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Abstract
The presence of data noise and corruptions re-
cently invokes increasing attention on Robust Least
Squares Regression (RLSR), which addresses the
fundamental problem that learns reliable regres-
sion coefficients when response variables can be
arbitrarily corrupted. Until now, several important
challenges still cannot be handled concurrently: 1)
exact recovery guarantee of regression coefficients
2) difficulty in estimating the corruption ratio pa-
rameter; and 3) scalability to massive dataset. This
paper proposes a novel Robust Least squares re-
gression algorithm via Heuristic Hard threshold-
ing (RLHH), that concurrently addresses all the
above challenges. Specifically, the algorithm al-
ternately optimizes the regression coefficients and
estimates the optimal uncorrupted set via heuristic
hard thresholding without corruption ratio parame-
ter until it converges. We also prove that our algo-
rithm benefits from strong guarantees analogous to
those of state-of-the-art methods in terms of con-
vergence rates and recovery guarantees. Extensive
experiment demonstrates that the effectiveness of
our new method is superior to that of existing meth-
ods in the recovery of both regression coefficients
and uncorrupted sets, with very competitive effi-
ciency.

1 Introduction
The presence of noises and corruptions in real-world data can
be inevitably caused by the experimental errors, accidental
outliers, or even adversarial data attacks. As the traditional
least squares regression methods are vulnerable to outlier ob-
servations [Maronna et al., 2006], we study Robust Least
Square Regression (RLSR) to handle the problem of learn-
ing a reliable set of regression coefficients given the pres-
ence of several adversarial corruptions in its response vector.
A commonly adopted model from existing methods assumes
that the observed response is obtained from the generative
model y = XTβ∗ +u, where β∗ is the true regression coef-
ficients that we wish to recover and u ∈ Rn is the corruption
vector with arbitrary values. Due to the ubiquitousness of
data corruptions and popularity of regression methods, RLSR
has become a critical component of several important real-

world applications in various domains such as signal pro-
cessing [Zoubir et al., 2012; Studer et al., 2012], economics
[Rousseeuw and Leroy, 2005], bioinformatics [Lourenco et
al., 2011] and image processing [Naseem et al., 2012; Wright
et al., 2009]. A large body of literature on robust regression
problem has been built up over the last few decades, but most
of them [Smolic and Ohm, 2000; Huber and Ronchetti, 2009;
She and Owen, 2011; Jung et al., 2016] lack the theoreti-
cal guarantee of regression coefficients recovery. To theo-
retically guarantee the recovery performance, [Chen et al.,
2013] proposed a trimmed inner product based algorithm,
but the recovery boundary of their method is not tight in a
massive dataset. Also, [Mcwilliams et al., 2014] proposed
a sub-sampling algorithm for large scale corrupted linear re-
gression, the recovery result they provide is not close to a
exact recovery [Bhatia et al., 2015]. To pursuit the exact re-
covery results for RLSR problem, some work focused on L1

penalty based convex formulations [Wright and Ma, 2010;
Nguyen and Tran, 2013]. However, these methods im-
posed severe restrictions on the data distribution such as row-
sampling from an incoherent orthogonal matrix [Nguyen and
Tran, 2013].

Several studies requires the corruption ratio parameter
which is difficult to be determined manually. For instance,
instead of the exact corruption ratio, [Chen et al., 2013] re-
quires the upper bound of outliers number which is also dif-
ficult to estimate. [She and Owen, 2011] relies on a reg-
ularization parameter to control the size of uncorrupted set
based on soft-thresholding. Recently, [Bhatia et al., 2015]
proposed a hard-thresholding algorithm for the RLSR prob-
lem: arg min

∑
i∈S(yi − xTi β)2 with the constraint: |S| ≥

(1 − γ)n, where |S| is the size of the uncorrupted set and γ
is the corruption ratio. Although the method guarantees an
exact recovery of β under a mild assumption for covariate
matrix, their results are highly dependent on the corruption
ratio parameter γ inputed by users. Specifically, the parame-
ter is required to be larger than the exact corruption ratio γ∗ to
ensure its convergence. Unfortunately, it is seldom practical
to estimate the corruption ratio under the assumption that the
response vector is arbitrarily corrupted. Furthermore, empir-
ical results show that if the parameter γ is more than 50% off
the true value, the recovery error can be more than double in
size.

To address the lack of rigorous analysis on corruption ra-
tio and theoretical guarantee on exact recovery, we proposed
a new model, Robust Least squares regression algorithm via



Heuristic Hard thresholding (RLHH). The main contributions
of our study are summarized as follows: 1) The design of
an efficient algorithm to address the RLSR problem with-
out parameterizing its corruption. The algorithm RLHH is
proposed to recover the regression coefficients and uncor-
rupted set efficiently. Unlike with a fixed corruption ratio,
our method alternately estimates the optimal corruption ratio
based on residual errors using optimized regression coeffi-
cients in each iteration. 2) An exact recovery guarantee under
a mild assumption regarding input variables. We prove that
our RLHH algorithm converges at a geometric rate and re-
covers β∗ exactly under the assumption that the least squares
function satisfies both the Subset Strong Convexity (SSC) and
Subset Strong Smoothness (SSS) properties. Specifically, we
prove that our heuristic hard thresholding function ensures
that the residual of the estimated uncorrupted set in each itera-
tion has a tight upper error bound for the true uncorrupted set.
3) Empirical effectiveness and efficiency. Our proposed algo-
rithm was evaluated with 6 competing methods in synthetic
data. The results demonstrate that our approach consistently
outperforms existing methods in both regression coefficients
and uncorrupted set recovery, delivering a competitive run-
ning time.

The reminder of this paper is organized as follows. Section
2 gives a formal problem formulation. The proposed RLHH
algorithm is presented in Section 3. Section 4 presents the
proof for the recovery guarantees. In Section 5, the experi-
mental results are analyzed and the paper concludes with a
summary of our work in Section 6.

2 Problem Formulation
In this study, we consider the problem of RLSR with ad-
versarially corrupted data. Given a covariate matrix X =
[x1, ...,xn], where each column xi ∈ Rp×1 and β∗ repre-
sents the ground truth coefficients of the regression model,
we assume the corresponding response vector y ∈ Rn×1 is
generated using the following model:

y = y∗ + u+ ε (1)

where y∗ = XTβ∗ and u is the unbounded corruption vector
introduced by an adversary. ε represents the additive dense
noise, where εi ∼ N (0, σ2). The goal of our problem is to
learn a new problem, which is to recover the regression co-
efficients β∗ and simultaneously determine the uncorrupted
point set Ŝ. The problem is formally defined as follows:

β̂, Ŝ = argmin
β,S

‖yS −XT
S β‖22

s.t. S ⊂ [n], |S| ≥ G(β)
(2)

Given a subset S ⊂ [n], yS restricts the row of y to indices
in S and XS signifies that the columns of X are restricted to
indices in S. Therefore, we have yS ∈ R|S|×1 and XS ∈
Rp×|S|. We use the notation S∗ = supp(u) to denote the
set of uncorrupted points. Also, for any vector v ∈ Rn, the
notation vS represents the |S|-dimensional vector containing
the components in S. The function G(·) is to determine the
size of set S according to the regression coefficients β, which
is explained in Section 3.

To prove the theoretical recovery of regression coefficients,
we require that the least squares function satisfies the Subset

Strong Convexity (SSC) and Subset Strong Smoothness (SSS),
which are defined as follows:
Definition 1. SSC and SSS Property. The least squares func-
tion f(β) = ‖yS −XT

S β‖
2
2 satisfies 2ζα-Subset Strong Con-

vexity Property and 2κα-Subset Strong Smoothness if the fol-
lowing holds:

ζαI �
1

2
O2fS(β) � καI for ∀S ∈ Sα (3)

Equation (3) is equivalent to:

ζα ≤ min
S∈Sα

λmin(XSX
T
S ) ≤ max

S∈Sα
λmax(XSX

T
S ) ≤ κα

where λmin and λmax are denoted as the smallest and
largest eigenvalues of matrix X, respectively.

The optimization problem in Equation (2) is non-convex
(jointly in β and S) in general and existing methods cannot
guarantee the exact recovery and efficient convergence rate.

3 The Proposed Methodology
In order to solve the problem in Equation (2) efficiently with
the guarantee on the exact recovery of regression coefficients,
we propose a novel heuristic hard thresholding based robust
regression algorithm, RLHH. The algorithm iteratively opti-
mizes the regression coefficients β and uncorrupted set S un-
til convergence. The optimization of S is very challenging
because it mounts to a non-convex discrete optimization prob-
lem. To handle it, we propose a heuristic corruption estimator
to determine the size of set S and then apply the estimated un-
corrupted size into heuristic hard thresholding method for the
optimization of S elements.

Denoting residual vector r = y−XTβ and rδ(k) be the kth

elements of r in ascending order of magnitude, the heuristic
estimator G(·) determines the size of optimal uncorrupted set
τe by optimizing the following problem:

τ∗ = argmin
τ

L(τ)

s.t. rδ(τ) ≤ min(
2τrδ(τo)
τo

,
rδ(n) + rδ(τo)

2
)

(4)

where the function L is defined as

L(τ) :=
(rδ(τ) + 1)/τ

(rδ(n) − rδ(τ))/(n− τ)
(5)

The variable τo in the constraint is defined as follows:

τo = argmin
1≤τ≤n

∣∣∣∣∣ r2δ(τ) − ‖rSτ′ ‖
2
2

τ ′

∣∣∣∣∣ (6)

where τ ′ = τ − dn/2e and Sτ ′ is the position set contain-
ing the smallest τ ′ elements in residual r. The constraint is
imposed to avoid the case when τ is close to n, where the
residual becomes so arbitrary that the denominator can be-
come very large, making L much smaller than the value of
the estimated threshold τe.

Applying the optimal uncorrupted set size generated by
G(·), the heuristic hard thresholding is defined as follows:
Definition 2. Heuristic Hard Thresholding. Denoting
δ−1r (i) as the position of the ith element in residual vector
r’s ascending order of magnitude. The heuristic hard thresh-
olding of r is defined as

HG(β) = {i ∈ [n] : δ−1
r (i) ≤ G(β)} (7)



Algorithm 1: RLHH ALGORITHM

Input: Corrupted training data {xi, yi}, i = 1...n, tolerance ε
Output: solution β̂

1 S0 = [n], t← 0
2 repeat
3 βt+1 ← (XStX

T
St)
−1XStySt

4 for i = 1..n do
5 rt+1

i ← |ySti − xTStiβ|
6 St+1 ←Hτ∗(rt+1), where τ∗ is solved by Equation (4).
7 t← t+ 1

8 until ‖rt+1
St+1

− rtSt‖2 < εn

9 return βt+1

The optimization of S is formulated as solving the Equa-
tion (7). The set returned by HG(β) will be used as the esti-
mated uncorrupted set.

We will first present the reasoning behind our choice of
function in this section and then show that our heuristic func-
tion can indeed ensure a rigorous recovery of regression co-
efficients β in Section 4. Basically, the function follows a
natural intuition that data points with unbounded corruption
always have a higher residual ri = yi − Xiβ in magnitude
compared to uncorrupted data. Moreover, as this corruption is
arbitrary and unbounded, when the residual vector r is sorted
in ascending order, the slope of overall corrupted data is al-
ways much larger than the slope of the uncorrupted data. As
Figure 1 shows, point p∗ has the minimum L value in the fea-
sible domain. Therefore, we can estimate the corresponding
threshold τ∗ of point p∗ as the optimal threshold. To avoid
a zero value for the numerator of L(τ), we add 1 to all the
values in the residual vector.

In Algorithm 1, an efficient robust regression algorithm,
RLHH, based on heuristic hard thresholding is proposed to
solve the RLSR problem. It follows an intuitive strategy of
updating β to provide a better fit for the current estimated
set S in Line 3, and updating the residual vector r in Line

Infeasibleτ* τ₂τ₁
p₁

p*

p₂

p₁
p*

p₂
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Threshold
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Figure 1: Blue line in figure (a) indicates the values of residual vec-
tor r in ascending order, and red point in figure (b) shows the cor-
responding value of heuristic function. τ∗ is the estimated threshold
with the minimum L; τ1 and τ2 are the candidate threshold values
in τ∗’s left and right hand side, respectively.
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Figure 2: Residual r in ascending order for the 1st (left) and 5th

(right) iterations.

4-5. It then estimates an active set S of uncorrupted points
via heuristic hard thresholding in Line 6 based on the resid-
ual vector r = y−Xβ in the current iteration. The active set
is initialized using the entire data samples in Line 1. The al-
gorithm continues until the change in the residual vector falls
within a small range. Figure 2 shows that the residual of the
uncorrupted set in the 1st and 5th iteration, respectively. It in-
tuitively explains the convergence progress of our algorithm:
the optimization steps of β based on St makes the rSt smaller
than its previous iteration, and it leads to smaller L values for
items in St. Then these items in St have much higher pos-
sibility to kept in St+1 than items in [n] \ St. This progress
continues until the active set is fixed.

4 Theoretical Recovery Analysis
For convenience, the convergence analyses for the case with-
out dense noise will be presented, i.e. y = XTβ + u. The
convergence proof relies on the optimality of two steps car-
ried out by the algorithm, the β optimization step that selects
the best coefficients based on the uncorrupted set, and the
heuristic hard threshold step that automatically discovers the
best active set based on the current regression coefficients.
Lemma 1. For a given residual vector r ∈ Rn, let δ(k)
be the k-th position of the ascending order in vector r, i.e.
rδ(1) ≤ rδ(2) ≤ ... ≤ rδ(n). For any 1 ≤ τ1 < τ2 ≤ n, let
S1 = {δ(i)|1 ≤ i ≤ τ1} and S2 = {δ(i)|1 ≤ i ≤ τ2}. We
then have ‖rS1

‖22 ≤ τ1
τ2
‖rS2
‖22 ≤ ‖rS2

‖22.

Proof. Let S3 = {δ(i) : τ1 + 1 ≤ i ≤ τ2}. Clearly , we
have ‖rS2‖22 = ‖rS1‖22 + ‖rS3‖22. Moreover, since each
element in S3 is larger than any of the element in S1, we
have ‖rS1‖22 ≤ ‖rS2‖22 + |S3|

|S1|‖rS1‖22 ≤
|S1|

|S1|+|S3|‖rS2‖22 =
τ1
τ2
‖rS2‖22 ≤ ‖rS2‖22.

Lemma 2. Let St be the estimated uncorrupted set at the tth
iteration. If τt ≥ τ∗ = γn, then |S∗ ∩ St| ≥ τt − n

2 .

Proof. When St contains all the elements of [n] \ S∗,
|S∗ ∩ St| gets the smallest value τt − |[n] \ S∗|. So we have

|S∗ ∩ St| ≥ τt − |[n] \ S∗| = τt − (1− γ)n (8)
Because γ > 1

2 , we have
|S∗ ∩ St| ≥ τt − n+

n

n
= τt −

n

2
(9)



Lemma 3. Let τt be the estimated uncorrupted threshold at
the t-th iteration. If τt > τ∗ = γn, then ‖rtSt‖

2
2 ≤

[
1 +

128(1−γ)
2γ−1

]
‖rtS∗‖

2
2.

Proof. To simplify the notation, we will omit all the sub-
scripts t that signify the t-th iteration in the explanation below
and assumes the residual vector r is sorted in ascending order
of magnitude. According to the optimization step in equation
(4), we have the following properties:

According to the optimization step in equation (4), we have
the following properties:

rτ ≤2 ·
τrτo
τo

(a)

≤ 8 · rτo

r2τ
(b)

≤ 64

τ ′
‖rS∗∩St‖

2
2

|St \ S∗|r2τ
(c)

≤(1− γ) · n · 64
τ ′
‖rS∗∩St‖

2
2

(10)

The inequality (a) follows τo ≥ τ/4 and inequality (b)
follows the definition of τo in equation (6) and the fact that
|S∗ ∩ St| ≥ τ ′ in Lemma 2. The inequality (c) follows |St \
S∗| ≤ (1−γ) ·n and ‖rSt\S∗‖

2
2 ≤ |St \S∗|r2τ . Then we have

‖rSt\S∗‖
2
2 ≤
[
(1− γ) · n · 64

τ ′
+ 1
]
‖rS∗\St‖

2
2

+
[
(1− γ) · n · 64

τ ′

]
‖rS∗∩St‖

2
2

‖rSt\S∗‖
2
2 + ‖rS∗∩St‖

2
2

(d)

≤
[
(1− γ) · n · 64

τ ′
+ 1
]
‖rS∗‖

2
2

‖rSt‖
2
2

(e)

≤
[
1 +

128(1− γ)
2γ − 1

]
‖rS∗‖

2
2

(11)

The inequality (d) follows ‖rS∗‖
2
2 = ‖rS∗\St‖

2
2 +

‖rS∗∩St‖
2
2. The inequality (e) follows τ ′ = τt − n

2 .

Theorem 4. Let X = [x1, ...,xn] ∈ Rp be the given
data matrix and y = XTβ∗ + u be the corrupted output
with ‖u‖0 = γn. Let Σ0 be an invertible matrix such that
X̃ = Σ

−1/2
0 X , f(β) = ‖yS − X̃Sβ‖22 satisfies the SSC and

SSS properties at level α, γ with 2ζα,γ and 2κα,γ If the data

satisfies κγ
ζ1−α

< 1√
λ

(
√

2−1), then after t = O
(

log 1
η

µ‖u‖2
ε

)
iterations, Algorithm 1 yields an ε-accurate solution βt.

Proof. Let Gt = (XStX
T
St

)−1XSt , the t-th iteration of Al-
gorithm 1 satisfies

βt+1 = GtySt = Gt(X
T
Stβ
∗ + uSt) = β∗ +GtuSt

Thus, the residual in t+1-th iteration for any set S ⊂ [n],
yields

rt+1
S = yS −XT

S β
t+1 = uS −XT

SGtuSt

For each iteration, we have two conditions when choosing
different values of τ t+1. For condition 1, τ t+1 ≤ τ∗, we have
‖rt+1
St+1
‖22 ≤ ‖rt+1

S∗
‖22 (see Lemma 1).

‖uSt+1‖
2
2 = ‖uSt+1 −X

T
St+1

GtuSt‖
2
2 − ‖XT

St+1
GtuSt‖

2
2

+ 2uTSt+1
XT
St+1

GtuSt
(a)

≤‖XT
S∗GtuSt‖

2
2 − ‖XT

St+1
GtuSt‖

2
2 + 2uTSt+1

XT
St+1

GtuSt

(b)

≤
κ2
α1

ζ21−γ
‖uSt‖

2
2 + 2

κα1

ζ1−γ
‖uSt‖2‖uSt+1‖2

(12)
where α1 = maxt{1 − τt

n }. The inequality (a) follows
‖rt+1
St+1
‖22 ≤ ‖rt+1

S∗
‖22, and inequality (b) follows from the

setting X̃ = Σ
−1/2
0 X , SSC/SSS properties, |St| ≤ (1− γ) ·n

and |S∗ \ St+1| ≤ α1 · n. Solving the quadratic equation for
the corruption vector gives us

‖uSt+1‖2 ≤ (1 +
√
2)
κα1

ζ1−γ
‖uSt‖2 (13)

For condition 2, τ t+1 > τ∗. According to Lemma 3,
‖rtSt‖

2
2 ≤ λ‖rtS∗‖

2
2 where λ = 1 + 128(1−γ)

2γ−1 , we have

‖uSt+1‖
2
2 = ‖uSt+1 −X

T
St+1

GtuSt‖
2
2 − ‖XT

St+1
GtuSt‖

2
2

+ 2uTStX
T
St+1

GtuSt
(c)

≤λ‖XT
S∗GtuSt‖

2
2 − ‖XT

St+1
GtuSt‖

2
2 + 2uTStX

T
St+1

GtuSt

(d)

≤λ
κ2
γ

ζ21−α2

‖uSt‖
2
2 + 2

κγ
ζ1−α2

‖uSt‖2‖uSt+1‖2

(e)

≤λ
κ2
γ

ζ21−α2

‖uSt‖
2
2 + 2

√
λ

κγ
ζ1−α2

‖uSt‖2‖uSt+1‖2
(14)

where α2 = maxt{1 − τt
n }. The inequality (c) fol-

lows Lemma 3, inequality (d) follows from the definition of
SSC/SSS properties, |St| ≤ (1−α2)·n and |S∗\St+1| ≤ γ ·n.
Inequality (e) notices the fact that

√
λ ≥ 1. Solving the

quadratic equation in Equation (14) gives us

‖uSt+1‖2 ≤ (1 +
√
2)
√
λ

κγ
ζ1−α2

‖u‖2 (15)

Combine these two conditions and let t1 be the iterations
for the case of condition 1. We get

‖βt+1 − β∗‖2 = ‖GtuSt‖2 ≤ µ‖uSt‖2
≤ µ · ηt11 · ηt+1−t1‖u‖2 ≤ µ · ηt+1‖u‖2

where µ = max
{√

κα1

ζ1−γ
,
√
κγ

ζ1−α2

}
, η1 =

(1+
√
2)κα1

ζ1−γ
, η =

(1+
√
2)
√
λκγ

ζ1−α2
. When κγ

ζ1−α2
<
√
2−1√
λ

, we have η < 1 and

after t = O
(

log 1
η

µ‖u‖2
ε

)
, ‖βt+1 − β∗‖2 ≤ ε.

5 Experimental Results
In this section, we report the extensive experimental evalua-
tion carried out to verify the robustness and efficiency of the
proposed method. All the experiments were conducted on a
64-bit machine with Intel(R) core(TM) quad-core processor
(i7CPU@3.6GHz) and 32.0GB memory. Details of both the
source code and sample data used in the experiment can be
downloaded here1.

1https://github.com/xuczhang/RLHH



(a) p=100, n=1000, dense noise (b) p=100, n=2000, dense noise (c) p=100, n=4000, dense noise

(d) p=200, n=2000, dense noise (e) p=200, n=2000, no dense noise (f) p=400, n=4000, no dense noise

Figure 3: Performance on regression coefficients recovery.

5.1 Datasets and Metrics
To demonstrate the performance of our proposed method, we
carried out comprehensive experiments in synthetic datasets.
Specifically, the simulation samples were randomly generated
according to the model in Equation (1) for RLSR problem,
sampling the regression coefficients β∗ ∈ Rp as a random
unit norm vector. The covariance data X was drawn inde-
pendently and identically distributed from xi ∼ N (0, Ip)
and the uncorrupted response variables were generated as
y∗i = xTi β

∗. The set of corrupted points S was selected
as a uniformly random (n-τ∗)-sized subset of [n], where τ∗
is the size of the uncorrupted set. The corrupted response
vector was generated as y = y∗ + u + ε, where the cor-
ruption vector u was sampled from the uniform distribu-
tion [−5‖y∗‖∞, 5‖y∗‖∞] and the additive dense noise was
εi ∼ N (0, σ2).

Following the setting in [Bhatia et al., 2015], we measured
the performance of the regression coefficients recovery using
the standard L2 error e = ‖β̂ − β∗‖2, where β̂ represents
the recovered coefficients for each method and β∗ is the true
regression coefficients. To validate the performance for cor-
rupted set discovery, the F1-score is measured by comparing
the discovered corrupted sets with the actual ones. To com-
pare the scalability of each method, the CPU running time for
each of the competing methods was also measured.

5.2 Comparison Methods
The following methods are included in the performance com-
parison presented here: Ordinary least squares (OLS). The
OLS method ignores the corruption of data and trains the
model based on the whole dataset. We also compared our
method to the regularized L1 algorithm for robust regression

[Wright and Ma, 2010] [Nguyen and Tran, 2013]. For ex-
tensive L1 minimization solvers, [Yang et al., 2010] showed
that the Homotopy and DALM solvers outperform other pro-
posed methods both in terms of recovery properties and run-
ning time. Both of the L1 solver methods are parameter free.
Another recently proposed hard thresholding method, Torrent
(Abbr. Torr), developed for robust regression [Bhatia et al.,
2015] was also compared to our method. As the method re-
quires a parameter for corruption ratio, which is difficult to
estimate in practice, we chose 4 versions with different pa-
rameter settings: TORR*, TORR25, TORR50, and TORR80.
TORR* uses the true corruption ratio as its parameter, and the
others apply parameters that are uniformly distributed across
the range of ±25%, ±50%, and ±80% off the true value, re-
spectively. All the results will be averaged over 10 runs.

5.3 Recovery of regression coefficients
We selected 6 competing methods with which to evaluate the
recovery performance ofβ: OLS, DALM, Homotopy, TORR*,
TORR25, TORR50. As the recovery error for the OLS method
is almost 10 times larger than those of the other methods, its
result is not shown in Figure 3 in order to present the other re-
sults properly. Figures 3(a), 3(b), and 3(c) show the recovery
performance for different data sizes when the feature number
is fixed. Looking at the results, we can conclude that: 1) the
RLHH method outperforms all the competing methods except
for TORR*, whose parameter is hardly given in practice. 2)
The results of the TORR methods are significantly affected
by their corruption ratio parameters; TORR50 performs al-
most twice as badly as TORR* and yields worse results than
one of the L1-Solver methods, DALM. However, RLHH per-
forms consistently throughout, with no impact of the parame-



Table 1: F1 scores for the performance on uncorrupted set recovery.

p=100, n=1000 p=100, n=2000 p=100, n=4000
10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

TORR80 0.949 0.881 0.779 0.612 0.950 0.883 0.783 0.622 0.951 0.883 0.785 0.626
TORR50 0.967 0.925 0.865 0.781 0.968 0.926 0.868 0.785 0.968 0.926 0.871 0.787
TORR25 0.981 0.958 0.927 0.887 0.982 0.960 0.929 0.891 0.982 0.960 0.931 0.892
RLHH 0.989 0.979 0.973 0.956 0.991 0.987 0.977 0.964 0.992 0.987 0.978 0.971
TORR* 0.993 0.987 0.979 0.971 0.995 0.990 0.980 0.972 0.995 0.989 0.982 0.975

p=200, n=2000 p=200, n=4000 p=100, n=4000 (no dense noise)
10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%

TORR80 0.950 0.882 0.783 0.613 0.950 0.883 0.784 0.622 0.953 0.889 0.793 0.636
TORR50 0.968 0.926 0.869 0.780 0.968 0.926 0.870 0.785 0.971 0.933 0.880 0.800
TORR25 0.982 0.959 0.930 0.888 0.982 0.959 0.931 0.891 0.986 0.968 0.943 0.909
RLHH 0.990 0.983 0.974 0.954 0.990 0.985 0.978 0.965 0.994 0.995 0.994 0.994
TORR* 0.994 0.988 0.982 0.972 0.995 0.989 0.983 0.973 1.000 1.000 1.000 1.000

ter. 3) TheL1-Solver methods generally exhibit worse perfor-
mance than the hard thresholding based algorithms. Specifi-
cally, compared to DALM, Homotopy is more sensitive to the
number of corrupted instances in the data. Figure 3(d) shows
its similar performance when the feature number increases.
Figures 3(e) and 3(f) show that RLHH performs equally as
well as TORR* without dense noise, with both achieving an
exact recovery of regression coefficients β.

5.4 Recovery of Uncorrupted Sets
As most competing methods do not explicitly estimate un-
corrupted sets, we compared our proposed method with the
TORR algorithm using a number of different parameter set-
tings ranging from the true corrupted ratio up to a deviation
of 30%. As the results shown in Table 1, we found that: 1)
The F1 score of RLHH is 1.1% less than that of TORR* on av-
erage, although it is important to note that the latter uses the
true corruption ratio, which cannot be estimated exactly in
practice. This indicates that our method provides very close
to an optimal estimation result for an uncorrupted set. 2) The
RLHH method significantly outperforms the other methods,
especially when the true corruption ratio is high. 3) The re-
sults of the TORR methods are highly dependent on the cor-
ruption ratio parameter: the results for a 25% corruption es-
timation error are much better than those for a 50% error.
However, RLHH is a parameter free method that is capable of
obtaining a good result consistently. 4) When increasing the
feature number and corruption ratio, the F1 scores slightly

(a) p=400, n=4000, no dense
noise

(b) p=100, cr=0.1, dense noise

Figure 4: Running time for different corruption ratios and data sizes

increase for all the methods. 5) In a no dense noise setting,
RLHH performs a near optimal recovery result, while TORR*
exactly recovers the result only because it is using the true
corruption ratio.

5.5 Efficiency
To evaluate the efficiency of our proposed method, we com-
pared the performances of all the competing methods for two
different data settings: different corruption ratios and data
sizes. In general, as Figure 4 shows, the hard threshold-
ing based methods significantly outperformed the L1-Solver
based methods. Also, the running time for RLHH increases
slowly as either the corruption ratio or the data size increases,
just as in the TORR methods. In addition, even though RLHH
performs the additional step of estimating the uncorrupted set
in each optimization iteration, the efficiency of RLHH still
outperforms TORR, which indicates that 1) the heuristic hard
thresholding step in RLHH always performs efficiently, even
under in different circumstances; and 2) The RLHH algorithm
converges more quickly than TORR.

6 Conclusion
In this paper, a novel robust regression algorithm, RLHH, is
proposed to recover the regression coefficients and the un-
corrupted set in the presence of adversarial corruption in the
response vector. To achieve this, we designed a heuristic hard
thresholding method with which to estimate the optimal un-
corrupted set that is alternately updated with the optimized re-
gression coefficients. We demonstrate that our algorithm can
recover true regression coefficients exactly, with a geometric
convergence rate. Extensive experiments on massive simu-
lation data demonstrated that the proposed algorithm outper-
forms other comparable methods in both effectiveness and
efficiency.
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