used supervised learning techniques to identify
domain-related tweets, however, the need for extensive manual labeling makes these super-
vised systems extremely expensive to build and maintain. What’s more, most of these
existing work fail to consider spatiotemporal factors, which are essential attributes of
target-domain events. In this paper, we propose a semi-supervised method for Automati-
cal Targeted-domain Spatiotemporal Event Detection (ATSED) in Twitter. Given a targeted
domain, ATSED first learns tweet labels from historical data, and then detects on-going
events from real-time Twitter data streams. Specifically, an efficient label generation algo-
rithm is proposed to automatically recognize tweet labels from domain-related news articles,
a customized classifier is created for Twitter data analysis by utilizing tweets’ distinguishing
features, and a novel multinomial spatial-scan model is provided to identify geograph-
ical locations for detected events. Experiments on 305 million tweets demonstrated the
effectiveness of this new approach.
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1 Introduction

Online social microblogs such as Twitter have become a major medium for information
sharing. The rich up-to-date sensing data in Twitter allows important events to be discovered
and tracked prior to their inclusion in standard news bulletins. When a social event occurs,
traditional media usually take hours or even days to report the related news, while the corre-
sponding information may begin to spread immediately after the occurrence in social media
like Twitter [29, 32]. For example, Fig. 1 depicts the number of tweets and news reports
related to a spatiotemporal event (a protest held by local residents) that happened around
12 noon on January 12th, 2013 in Mexico. Number of event-related tweets immediately
increased after the event began (12 noon), while the first news report was published at 2 pm,
2 hours later than the tweet burst.

Although detecting events from formal texts has been extensively studied [3, 5], analyzing
messages from Twitter requires more sophisticated techniques. First, newswire texts are rel-
atively long and well written, while Twitter messages are short and written in a much more
informal style. It is therefore unrealistic to simply apply traditional news-text based event
detection methods on Twitter data. What’s more, events mentioned in news documents have
already been identified as being of general importance, but in the case of Twitter data, nearly
half of all tweets are actually non-event related babbles discussing the minutia of daily life.

In previous studies of Twitter event detection, most researchers have adopted general-
domain event detection approaches to extract popular open-domain events, without impos-
ing specific constraints on event type. These methods generally utilize unsupervised
learning techniques, such as clustering [13, 31], topic modeling [33], and burst detection
[11], all of which can catch breaking news yet will not normally identify relatively small-
scale spatiotemporal events. However, different users may demand different information
from Twitter. For instance, companies need feedback about their products from customers,
governments seek data related to social events (such as crime [14], civil unrest, and disease
outbreaks [2, 28]), and scientists are interested in collecting tweets about natural disasters
[26] or climate changes . We call these demands related to tracking information in a specific
domain targeted-domain event detection. Existing targeted-domain event detection meth-
ods have applied supervised learning techniques (e.g., SVM) to differentiate event-related
tweets from non-event relevant contexts [14, 26]. However, these methods suffer from the
following shortcomings: 1) Highly relying on manually-labelled data. To build a training
dataset for supervised learning, these technologies require extensive human input to label
tweet data correctly, and to maintain good system performance, these label datasets must
be updated regularly. Each day, more than 200 million active Twitter users publish over 400

Fig. 1 Number of tweets and news reports related to a protest event occurring at around 12 pm on January,
12, 2013 in Mexico
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Fig. 2 ATSED output example

million tweets.1 This huge volume of data makes periodical updates extremely expensive
and even unrealistic. 2) Inability to utilize Twitter’s distinct features. Classifiers designed
by existing methods usually treat Twitter data as a set of plain textual documents, with-
out any consideration of Twitter network properties such as “mentions”, “hashtags”, and
“replies”. In Twitter data, “hashtags” can be used to denote tweets about the same topics, one
user can “mention” another user, a tweet can be “replied” by another tweet. 3) Restricted
ability to estimate event location. Existing methods usually predict event location through
single location terms that either involve user locations [14] or GPS tags [26], discarding all
other types of geopolitical terms. Instead, our proposed multinomial spatial scan consid-
ers all possible Twitter location terms, including registered locations in user profiles, GPS
information, and geo-tags mentioned in the tweet content.

In this paper, we propose a semi-supervised approach for detecting spatiotemporal
events from Twitter, named Automatical Targeted-domain Spatiotemporal Event Detection
(ATSED). Figure 2 is an illustrative example of our model output. Given historical news
reports related to a specific domain, such as “civil unrest”, ATSED can yield a set of real-
time “civil unrest” events detected from Twitter, which are consisted of key information
such as location, date, and brief description. First, utilizing the knowledge learned from
news reports, ATSED can automatically generate labels from historical Twitter data. These
Twitter labels are then served as training data for a classifier specially designed for Twit-
ter data analysis. Next, the trained classifier can be applied to real-time Twitter data steams
to identify event related tweets. Finally, event locations are extracted from event-related
tweets through a novel multinomial spatial-scan method. In summary, this article makes the
following contributions:

– Methodology for automatic label generation. Labels are generated from historical
tweets, which are first ranked by various similarities to news documents, and then sep-
arated into positive and negative examples through an EM inferring algorithm. This
method eliminates the need of using manually selected label data, and therefore reduces
the cost associated with human input.

– Customized text classifier for Twitter data. To better analyze Twitter data, we utilize
distinct Twitter features, such as hashtags, mentions, and replies to cluster tweets before
classification. This attempt enables classification based on tweet groups rather than
single tweets, which therefore greatly improves classification accuracy.

– Multinomial spatial-scan location estimation. We extend spatial scan statistics with
multinomial distribution by combining factors from various location items (e.g., user-
profile locations or geo-tags). This approach makes maximum usage of all Twitter
geographical information.

1https://blog.twitter.com/2013/celebrating-twitter7.

https://blog.twitter.com/2013/celebrating-twitter7
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– Extensive experimental evaluation and performance analysis. Our method was
extensively evaluated on a real world dataset containing 305 million tweets. Compared
to existing state-of-the-art methods, our method clearly demonstrated its effectiveness.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
provides a general overview of the proposed ATSED system and formally defines the prob-
lem. Section 4 describes the detailed algorithms utilized for label generation. Section 5
presents the proposed event detection methods. The performance analysis is discussed in
Section 6, and the paper is concluded in Section 7.

2 Related work

This section reviews research directions related to our work. The first branch consists
of detection methods that have been widely used in tracking events from news stream.
Recently, event detection on social media streams becomes a hot research topic. Existing
event detection algorithms can be broadly classified into two categories: general domain
and targeted domain approaches. Besides, in aspect of automatical label generation, our
approach is related to distant supervision and transfer learning.

2.1 Event detection in newswire documents

Much research has focused on detecting events from formal texts, such as news articles,
blogs, and emails. Some of these approaches group documents into events based on their
semantic similarity. Brants et al. [3] built an event detection system based on incremental
TF-IDF model, identifying events by caculating the Hellinger distance between new texts
and previous documents. Kumaran et al. [10] took a different approach, detecting new events
by extending cosine similarity and the vector space model to include story categorization
and the use of named entities. Other researchers have sought to first identify event-related
features and then cluster feature bursts into events. For example, Fung et al. [5] proposed
a way to identify events that consist of a set of bursty features appearing simultaneously.
Their model treats bursty features as a time-series of probability, and then groups strongly
interrelated bursty features into bursty events. Bursty features are first evaluated by their
distributions, and strongly interrelated bursty features are then grouped to create bursty
events.

While news event detection methods work well for formally written news articles, they
are incapable of detecting events from social media data like tweets. Tweets are very
short and often written informally with abbreviations and mistakes. More sophisticated
technologies that can handle noisy Twitter data are therefore desired.

2.2 General-domain event detection in twitter

In order to detect emerging general events in Twitter steams, general-domain event detection
usually applies unsupervised learning techniques, such as topic modeling, burst detection,
and clustering. Topic modelling is a particularly popular solution, since event detection in
Twitter data is similar to the problem of topic detection in formal texts. For example, Yin
et al. [33] developed topic modeling techniques to detect geographic topic clusters in local
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regions. Cataldi et al. [4] proposed the use of a graph for topic detection, using emerging
terms in tweets posted by authoritative users. Ritter et al. [25] prefer to focus on extracting
events from noisy Twitter data and then generating event categories based on latent vari-
able models. Another alternative is to detect events through spatial-temporal word bursts.
Lappas et al. [11] examined ways to discover terms that burst in geographical neighborhoods
within a certain time period, taking into account content, structural, and temporal signals.
Clustering technologies have also been utilized for event detection. For example, a recent
study applied wavelet analysis for noise filtering in Twitter and identified word groups with
high correlations as indicators of an event [31]. Petrovic et al. [20] detected breaking news
from Twitter data by building a nearest-neighbor tweet network and summarizing connected
tweets into events.

Our goal differs from that of general-domain event detection as we are seeking
to detect events in a particular domain, such as earthquakes, disease outbreaks, social
unrest, or crimes. From the perspective of detection, our work is most closely related to
targeted-domain event detection and its approaches.

2.3 Targeted-domain event detection in twitter

Supervised learning methods are commonly used in targeted-domain event detection. Typ-
ically, a classifier is trained via manually labeled data to identify tweets in the targeted
domains and then clustering techniques are applied to analyze the events’ locations. Sakaki
et al. [26] first trained a SVM classifier to recognize tweets about “earthquake”, and then
built a Kalman filtering model to detect the geographic regions of these events. Similarly,
Li et al. [14] focused on crime event detection from Twitter, by training a classifier with
crime domain keywords and Twitter-specific features (e.g., hashtags). Popescu et al. [22]
utilized targeted named entities and a decision-tree strategy to decide whether correspond-
ing snapshots do indeed represent an event. Becker et al. [1] began by clustering similar
tweets, and then applied a manually trained classifier to identify different events, based on
features such as hashtags and retweets. Zhang et al. [34] utilized labeled documents from a
source domain to help build latent semantic space for short texts in the target domain. Unlike
the method presented here, their methods all require extensive labeled data in the source
domain.

Due to their supervised nature, existing methods aimed at detecting targeted events usu-
ally require expensive human effort to create suitable labeled data. Our previous work
proposed a method that capable of identifying trustworthy tweets [35]. In this work, we
attempt to build an appropriate label dataset automatically, and utilize these automatically
generated data for detecting spatiotemporal events.

In summary, traditional event detection methods are suitable for news documents, but
works poorly in noisy Twitter data. Most of previous work on social media detection are
general-domain approaches. General-domain event detection methods are to identify break-
ing news, which are most popular events during a certain period of time, regardless the
specific event type. There exist only few detecting methods that are able to recognize events
of targeted event types, which are most closely related to our proposed ATSED. But unlike
ATSED, none of these targeted-domain detection systems are capable of automatically
detecting social media events without pre-given human labeled data. And few of these pre-
vious work focused on spatiotemporal event detection and made poor utilization of tweets’
location information.



770 Geoinformatica (2016) 20:765–795

2.4 Distant supervision and transfer learning

Transfer learning techniques usually first extract the knowledge from the source domain
and then utilize the knowledge for tasks in the targeted domain [19]. There exist some
approaches adopted transfer learning technologies for Twitter text mining. Jin et al. [7]
developed a variation of LDA to jointly learn topics from both short and long texts. The
knowledge shared by the two datasets is controlled by different settings of Dirichlet priors.
Zhang et al. [34] first learned a latent semantic space from source dataset, and then mapped
the target dataset to the space for the further mining tasks. Phan et al. [21] enriched Twitter
with hidden topics learned from external data source such as Wikipedia and MEDLINE.
This model is designed to find long texts related to given short texts, oppositely, our work
aims to extract short tweet labels from given long articles.

Distant supervision methods heuristically label corpus using supervision from known
knowledge base [27]. Mintz et al. [16] use existing relations in external knowledge base
as training data. For each entities pair, they collected all the sentences mentioning them in
text, and use their relation type in knowledge base as label. Based on these generated labels,
they trained a classifier to learn relations. Purver et al. [23] used some heuristical intuition
(emotional marker) to generate noisy labels first, and then examined the classifiers trained
by these pseudo labels.

The intuition behind distant supervision, transfer learning, and our proposed method
is that: some hidden patterns and relationships are shared by source and target datasets,
and the learned knowledge from the source is likely to appear in the target data in some
way. Our method can be view as distant supervision as we generated pseudo labels with
heuristical rules first, and demonstrated our good performance despite the imperfect labels.
Most distant supervision methods are proposed to the relationship between entities or words
[16, 24], under the supervision of large knowledge base. But our goal here is to study the
relationship between events and words, and the supervisor is external document dataset
(similar to transfer learning to some extent).

3 Framework and problem formulation

This section first introduces the framework of ATSED, then formally describes some key
concepts used in this paper, and finally define the tasks of this paper based on these concepts.

3.1 Framework

Our framework consists of two main components: label generation and spatiotemporal
event detection. The input data sources contain: historical Twitter data, historical news arti-
cles, and real time Twitter streams. Historical Twitter data and news articles are used by
label generation component to produce pseudo labels. Spatiotemporal event detection mod-
ule then trains classifier through these labels and detects events from real time Twitter
data.

In the label generation component, tweet labels are generated utilizing historical news
articles. Based on the labels generated from the historical data by the label generation mod-
ule, the spatiotemporal event detection module can now move on to identify on-going events
related to the targeted interest from real-time Twitter streams.

The label generation module can produce both positive and negative tweet examples
with knowledge learned from given news report documents. First, the submodule feature
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extraction detects domain-feature domain words and event-feature event words from news
reports. Next, the domain words and event words are utilized as queries to search Twit-
ter data. Then, a relevancy ranking method is proposed to evaluate tweets’ relevancy to
the given event, based on the spatial, temporal, and textual similarities between tweets and
event-related news documents. Tweets with high relevancy scores are considered as candi-
dates for positive examples, while tweets with low scores are potential negative examples.
Finally, an expectation maximization (EM) label refinement algorithm is provided to further
separate the positive and negative examples.

The Twitter classifier submodule combines clustering and classification. Tweets in the
real-time Twitter data stream are first clustered into mini-tweet-groups, utilizing tweets’
social ties such as hashtags, mentions, and replies. Next, clustered tweet groups are input
into the trained classifier (using historical labels from the label generation module), which
identifies the positive and negative classes for tweets. In the location estimation submodule,
an extended spatial scan approach is harnessed to cluster tweets in the positive class into
different spatiotemporal events. As a result, each event detected by ATSED is represented
by location, timestamp, and event-related tweets.

3.2 Problem formulation

Corresponding to the framework introduced above, targeted-domain Twitter event detection
can be formally defined in terms of two tasks, label generation and spatiotemporal event
detection, beginning with a few key concepts as follows.

First, different from trivial daily life events, events mentioned in our paper are something
“significant”. These events should be discussed in public media and associated with some
news articles, since they are significant.

Definition 1 (Spatiotemporal event) An spatiotemporal event x = (l, t) is a significant
real-world incident that happened at location l and time t . Domain Xp is defined as a set of
events falling into the same domain p, such as music, sports, civil unrest, etc.

Definition 2 (Article) The article set of targeted domain p is designated Ap , while the set
of open-domain articles (containing various topics) is designated A. An article ax ∈ Ap

denotes a news report document about event x. Notice that one event may be associated
with multiple news reports, so we merge these documents into one article.

Suppose we are interested in detecting events in the targeted-domain “civil unrest”. For
example, the event “dog protest” happened on January, 12, 2013 in Mexico.2 A segment of
the event-related news article is as follows (the original Spanish text has been translated into
English using Google Translate):

Accompanied by a dozen of dogs, about 150 people of the movement YoSoyCan26
marched around the Zocalo of Mexico City, and insisted 57 dogs that were captured
as the homicides in Cerro de la Estrella be freed.

Besides news articles, when an event occurs, there could also exist some tweets that
relevant to the given event. Among these event-related tweets, some are truly relevant to
the given event. For example, tweet “With protests in the Zocalo, # YoSoyCan26 requires

2http://www.milenio.com/cdb/doc/noticias2011/fcd1c695e4a21d7edcae432c9f931ecd?quicktabs1 = 2.

http://www.milenio.com/cdb/doc/noticias2011/fcd1c695e4a21d7edcae432c9f931ecd?quicktabs_1=2
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Iztapalapa dogs to be free.”3 is a positive tweet to event “dog protest”. In contrast, negative
examples are tweets that share some features with positive ones yet are in fact irrelevant to
the given event. For example, the tweet “I do not understand social networks. Fuss over a
dog, I have not seen it to help people in the street.”4 has some positive features (e.g., “dog”
and “street”), but fails to provide any information related to the given protest event.

Definition 3 (Tweet) A tweet y = (d, l, t) contains textual document d, location l and
time-stamp t . Twitter data stream Y is therefore defined as a set of tweets.

Definition 4 (Positive tweet) A tweet y(x) = (d, l, t) containing textual document d,
location l and time-stamp t is a positive tweet to event x, if it is truly related to event x.

Definition 5 (Negative tweet) A tweet ȳ(x) = (d, l, t) contains textual document d,
location l and time-stamp t .

With concepts of “event”, “article”, and “tweets”, we can further define the concept
“label” used in this paper, which consists of event, event news article, and event tweets.

Definition 6 (Label) A label z is defined as (x,Y(x), Ȳ(x)), where x is an event, Y(x) is
the set of tweets related to event x, and Ȳ(x) are irrelevant tweets. The label set Zp =
{(x,Y(x), Ȳ(x))|x ∈ Xp} for target domain p consists of labels generated from events Xp

in domain p.

Given a list of historical events and corresponding newswire documents, the task of label
generation is to determine the set of tweets related to each event.

Task 1 (Label generation) Given an event set Xp and a news article set Ap, where each
event xi ∈ Xp has a corresponding news article axi

∈ Ap , the goal of label generation is to
find label set Zp = {(x,Y(x), Ȳ(x))|x ∈ Xp}, from historical tweets Y.

Note that, both the tweets and news articles used in the label generation module consist
of historical data. In contrast, spatiotemporal event detection discovers newly emerging
events in the targeted domain, therefore Twitter data used in spatiotemporal event detection
consist of real-time data streams.

Task 2 (Spatiotemporal event detection) Given a label set Zp (product of Task 1) and
real-time Twitter streamY′, the event detection algorithm aims to identify an on-going event
set X′

p for targeted domain p from Twitter data stream Y′. Each spatiotemporal event x′ ∈
X′

p consists of location l′, time t ′, and event-related tweets I(x
′)

p .

4 Automatic label generation

In this section, we discuss Automatic Label Generation (ALG) algorithm in detail. First,
ALG extracts feature terms from news reports, then ranks tweets based on their similarities

3https://twitter.com/BicitlanRadio/status/290232591246823425.
4https://twitter.com/revistaeneo/status/290185989815676930.

https://twitter.com/BicitlanRadio/status/290232591246823425
https://twitter.com/revistaeneo/status/290185989815676930
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to the news reports, and finally splits the tweet set into positive and negative examples
through an EM based refinement algorithm.

4.1 Feature extraction

The goal of feature extraction is to obtain features that can identify a specific event in
the targeted domain. Although tweets and news articles are quite different in writing style,
they are likely to share some semantic features when describing the same event, which
are referred to as domain words and event words in this paper. Domain words are those
most representative words for events occurring in a certain domain. For example, the words
“protest” and “march” may be domain words for “civil unrest” events. Event words are
words that can distinguish a particular event from other events in the same domain. In the
above mentioned news article (“dog protest” event), the words “YoSoyCan26” and “Zocalo”
are event words which are highly relevant to the specific event. To identify “domain words”
and “event words”, we define domain weight and event weight as follows.

Definition 7 (Domain weight) Domain weight C(wi, p) quantifies the ability of word wi

in representing targeted domain p. Given targeted-domain news article set Ap = ∪n
i=1axi

and an open-domain document set A, C(wi, p) is computed as the product of two parts,
namely the normalized term frequency f (wi,Ap) of word wi in open-domain set Ap , and
the inverse document frequency of wi in targeted-domain set A:

C(wi, p) = f (wi,Ap)

max{f (w,Ap) : w ∈ Ap} × lg

( |A|
|{a ∈ A : wi ∈ a}| + 1

)
. (1)

Definition 8 (Event weight) Event weight E(wi, x) quantifies the ability of word wi in
distinguishing event x from other events in the same domain. It is computed as the product
of two parts, the term frequency of word wi in event article ax , and the inverse document
frequency of wi in document set Ap:

E(wi, x) = f (wi, ax)

max{f (w, ax) : w ∈ ax} × lg

( |Ap|
|{a ∈ Ap : wi ∈ a}| + 1

)
. (2)

At the beginning, we compute domain weight and event weight for all words in Ap .
Namely, both domain words set and event words set are equal to set Ap . MAD algorithm
[30] is adopted to decide thresholds that can remove trivial words. After applying the hard
threshold filtering, only words with values (domain weight or event weight) bigger than the
thresholds are kept in the corresponding set. Taking “domain words” for example, domain
weight threshold ηc can be calculated as follows.

δc = median(|f (w,Ap) : ∀w ∈ Ap|), (3)

ηc = δc + αc × median(|f (w,Ap) − δc, ∀w ∈ Ap |). (4)

As shown in Eq. 4, parameter αc determines the value of threshold ηc. When αc is set to
be too small (e.g., 0.1), trivial words such as “yesterday”, “adult”, and “down” are selected
as domain words. Oppositely, a large value of αc will remove important words. As suggested
by Leys et al. [12], value of αc can be set as 1/Q(0.75), where Q(0.75) is the 0.75 quantile
of the distribution. Therefore, we set αc to be 3.97 (ηc = 0.087), which returns a medium-
size domain word set that contains 52 words. Similarly, threshold δe computed by the MAD
algorithm is to remove trivial words from the event words set.
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The domain words and event words that have been extracted from news reports can now
be used as queries to search Twitter data. Only tweets containing at least one domain word
or one event word are retrieved and sent to the next module, relevancy ranking.

4.2 Relevancy ranking

The relevancy ranking module evaluates the relevancy between tweets and events. To com-
pute this, “total” relevancy is factorized as a product of three similarity subfactors: textual,
spatial, and temporal similarity.

4.2.1 Textual similarity

As shown in Eq. 5, the textual similarity φx,y between event x and tweet y is defined as the
product of tweet words’ domain weight sum and event weight sum:

φx,y =
∑

wi∈(dy∩W(P)
C )

C(wi, p) ×
∑

wi∈(dy∩W(x)
E )

E(wi, x), (5)

where dy is the context of tweet y. Only words in the domain word set W(P)
C are considered

when calculating the domain weight sum, and only words in the event word set W(x)
E of event

x are considered when computing the event weight sum. The rationale behind the formula
is as follows.

– Sum of domain/event word weights. A tweet is more likely to be event-related, if it con-
tains more domain words and event words. To accumulate effects of individual words,
both the first and the second term in Eq. 5 take the form of word weight sum.

– product of weight sums. Only tweets containing both domain words and event words in
a sufficient way are qualified to be event-related. A tweet with many domain words but
few event words may discuss other events in the same domain. While a tweet with many
event words (e.g., event location name) but few domain words may relate to events in
other domains (e.g., something that also happened in the same location). To balance
the effects of domain words and event words, Eq. 5 multiply domain weight sum with
event weight sum.

4.2.2 Spatial similarity

The spatial similarity between event x and tweet y is decided by two factors: 1) the distance
between tweet location ly and event occurrence location lx , and 2) the spatial influence
scope of tweet y. The first factor is to relate event and tweet in the same location. An
event and a tweet are more likely to be relevant if they are close in distance. The second
factor further enhances the event-relevancy for tweets with high textual-similarity scores.
Intuitively, within the same distance to event occurrence location, tweets of higher textual-
similarity scores are more likely to be event-related. Therefore, a tweet y’s spatial influence
for event x is modeled as a Gaussian distribution ϕx,y = N(ly,

∑
x,y), centered at tweet y’s

location ly , with influence scope
∑

x,y =
(

φx,y 0
0 φx,y

)
, where φx,y is the textual similarity

defined in Eq. 5.
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4.2.3 Temporal similarity

After the initial burst of tweets upon the occurrence of a particular event, the number of
event-related tweets usually decreases as a Poisson process [26]. In other words, the pos-
sibility of tweet y being related to event x decreases as time goes by, which indicates the
likelihood that an individual tweet related to the event also decreases following a Poisson
process. Therefore, temporal similarity between tweet y and event x can be described as an
exponential distribution:

ρx,y = λe−λ|tx−ty |, (6)

where tx is the occurrence time of event x and ty is the publishing time of tweet y.
By integrating the textual, spatial, and temporal similarities, the event-tweet relevancy

ψx,y is ranked by the following function:

ψx,y = φx,y · ϕx,y · ρx,y . (7)

For a tweet y, we choose event x∗ that maximizes event-tweet relevancy ψx,y as its most
correlated event:

x∗ = g(y) = arg max
x∈Xp

ψx,y . (8)

Correspondingly, for each event x, its related tweet set Ỹ(x) is identified through an inverse
process, that each element tweet y(x) in set Ỹ(x) satisfies g(y(x)) = x.

4.2.4 Label refinement

The initial event-tweet pairs obtained using the procedure outlined above contain a great
deal of noisy data. Although top ranked tweets are indeed highly related to the correspond-
ing events (positive examples), many of the low ranked tweets are in fact irrelevant (negative
examples). However, it is difficult to set a uniform threshold suitable for all events to sep-
arate the positive and negative tweets. One alternative is to cluster tweets based on their
similarities, by assuming that positive examples are more similar to each other than nega-
tive ones. Suppose we have a set of positive tweets and a set of negative examples. Based on
these existing label sets, the labels of other tweets can be inferred based on their similarities.
However, the assumed positive and negative sets of existing labels are actually unknown.
This turns out to be an inference dependent problem: the inference of a single tweet’s label
depends on the existing positive and negative sets, while constructing positive and negative
sets depends on the assignment of each tweet. Therefore, an EM-based inference algorithm
is developed and applied here to solve the “inference dependency” problem.

For an event-tweets pair (x, Ỹ(x)), each tweet y
(x)
j ∈ Ỹ(x) is represented by a n-

dimensional feature vector v
(x)
j , where n is the total number of words in the event related

tweets set Ỹ(x). An element v
(x)
jw ∈ v

(x)
j is set to be h, if word w ∈ Ỹ(x) appears h times in

tweet y
(x)
j .

The tweets’ relevancy distribution is modeled as Q-Gaussian mixtures, in which the
qth Gaussian is denoted as Gq = N(μq,�q) with mixing coefficient θq . The goal is to
maximize the likelihood function:

p(Ỹ(x)) =
n∏

j=1

p
(
v

(x)
j

)
=

n∏
j=1

Q∑
q=1

θq · N
(
v

(x)
j |μq,�q

)
. (9)
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E-step In the E-step, given the estimates of parameters μ and �, the probability of v
(x)
j

belonging to Gaussian Gq is calculated as follows:

p
(
Gq |v(x)

j

)
=

θqN
(
v

(x)
j |μq,�q

)
Q∑

m=1
θm · N

(
v

(x)
j |μm,�m

) . (10)

M-step In the M-step, by taking partial derivatives of Eq. 9, estimations of parameter are
renewed as follows:

μ∗
q =

n∑
j=1

p
(
Gq |v(x)

j

)
v

(x)
j

n∑
j=1

p
(
Gq |v(x)

j

) , (11)

∗∑
q

=

n∑
j=1

p
(
Gq |v(x)

j

)
v

(x)
j

(
v

(x)
j − μ∗

q

) (
v

(x)
j − μ∗

q

)T

n∑
j=1

p
(
Gq |v(x)

j

) , (12)

θ∗
q =

n∑
j=1

p
(
Gq |v(x)

j

)

n
. (13)

First, tweets set Ỹ(x) is split into Q parts with a descending order based on the initial
Gaussian mixtures. Then E-step and M-step are conducted iteratively. When convergence
is achieved, the Gaussian group with the maximum value of relevancy score is selected
as the positive examples set Y(x), while tweets in other Gaussians are treated as negative
examples Ȳ(x). This accomplishes Task 1 label generation, as for each event xi ∈ Xp, label
zi = (xi,Y(xi ), Ȳ(xi )) can be generated from the historical Twitter stream Y through the
above process.

5 Spatiotemporal event detection

In this section, we discuss the detection of newly emerging spatiotemporal events from real-
time Twitter data streams. A tweet classifier is first trained by using historical event-tweets
labels generated according to the previous section. Then, tweets of positive class (output of
the classifier) are grouped into geo-clusters (events) by applying a multinomial spatial scan
method.

5.1 Tweet classifier

Different from traditional text classifier, our proposed tweet classifier consists of two parts:
social-ties clustering and mini-tweet-group classification. We first clustered tweets into
mini-groups based on their social-ties, and then conduct SVM-based classification to these
tweet-mini-groups.
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Fig. 3 ATSED system architecture

5.1.1 Social ties clustering

This clustering process is applied to both event-tweets labels (training data) and the incom-
ing Twitter data stream (testing data). The basic idea here is that tweets sharing common
social ties (e.g., mentions, replies, and hashtags) are more likely to be about the same topic.
To cluster tweets through social ties, a tweet-tie heterogeneous graph is built and then split
into small subgraphs by applying graph partition.

As shown in Fig. 3, tweets are connected by social ties to create a tweet-tie heterogeneous
graph � = (Y,E). Y is the tweet set, denoted as small nodes in Fig. 4, and E is the edge
set, where each edge eij is the number of shared social-ties between tweet yi and yj .

Our goal is to partition the entire graph � into a set of subgraphs P such that connections
are strong within one subgraph yet are weak across different subgraphs. The modularity of
such partitioning is defined as [15]:

M = 1

2
∑

iki

∑
i,j

(
eij − kikj∑

iki

)
pipj , (14)

where ki is the degree of tweet (node) yi and pi is the index of the subgraph. To partition
graph � is equivalent to maximize M . In fact, M can be rewritten in the form of a modularity
matrix B’s eigenvalue βi and the corresponding eigenvector ui :

Bij = eij − kikj∑
iki

, (15)

M =
∑

i

(
uT

i P
)2

βi. (16)

Therefore, maximizing M is approximated by calculating B’s largest eigenvalue β1 and the
corresponding eigenvector u1. In this way, graph � is split into two subgraphs based on
the signs of the elements in the first eigenvector u1. This process is repeated until M can

Fig. 4 Example of tweet-tie
heterogeneous graph. Big nodes
represent social-ties: red nodes
are hashtags, blue nodes are
mentions, and yellow nodes are
retweets. Small nodes denote
tweets
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no longer be increased by further divisions. Each resulting subgraph corresponds to a tweet
subset Yj of the original tweet set Y (Y = ∪

j
Yj ), which is referred as a mini-tweet-group.

5.1.2 Mini-tweet-group classification

Given event-tweets labels that are in a specific domain p, Zp = {(x,Y(x), Ȳ(x))|x ∈ Xp},
a classifier is trained based on a support vector machine. An essential step in this training
is feature selection. First, rare words that appear less frequently than some threshold value
ζ (calculated from historical statistics) are filtered out, unless they are hashtags, mentions
or links. Second, common words such as “love” and “people” should also be removed from
the feature set. Although these words are frequently mentioned in positive tweets, they are
also likely to be more frequent in total Twitter space.

τw = nw

n
/
Nw

N
. (17)

In Eq. 17, nw and n denotes the appearance times of word w and the total number of
words in the positive tweets set, respectively, while Nw and N represent the occurrences of
word w and count of all words in the entire tweet space. τw of trivial words such as “love”
and “people” are bigger than one. Thus, considering both frequency threshold and feature
score, feature set WF can be denoted as:

WF = {w|∀w ∈ ∪iY(xi ), τw(t) > 1, nw > ζ }. (18)

The feature vector πj of mini-tweet-group Yj is a |WF |-dimensional vector, and each
element πjk in πj is defined as:

πjk =
{

1, if wk ∈ Yj , wk ∈ WF ,

0, if wk /∈ Yj , wk ∈ WF .
(19)

In the training process, social ties clustering is first applied to historical labels Zp. For
each event xi , clustering on positive set Y(xi ) and negative set Ȳ(xi ) is conducted separately.
Then, if a mini-tweet-group Yj is in positive example set Y(xi ), its classifier indicator sj is
set to be 1; if Yj is within negative examples set Ȳ(xi ), then sj = 0. Our goal for training is
to minimize the objective in Eq. 20 to obtain optimal values for weight ω [8], where C > 0
is a penalty parameter:

min
ω

1

2
ωT ω + C

∑
j

(max(0, 1 − sj ωT πj )). (20)

For the next step in the testing process, the trained classifier is applied to classify mini-
tweet-groups from the real-time Twitter data stream Y′. Specifically, a mini-tweet-group
Y′

j is predicted to be positive if ω̃T π ′
j > 0, and negative otherwise, where ω̃ is the optimal

solution of Eq. 20. Finally, all tweets in the positive class are merged into a domain-related
tweet set, denoted by Ip.

5.2 Event location estimation

From the above sections, tweets in the targeted domain (the event-related tweet set Ip)
may contain discussions about several different events. The next step is to apply location
estimation technologies on targeted-domain tweets to distinguish different events happening
during the same time period.
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One tweet may contain multiple location indicators, such as the geo-tags generated by
GPS, location mentions in the content, and user pre-given locations in the profile. To make
the best use of all the location information, a multinomial spatial-scan method is proposed
to detect significant spatial clusters, treating each tweet’s location as a multinomial variable.
Suppose there are K cities in one country, then location β̃y of tweet y can be represented
by a K-dimensional vector (β1, ..., βK), where

∑K
k=1βk = 1, and βk ≥ 0. Element βyk in

vector β̃y denotes the probability that tweet y is related to city k. For each tweet y, a location
weight vector β̃y can be computed through the following process.

1. Extract the initial geo-location vector h̃y . Each element hyi in h̃y is a longitude-latitude
(coordinates) pair (uyi, vyi) converted from the geo-terms contained in the original
tweet, such as profile locations, geo-tags, and location mentions. The length of vector
h̃y is decided by the number of geo-terms in the original tweet y.

2. Construct the city-level location vector Gy . For a city k, its spatial scope is represented
as pair (Uk,Vk), where Uk is a longitude region (uk1, uk2) and Vk is a latitude region
(vk1, vk2). City k covers a geo-term hyi = (uyi, vyi) in h̃y , if uyi ∈ Uk and vyi ∈ Vk .
The value of gyk is therefore decided by the number of geo-terms city k covers.

3. Calculate the location weight vector β̃y . Given the city-level location vector Gy ,
element βyk ∈ β̃y is then calculated as βyk = gyk/

∑K
k=1gyk .

Given a real-time Twitter stream Y and event-related tweets set Ip, we can now aggre-
gate the count of event-related tweets at the city-level and apply a fast subset scan [18] to
identify a set 
 = {L1, ..., LH }, that contains H candidate city clusters with Kulldorff’s
statistics [9]:

Kr = (CA − CR) lg

(
CA − CR

BA − BR

)
+ CR lg

(
CR

BR

)
− CA lg

(
CA

BA

)
. (21)

In Eq. 21, CA and BA refer to the total count and base in the country, respectively, where
set A contains all cities in the country. CA is computed via the event-related tweets set Ip
such that CA = ∑

m

∑
k∈A

βk , where k is a city in country A and m is the number of tweets in

set Ip. Correspondingly, the country-level base BA is calculated through Twitter stream Y
that BA = ∑

n

∑
k∈A

βk , where k is a city in country A and n is the number of tweets in set Y.

Similarly, CR and BR refer to the count and base in the spatial region R, which is a set of
neighboring cities. CR is then calculated using the targeted-domain tweet set Ip such that
CR = ∑

m

∑
k∈R

βk , and BR is calculated using the original tweets set Y with BR = ∑
n

∑
k∈R

βk .

To reduce the computational cost, we only consider regions with a count CR greater than
a specified minimum count Cmin and a base BR larger than a specified minimum base
number Bmin.

The above process yields the candidate city cluster set 
. Randomization testing is then
conducted on 
 to obtain the significant cluster subset 
′ = {L′

1, ..., L
′
h} of 
 (h ≤ H).

Empirically, parameter H is usually set to be greater than the maximum number of potential
clusters that may exist, and the insignificant clusters are filtered out later by randomiza-
tion testing. Only those clusters with empirical p-values smaller than a given threshold Pv

(e.g., 0.05) are retained in the result subset 
′.
Finally, each element L′

i ∈ 
′ is converted into an event x′
i , which is the eventual out-

put of the event detection module. Specifically, location cluster L′
i can be represented as a
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location-tweets pair (R′
i , I

(i)), where R′
i is a set of neighboring cities and I(i) is the corre-

sponding tweet set. Finally, as the solution to Task 2, the earliest timestamp of tweet in I(i)

is used as the event date tx′
i
, the center coordinates of R′

i is extracted as event location lx′
i
,

and tweet set I(i) is treated as event-related tweet set I(x
′
i ).

6 Results

In this section, we first introduce the datasets used for evaluation, and then compare ATSED
with five existing algorithms. Next, the effectiveness of each component in ATSED is val-
idated. Finally, two case studies from ATSED output are discussed. All experiments were
performed on a computer with one 3.20 GHz Intel Xeon CPU and 18.0 GB RAM.

6.1 Datasets and evaluation metrics

Two datasets are used in our experiments, one is Twitter dataset and the other is GSR dataset.
Both of them consist of data from July 2012 to May 2013 of 10 countries in Latin America.
These datasets were separated into two parts: 1) Data from July 2012 to December 2012
were utilized as the label generation data source for ATSED and as the training set for the
supervised comparison methods, and 2) Data for January 2013 to May 2013 were used as
the testing set for validating all the methods.

The Twitter dataset was collected through Twitter API.5 Tweets’ contexts were stemmed
and stop-words were removed. Location terms were extracted from the original Twitter data,
including GPS geo-tags, location mentions, and user profile locations. Twitter locations
used in label generation module are inferred location, with the priority as: location mentions
> GPS geo-tags > user profile locations. While spatiotemporal event detection module can
use all these location information to estimate the location of detected events. In total, 305
million tweets were collected.

Detection results were validated against a labeled events set named “Gold Standard
Report” (GSR).6 Each GSR event consists of date, location, and corresponding news
reports. A real world event was selected as a GSR event if it was reported by local news out-
lets or by influential international media. Table 1 lists the detailed information about events
of each country.

Results of all the methods were validated through GSR events. A detected event is
regarded as “matching” a GSR event, if it satisfied following two conditions: 1) the event
time detected is the same as that recorded in GSR; and 2) the event location detected is
within the same city as that recorded in GSR.

Generally, two types of metrics are used in our evaluation: relevance and timeliness
metrics. Specifically, relevance metrics include precision, recall, and F-score: “precision”
quantifies the fraction of detected events that are matches to GSR events, “recall” quantifies
the percentage of GSR events that are correctly detected, “F-score” represents the harmonic
mean of precision and recall. Timeliness metric “lead time” measures the delays between
event time reported by Twitter event detection methods and the earliest publish date of news
media. A positive value of “lead time” means detected event comes earlier than news, while

5https://dev.twitter.com/rest/public.
6http://www.mitre.org/.

https://dev.twitter.com/rest/public
http://www.mitre.org/
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Table 1 Distribution of events in 10 Latin countries

Country News source7 #Training events #Testing events

Argentina Cları́n; La Nación; Infobae 365 318

Brazil O Globo; O Estado de São Paulo; Jornal do Brasil 451 361

Chile La Tercera; Las Últimas Notı́cias; El Mercurio 252 229

Colombia El Espectador; El Tiempo; El Colombiano 298 213

Ecuador El Universo; El Comercio; Hoy 275 123

El Salvador El Diáro de Hoy; La Prensa Gráfica; El Mundo 180 127

Mexico La Jornada; Reforma; Milenio 1217 811

Paraguay ABC Color; Ultima Hora; La Nacı́on 563 387

Uruguay El Paı́s; El Observador 124 104

Venezuela El Universal; El Nacional; Ultimas Notı́cias 678 557

“News source” shows the news agencies utilized as sources for the GSR dataset

a negative values denotes this event is first reported by news media rather than Twitter
streams.

6.2 Methods for comparison

We compared ATSED with 5 popular event detection methods, including two supervised
algorithms, Earthquake Detection [26] and TEDAS [14], and three unsupervised meth-
ods, Topic Modeling [33], Graph Partition [31], and Spatial Temporal Burst [11]. Detailed
experimental settings for these methods were as follows.

– Earthquake Detection [26]: This work designed a SVM classifier to distinguish
earthquake-related tweets for event detection. Three features are mentioned in the paper
for classification training: statistical, keyword, and word context. All three features
were test in our evaluation, and keyword feature was chosen for its best performance
(measured in F-value).

– TEDAS [14]: TEDAS is another supervised event detection system based on SVM.
There are two pairs of tunable parameters (α, β) and (α′, β ′) in this paper, which are
priors to punish words with low frequencies. The well recommended settings β = β ′ =
10 provided by the authors were followed in our experiments. Due to the low percentage
of civil unrest content, α and α′ were assigned with a small value 0.1 to capture the
sparse data.

– Topic Modeling [33]: The implementation code applied here was provided by the
authors. Hashtags were treated as tags and tweet geotags were deemed to be the
corresponding geographic regions.

– Graph Partition [31]: The authors employed MAD algorithm [12] to deal with the
skewness of the signal strength distribution. In our experiment, various settings for the
MAD threshold (1, 5, 10, 20, 30, 40) were evaluated and a value of 20 is chosen as it
produced the best performance.

7In addition to domestic Top 3 news outlets, the following global news outlets are also included: The New
York Times; The Guardian, The Wall Street Journal, The Washington Post, The International Herald Tribune,
The Times of London, Infolatam.
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– Spatiotemporal Burst [11]: The implementation code was provided by the authors.8

For our experiment, domain words were used as the input queries for the spatiotemporal
search engine. The tunable temporal window size was set to 6 as recommended in the
original work. We also evaluated other values, including 12 and 24, but observed similar
results.

We created a manual label set, which was used as training data for the two supervised
comparison methods (Earthquake and TEDAS). Tweets that were definitely related to “civil
unrest” were picked up as positive, for example “With protests in the Zocalo, # YoSoyCan26
requires Iztapalapa dogs to be free”, and those containing some keywords but that were def-
initely irrelevant to “civil unrest” were deemed to be negative, such as “Measures should be
taken to protest trees against winter damage”. To strengthen the quality of the training data
set, each tweet was assigned to three different annotators. In total, 11,533 tweets were col-
lected for the training, of which about 46 % were “civil unrest related” (positive examples),
and 54 % were non-related (negative examples).

All the comparison methods and baselines returned the event-related tweet content, time,
and location. However, in addition to the targeted “civil unrest” events, Topic Modeling and
Graph Partition, also returned events that were actually on other topics. In order to ensure
a fair comparison, a SVM classifier trained by the manual label set was adopted to identify
“civil unrest” events from the general event set.

6.3 Parameter settings

This section gives the settings of all the parameters used in ATSED system.

– Domain weight threshold ηc. In the feature extraction module, threshold αc in Eq. 4
defines the score boundary ηc between important domain words and trivial ones. As
suggested by Leys et al. [12], value of αc can be set as 1/Q(0.75), where Q(0.75) is
the 0.75 quantile of the distribution. To maintain a balance between word importance
and quantity, αc was set to be 3.97 (ηc = 0.087), which returned a medium-size domain
word set with 52 words. Event weight threshold δe can be set in a similar way.

– Temporal coefficient λ. As introduced in the relevancy ranking module, Possion param-
eter λ has a significant impact on temporal similarity. Figure 5 illustrates the fitting
process of parameter λ. X-axis denotes the temporal distance of tweet and event, where
“0” means tweet publish date and event occurrence date are on the same day. Y-axis
shows daily event-related tweets number, normalized by their amount sum. To esti-
mate value of λ, 500 events were sampled and fitted to an exponential distribution. On
average, λ = 0.48 with R2 = 0.81 was chosen as default setting in our experiment.

– Gaussian mixture coefficient Q. As illustrated in Fig. 6, there is a trade-off between
average relativity score and positive set size. The left-y-axis denotes the proportion of
positive tweets. The right-y-axis is the average event-tweet relativity score of positive
tweets. A larger value of parameter Q will produce a smaller positive set, with tweets
of higher relativity score. Oppositely, a smaller value of Q will involve more tweets
into the positive set, in the cost of relativity score decrease. To balance quantity and
quality of positive tweets, we set Q to be 4 in this paper, which is the closet value to
the intersection point of these two curves.

8http://www.cs.ucr.edu/tlappas/scripts/STBurst.rar.

http://www.cs.ucr.edu/tlappas/scripts/STBurst.rar
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Fig. 5 Temporal decay pattern of event-tweets. Blue nodes are actual values, while red line denotes the fitted
model

– Word frequency threshold ζ . Similar to domain weight threshold ηc, MAD method [12]
is used to calculate the value of ζ . Following the principle suggested in [12], ζ is set to
be 93 to filter non-trivial words.

– Parameters in location estimation module. There are three tunable parameters that
may affect the final performance of location estimation: minimal count Cmin,

Fig. 6 Trade-off between average relativity score and positive set size for parameter Q
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minimal base Bmin, and p-value Pv . No obvious differences are observed when we
change p-value Pv from 0.01 to 0.1 or change minimal base Bmin from 10 to 50. The key
parameter affecting final performance is minimal count Cmin, which will be discussed
in section “Evaluation of the Extended Spatial Scan”.

6.4 Performance analysis

In this part, we first compared the overall performance of ATSED with 5 previous methods,
and then separately evaluated the effectiveness of each component in ATSED.

6.4.1 Overall relevance evaluation

ATSED was compared with five existing methods, and results are listed in Table 2. ATSED
achieved the best overall performance that it obtains the highest F-score in 7 out of the
10 countries. TEDAS was the second best method, achieving the highest F-score in the
remaining 3 countries. The performance of the supervised learning method Earthquake was
comparable with that of ATSED in precision, but failed to match ATSED in recall and F-
score. Spatial Temporal Burst performed relatively well in large countries such as Brazil,
but poorly in small countries like Uruguay. Graph Partition and Topic Modeling yielded the
worst overall results, which suggests that, even with SVM-based content filtering, unsuper-
vised methods designed for detecting general topics are still insufficient for detecting events
in targeted domains.

In general, the two supervised methods (Earthquake and TEDAS) and ATSED performed
generally better than any of the unsupervised methods (Graph Partition, Topic Modeling,
and Spatial Temporal Burst). To achieve further analysis, Fig. 5 compares the temporal
performance for the two supervised methods (Earthquake, TEDAS) and ATSED. Three
observations were made based on the data reported in Table 2 and Fig. 7.

1. Overall performance. Both Table 2 (spatial comparison) and Fig. 7 (temporal compari-
son) indicate that, ATSED, a semi-supervised approach was able to achieve comparable
precision to that of the supervised systems using manual labels, and outperformed them
with much better recall and F-score.

2. Spatial Performance. ATSED performed stably in different countries, while Earthquake
and TEDAS clearly functioned unstably across different countries. Although TEDAS
worked better than ATSED in small countries such as Paraguay and Uruguay, it falled
short in large countries like Mexico and Venezuela, which generate more than 32 % of
the total Twitter data in Latin America.

3. Temporal Performance. ATSED also yielded a stable temporal performance, while
Earhquake and TEDAS fluctuated over different time periods. For the February data,
Earthquake and TEDAS both suffered sharp decreases in recall and F-score, but ATSED
maintained good performance in all three metrics.

In summary, ATSED outperformed all of the other methods in both effectiveness and
robustness, clearly demonstrating its ability to yield better results and work more stably
across various countries and time periods. Several reasons may account for ATSED’s excel-
lent performance. First, our use of automatically generated labels may contribute to the
superior overall performance as they enable ATSED to generate a large amount of high-
quality labels for countries with different languages, while it is hard to collect sufficient
labels with equivalent diversity manually. Second, far beyond the traditional text-based



Geoinformatica (2016) 20:765–795 785

Ta
bl
e
2

Sp
at

ia
lp

er
fo

rm
an

ce
co

m
pa

ri
so

n
am

on
g

Tw
itt

er
ev

en
td

et
ec

tio
n

m
et

ho
ds

(P
re

ci
si

on
,R

ec
al

l,
F-

sc
or

e)

D
at

as
et

A
T

SE
D

G
ra

ph
pa

rt
iti

on
E

ar
th

qu
ak

e
To

pi
c

m
od

el
in

g
T

E
D

A
S

ST
bu

rs
t

B
ra

zi
l

0.
48

,0
.8

5,
0.
61

0.
55

,0
.3

4,
0.

42
0.

65
,0

.1
9,

0.
30

0.
46

,0
.0

9,
0.

15
0.

39
,0

.2
0,

0.
27

0.
80

,0
.4

5,
0.

58

C
ol

om
bi

a
0.

80
,0

.9
2,

0.
86

0.
68

,0
.2

9,
0.

41
0.

55
,0

.4
9,

0.
52

0.
26

,0
.3

9,
0.

31
0.

66
,0

.4
1,

0.
50

0.
87

,0
.4

8,
0.

62

U
ru

gu
ay

0.
53

,0
.3

4,
0.

41
0.

28
,0

.2
3,

0.
25

0.
86

,0
.1

1,
0.

20
0.

22
,0

.0
6,

0.
09

0.
88

,0
.5

6,
0.
68

0.
11

,0
.0

6,
0.

08

E
lS

al
va

do
r

0.
64

,0
.6

2,
0.
63

0.
35

,0
.0

7,
0.

1
0.

32
,0

.0
6,

0.
10

0.
40

,0
.0

5,
0.

09
0.

71
,0

.3
6,

0.
48

0.
30

,0
.1

2,
0.

17

M
ex

ic
o

0.
69

,0
.8

6,
0.
77

0.
72

,0
.2

3,
0.

35
0.

51
,0

.1
9,

0.
28

0.
34

,0
.0

8,
0.

12
0.

56
,0

.2
0,

0.
29

0.
76

,0
.4

3,
0.

55

C
hi

le
0.

64
,0

.7
7,

0.
70

0.
83

,0
.3

9,
0.

53
0.

46
,0

.1
9,

0.
27

0.
42

,0
.4

8,
0.

45
0.

96
,0

.3
6,

0.
53

0.
67

,0
.6

9,
0.

68

Pa
ra

gu
ay

0.
50

,0
.8

5,
0.

63
0.

76
,0

.1
9,

0.
30

0.
40

,0
.1

0,
0.

16
0.

86
,0

.0
7,

0.
13

0.
88

,0
.6

7,
0.
76

0.
34

,0
.1

2,
0.

18

A
rg

en
tin

a
0.

57
,0

.7
8,

0.
66

0.
88

,0
.1

4,
0.

24
0.

63
,0

.5
7,

0.
60

0.
38

,0
.4

2,
0.

40
0.

51
,0

.6
4,

0.
57

0.
63

,0
.7

3,
0.

67

V
en

ez
ue

la
0.

87
,0

.8
6,

0.
87

0.
46

,0
.2

1,
0.

29
0.

87
,0

.2
2,

0.
35

0.
47

,0
.3

7,
0.

41
0.

79
,0

.2
8,

0.
42

0.
82

,0
.3

3,
0.

47

E
cu

ad
or

0.
74

,0
.3

8,
0.

50
0.

30
,0

.2
2,

0.
25

0.
78

,0
.6

0,
0.

68
0.

67
,0

.0
4,

0.
08

0.
55

,0
.9

2,
0.
69

0.
29

,0
.2

6,
0.

27

N
um

be
rs

in
bo

ld
sh

ow
th

e
be

st
F-

sc
or

e
va

lu
es

in
co

rr
es

po
nd

in
g

co
un

tr
ie

s



786 Geoinformatica (2016) 20:765–795

a b c

Fig. 7 Temporal performance comparison of ATSED, Earthquake, and TEDAS

classifier, the classifier incorporated in ATSED can have a beneficial effect on the final
results as it takes into account the social ties among tweets. Utilizing an extended spa-
tial scan can also enhance ATSED’s output by improving quality of the location data. In
the following sections, we will further evaluate the effect of each component in ATSED
separately.

6.4.2 Timeliness evaluation

To further evaluate how soon the newly emerging events can be detected, Fig. 8 shows the
comparison of timeliness metric “lead time” among the three best performers: Earthquake,
TEDAS, and our proposed ATSED. In general, our ATSED achieves the best “lead time” of
2.42 days, TEDAS is the second best with 2.34 days ahead of news reports, and Earthquake
performs worst with overall “lead time” of 2.04 days.

1. Twitter comes earlier than news. “Civil unrest” events generally appear first in Twitter
that even the worst performer Earthquake can detect events 2.04 days prior to the news
report. This is because 75 % of “civil unrest” events are planned in advance [17], and
social media such as Twitter plays a key role in organizing protests, especially in the

Fig. 8 Lead time comparison of ATSED, earthquake and TEDAS
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Table 3 Sample tweets for the baseline method and ATSED

Tweets by baseline 1. Northern Ireland live another march day: Demonstrators protest since
December by a decree ... http://t.co/O2K9hMIq

2. #EnImágenes Students protest in several states against the judgment of
the Supreme Court http://t.co/clj5XraS

3. RT @FilosofiaTipica: People change. Love hurts. Friends leave. Things
sometimes go wrong. But remember that life goes on.

Positive tweets by ATSED 1. With protests in the Zocalo, #YoSoyCan26 requires government to free
dogs of Iztapalapa. http://t.co/XPsQ90po#AMLO

2. #YoSoyCan26 march in solidarity with Socket for victims’ families in
Cerro de la Estrella and demand liberty for dogs.

3. RT @politicosmex: To people of Mexico, dogs are murderers is
incredulous : Government of the capital is asked to clarify the truth
...http://t.co/m5UbmJXT

Negative tweets by ATSED 1. According to reports from the authorities in Iztapalapa, six people are
murdered in three offices...http://t.co/qvhCsEhl

2. Your charger does not work anymore? You have a broken dog? Bring it
to us in Tampico Altamira tree http://t.co/fSOj8U2C

3. RT @ CristhianH23: Dogs killers, untouchable aliens, fair elections, less
unemployment, peaceful marches, united people #Mé

Domain words are denoted by bold style and event words are marked with underlining. The tweets, originally
in Spanish, have been translated into English using Google Translate

early stages.9 Detecting events from Twitter can provide “beforehand information” for
civil unrests, while traditional news media only produce “morning-after” reports.

2. Organized protests come earlier than spontaneous protest. Note that ATSED can obtain
better “lead time” in countries such as Uruguay and Argentina than Brazil. We studied
Brazilian protests and found that they were more spontaneous compared to other coun-
tries: for instance, the initial protests were triggered by bus fare and soon developed
into protests against government, most of which were not organized.

6.4.3 Evaluation of label generation

The effectiveness of the automatic label generation (ALG) component was demonstrated
through the high quality of the tweet labels. The above mentioned “dog protest” in Mexico
was taken as the case study here, as it was a small scale protest that would normally be
hard to identify. The top 3 ranked example labels generated by ATSED are listed in Table 3.
For comparison, the top ranked tweets retrieved by the keywords matching method [6] are
also listed in the table, using words most relevant to “civil unrest”, such as “protest” and
“march”.

From the results shown in Table 3, tweets obtained through the keyword matching
baseline method contain following noises.

1. Tweets irrelevant to the given targeted domain. Some tweets were completely unrelated
to the topic “civil unrest”. Consider Tweet #3 for example. Its original Spanish text
was :“La gente cambia. El amor duele. Los Amigos se marchan. Las cosas aveces van

9https://goo.gl/8wfhkN.

http://t.co/O2K9hMIq
http://t.co/clj5XraS
http://t.co/XPsQ90po#AMLO
http://t.co/m5UbmJXT
http://t.co/qvhCsEhl
http://t.co/fSOj8U2C
https://goo.gl/8wfhkN


788 Geoinformatica (2016) 20:765–795

mal. Pero recuerda que la vida sigue”. Although this did contain one civil unrest key-
word “marchan” (which becomes “march” after stemming), this tweet was in fact about
people’s feelings, rather than “civil unrest” events.

2. Tweets irrelevant to the specific event. Within those tweets that were indeed related to
“civil unrest”, most reflect influential protests that occurred in countries outside Mex-
ico. For example, Tweet #1 was actually about a protest in Northern Ireland, and Tweet
#2 mentioned a protest that happened in Venezuela. Small events such as the “dog
protests” were submerged in these “big events”.

In contrast, the positive tweets retrieved by ATSED were highly related to the “dog
protest” event. These tweets can be summarized into two types.

1. Tweets referred to the protest itself. For example, tweets #1 and #2 contained highly
ranked “civil unrest” domain words, such as “protesta” (protest) and “marcha” (march),
as well as important event words, for example, “perros” (dogs) and “Iztapalapa”
(location name).

2. Tweets related to events that triggered the protest. The reason for the protest was not
mentioned in the news report, but can be revealed according to Tweet #3: citizens were
protesting to gain the freedom of innocent dogs that had been captured by govern-
ment officials as suspects in the killing of 4 people. Besides the event words, these
tweets also contained middle-ranked domain words such as “Gobierno” (government)
and “México”, which were weak indications for “civil unrest” when appearing alone,
but became stronger when they co-occurred in the same tweet.

In addition, as shown in Table 3, ATSED also provided negative examples, which can be
generally divided into three types as follows.

1. Low textual score tweets. For example, domain words (authorities and people) and
event words (Iztapalapa) contained in Tweet #1 are low weight words and result in a
poor textual score.

2. Low spatial score tweets. For instance, Tweet #2 had a relatively high textual score, as
it contained the strong event word “perro” and the domain word “Tráelo”. However, its
spatial score was low because the location it provided was the city of “Tampico”, which
was about 500 kilometers away from the event location (Mexico City).

3. Low temporal score tweets. Tweet #3 had a strong textual score as it contained both
“dogs” and “marches”, but a weak temporal score as it was published on Jan 19, one
week after the event date.

“Precision@K” is used to quantitatively evaluate the quality of generated labels. It is
calculated as the ratio of tweets that truly relevant to the targeted domain “civil unrests”
among those top K ranked.

Precision@K = DT

⋂
DtopK/K (22)

where DT are the ground truth of positive labels from our manual label set mentioned in
Section 6.3, DtopK are top K tweets ranked by methods. Specifically, we selected a mixture
label set consisted of 1,000 positive tweets and 5,000 negative tweets, and ranked these
tweets through random selection, keyword matching, and our proposed ATSED. The results
list in Table 4 show that labels generated through ATSED outperform other methods in
almost all stages. ATSED beats other methods because it can assign weights for words with
knowledge learned from news. The outputs of keyword matching method are acceptable
when K is small (e.g.,K = 50), however, its performance drops quickly as K increases and
tends to the output of random selection in the final stages.
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Table 4 Labels quality evaluation through “Precision@K”

P@50 P@100 P@150 P@200 P@250 P@300 P@350

Random selecting 0.18 0.19 0.16 0.17 0.17 0.15 0.15

Keyword matching 0.63 0.46 0.32 0.25 0.22 0.19 0.18

ATSED 0.84 0.79 0.77 0.74 0.73 0.74 0.71

6.4.4 Evaluation of the tweet classifier

ATSED’s tweet classifier was compared with that of two supervised methods, Earthquake
and TEDAS. To ensure a fair comparison among the tweet classifier components, labels
generated by ATSED were used as training data for both Earthquake and TEDAS. Given
the same training dataset, any differences among the three methods will depend mainly on
the design of the Twitter text classifier. Table 5 compares the performance achieved by each
of the three methods. The data in the table reveal that:

1. Using labels generated by ATSED improved detection performance for both Earthquake
and TEDAS. Comparing Tables 2 and 5 reveals that these two methods exhibited obvi-
ous increases in recall and F-scores in most countries, accompanied by slight decreases
in precision. With respect to the F-score, Earthquake performed better than before in
8 countries, and TEDAS achieved gains in 6 countries. Compared to human analysts,
ATSED inevitably produced some noisy labels, which may have been responsible for
the small reduction in precision. However, ATSED can easily generate a large amount
of relevant labels, which boost both recall and F-score. Creating a manual label set of
equivalent size would be extremely expensive and time-consuming.

2. When using the same training data, ATSED outperformed both Earthquake and TEDAS
in all ten countries. This observation strongly indicates the effectiveness of our pro-
posed Twitter classifier. Without considering tweets’ distinct features (e.g., hashtags,
mentions), Earthquake still turned in the worst performance. While both TEDAS and
ATSED took into account Twitter terms as additional features for the SVM classifier,

Table 5 Performance comparison for Twitter text classifiers (Precision, Recall, F-score)

Dataset ATSED Earthquake TEDAS

Brazil 0.48, 0.85, 0.61 0.39, 0.28, 0.32↑ 0.70, 0.53, 0.60↑
Colombia 0.80, 0.92, 0.86 0.29, 0.41, 0.34 0.72, 0.51, 0.60↑
Uruguay 0.53, 0.34, 0.41 0.52, 0.25, 0.38↑ 0.27, 0.44, 0.33

El Salvador 0.64, 0.62, 0.63 0.45, 0.09, 0.16↑ 0.52, 0.58, 0.55↑
Mexico 0.69, 0.86, 0.77 0.62, 0.36, 0.46↑ 0.77, 0.55, 0.64↑
Chile 0.64, 0.77, 0.70 0.69, 0.71, 0.70↑ 0.71, 0.50, 0.59↑
Paraguay 0.50, 0.85, 0.63 0.46, 0.39, 0.42↑ 0.49, 0.79, 0.60

Argentina 0.57, 0.78, 0.66 0.58, 0.66, 0.62↑ 0.42, 0.74, 0.53

Venezuela 0.87, 0.86, 0.87 0.51, 0.42, 0.46↑ 0.80, 0.45, 0.58↑
Ecuador 0.74, 0.38, 0.50 0.16, 0.44, 0.23 0.16, 0.52, 0.25

Upward arrows denote performance improvements over the original results shown in Table 2. Numbers in
bold show the best F-score values for each country
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ATSED clustered tweets based on social ties first, which increased the efficiency and
precision of the ensuring classification.

6.4.5 Evaluation of the extended spatial scan

The new multinomial spatial scan model was also compared with the original spatial scan
method [18]. Three tunable parameters are shared by the two methods: cut off threshold
p-value Pv , minimal count number Cmin, and minimal base number Bmin. No significant
difference was observed between the two models, when adjusting either p-value Pv or
the minimal base number Bmin. To obtain the best performance, we set Pv = 0.05 and
Bmin = 20 for both the methods. However, ATSED was sensitive to the parameter minimal
count number Cmin. Figure 9 plots the precision and recall of the two methods, when the
minimal count number Cmin is changed from 2 to 10. We can therefore make the following
observations.

1. In both these methods, recall decreased with increasing Cmin. For all Cmin values, our
proposed multinomial spatial scan always achieved better recall than the original model.
As Cmin increased from 2 to 10, little difference was observed in the term of distance
between the two recall curves.

2. Increasing Cmin led to an increase in precision. At the start point (Cmin = 2), the
original model had a better precision score. However, our proposed multinomial model
obtained a much greater increase rate than the original spatial scan. Therefore, as Cmin

increased, the advantage of the original model narrowed and finally disappeared.
3. After Cmin reached 6, both the methods became stable and no more changes were

observed. In the stable state, with precision close to 1, our multinomial spatial scan model
still maintained good recall above 0.5, while original spatial scan only achieved 0.4.

In general, the multinomial spatial-scan contributed better recall with little lost in pre-
cision. For the metric of recall, our extended spatial scan consistently provided a clear
advantage over the original spatial scan. As for precision, the multinomial spatial scan
yielded a comparable precision to that of the original spatial scan when Cmin < 6, and
achieved the same precision when Cmin ≥ 6.

a b

Fig. 9 Comparison of multinomial and original spatial scan performance



Geoinformatica (2016) 20:765–795 791

6.5 Case study

Several interesting partterns were observed in the ATSED output results. Figure 10 describes
three events detected by ATSED on Jan, 20th, 2013 in Mexico. In the figure, each detected
event is represented by a location point (red circle), a summary word cloud, and a corre-
sponding ground-truth GSR description. Although these events happened simultaneously
in the same country, ATSED successfully distinguished all three and captured their differ-
ent social focus. As shown in the word cloud, the “Hermosillo” protesters were demanding
a reduction in their “vehicle tax”, while the event in “Mexico City” was mainly about a
“parking” issue, and teachers in “Oaxaca” were marching to protest against “education
reform”. The cases in Fig. 10 reveals that ATSED can identify spatial events at the city-
level, while most previous Twitter event detection technologies can only detect events at the
country-level.

Figure 11 plots the trends of 3 popular hashtags found in the detected tweets from
the ATSED output. All 3 hashtags were related to “teacher” protests: “#SNTE” was the
hottest topic among the “civil unrest” tweets at the beginning of March, but “#CETEG”
and “#CNTE” became more popular from April onwards. These data patterns were caused
by several interesting facts. The head of the National Union of Education Workers (SNTE)
was arrested for corruption on Feb, 28th. The scandal stimulated protests against “SNTE”
in the following month, and resulted in the popularity of “#SNTE” in March. As “SNTE”

Fig. 10 Case study on spatial factors of ATSED event detection results
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Fig. 11 Case study on temporal factors of ATSED event detection results

suffered from the negative impact of the corruption event, other teacher organizations
emerged rapidly and after April, “#SNTE” almost disappeared from the tweet data, being
replaced by two new teacher unions, the Guerrero State Coordinator of Education Workers
(CETEG) and the National Education Workers Coordinator (CNTE). It requires extensive
human efforts to manually relabel training data to keep up with events on the ground in tra-
ditional methods, but ATSED is capable of updating its training dataset periodically. Trends
in these three hashtags demonstrated ATSED’s ability to capture the dynamics of Twitter
data.

7 Conclusion

This paper provided a model named ATSED to detect spatiotemporal events of targeted
domains from Twitter streams. Beyond the civil unrest events studied in this paper, ATSED
can also handle spatiotemporal events of other targeted domains (e.g., sports, politics, envi-
ronment). Previous Twitter event detection methods usually require manually labeled data
for training, instead, ATSED can generate high-quality label data automatically. Based on
these labels, a SVM-based classifier that utilizing Twitter social-ties is trained and applied
to real-time Twitter streams to recognize event-related tweets. To enhance the estima-
tion accuracy of event locations, all terms of Twitter location information are considered
in multinomial spatial scan component of ATSED. The experimental results have shown
that ATSED effectively improved detection performance, compared to existing Twitter
event detection approaches. And further evaluation demonstrated that each part of ATSED
contributes probably to the integral performance.
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