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Abstract—Spatial event forecasting from social media is potentially extremely useful but suffers from critical challenges, such as the

dynamic patterns of features (keywords) and geographic heterogeneity (e.g., spatial correlations, imbalanced samples, and different

populations in different locations). Most existing approaches (e.g., LASSO regression, dynamic query expansion, and burst detection)

address some, but not all, of these challenges. Here, we propose a novel multi-task learning framework that aims to concurrently

address all the challenges involved. Specifically, given a collection of locations (e.g., cities), forecasting models are built for all the

locations simultaneously by extracting and utilizing appropriate shared information that effectively increases the sample size for each

location, thus improving the forecasting performance. The new model combines both static features derived from a predefined

vocabulary by domain experts and dynamic features generated from dynamic query expansion in a multi-task feature learning

framework. Different strategies to balance homogeneity and diversity between static and dynamic terms are also investigated. And,

efficient algorithms based on Iterative Group Hard Thresholding are developed to achieve efficient and effective model training and

prediction. Extensive experimental evaluations on Twitter data from civil unrest and influenza outbreak datasets demonstrate the

effectiveness and efficiency of our proposed approach.

Index Terms—Event forecasting, multi-task learning, LASSO, dynamic query expansion, hard thresholding

Ç

1 INTRODUCTION

MICROBLOGS such as Twitter andWeibo are experiencing
an explosive level of growth. Millions of microblog

users across the world broadcast their daily observations on
an enormous variety of topics, such as crime, sports, and pol-
itics. This paper focuses on the problem of spatial event fore-
casting from microblogs, for events such as civil unrest,
disease outbreaks, and crime hotspots. Our new approach
searches for subtle patterns in specific cities that serve as
indicators of ongoing or future events, where each pattern is
defined as a burst of context features (keywords) relevant to
a specific event. For instance, expressions of discontent about
gas price increases could be a potential precursor to a protest
about government policies.

Three technical challenges must be overcome when
addressing this problem: 1) Dynamic features. The language
used in microblogs is highly informal, ungrammatical, and

dynamic. Most existing methods treat fixed keywords as fea-
tures [23], [24], but expressions in tweets may dynamically
evolve, rendering the use of fixed features and historical train-
ing data insufficient. For example, themost significant Twitter
keyword for the Mexican protests in Aug. 2012 was
“#YoSoy132” (i.e., the hashtag of an organization protesting
against electoral fraud), alluding to the protests against the
Mexican presidential election, but “#CNTE” (i.e., a hashtag
denoting the national teacher’s association of Mexico) had
become the most popular term by the beginning of 2013 due
to the growing resistance to Mexican education reform. Ide-
ally, an event forecasting system must combine the judicious
use of static (fixed) features with an awareness of subtle
changes involving dynamic features. 2) Geographic heterogene-
ity. Existing models usually build a single predictive model
for all the different locations [24], [28]. However, different cit-
ies have different characteristics, such as population, weather
(e.g., humidity, temperature), and administrative structures
(e.g., capital cities versus non-capital cities). As a result, it is
difficult to impute basal levels of occurrence uniformly. Con-
sidering civil unrest as an example, finding 1,000 tweets men-
tioning the keyword “protest” is not likely to be a strong
indicator of an upcoming civil unrest event in a city with a
population of a few million users but could be a strong signal
in a much smaller city with a population of only 10,000. To
consider the geographical heterogeneity, someworks propose
to establish the corresponding model for each different loca-
tion separately [21]. But because each model only utilizes the
data of its corresponding location, the data scarcity problem
(especially for non-large locations) is a serious challenge that
degrades the model performance and generalization. 3) Scal-
ability. Spatiotemporal event forecasting in social media
streams prefers real-time (or near real-time) framework and
hence has emphasis on computation efficiency. However, the
efficiency is challenged by the huge scale of the data,
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including (1) High-dimension features (e.g., keywords) to
characterize the rich text and network information; (2) large
number of time points; and (3) heterogeneity in enormous
geo-locations (e.g., counties and cities). This means that even
a medium-scale problem that contains 1,000 keywords, 1,000
dates and 1,000 locations will involve at least 1 billion data
points in the optimization computation. Therefore, some scal-
able forecastingmethods are desired for this problem.

In order to concurrently address all these technical chal-
lenges, this work presents a novel computational approach
in the form of a framework of multi-task learning (MTL) that
combines the strengths of methods that use static features
(e.g., LASSO regression [21]) and those that use dynamic fea-
tures (e.g., dynamic query expansion (DQE) [32]). In our pre-
vious workwe have utilized thesemethods, individually, for
event forecasting, but this paper tackles the challenges
involved in unifying these contrasting approaches in a single
framework. Learning multiple related tasks simultaneously
effectively increases the sample size for each location (e.g.,
city, state), thus potentially also improving the forecasting
performance, especially when the sample size for each task
(i.e., location) is small. One critical issue in multi-task learn-
ing is how to define and exploit the commonality among dif-
ferent tasks. Intuitively, events that occur around the same
time may involve similar topics, and therefore tweets from
different cities may share many common keywords that are
related to the event(s). We address this issue by presenting
four multi-task feature learning (MTFL) formulations for
event forecasting that differ in the specifics of how common
features are extracted.

The main contributions of our study can be summarized
as follows:

1) Formulation of a multi-task learning framework for event
forecasting. Here, event forecasting for multiple cit-
ies/states in the same country are treated as a multi-
task learning problem. In the proposed model, we
build event forecasting models for different cities/
states simultaneously by restricting all cities/states
to select a common set of features with different
weights exclusive to corresponding tasks. We
explore both penalized and constrained MTL formu-
lations, applying 4 different strategies to control the
common set of features selected.

2) Concurrent modeling of static and dynamic terms. The
existing models (LASSO and DQE) use different
but complementary information: LASSO uses static
terms, while DQE identifies dynamic terms. Our
proposed MTL formulations make use of both
types of information by integrating the strengths
of LASSO (a supervised approach) into DQE (an
unsupervised approach). To the best of our knowl-
edge, there is little if any prior work that combines
supervised and unsupervised approaches for event
forecasting.

3) Development of efficient algorithms. In this paper we
explore both convex and non-convex optimization
formulations. For convex problems, we employ
proximal methods, such as FISTA [6] that have been
shown to be efficient for solving sparse and multi-
task learning problems. For non-convex problems,
we apply the iterative Group Hard Thresholding
(IGHT) [8] framework, which is guaranteed to con-
verge to a local solution.

4) Comprehensive experiments to validate the effectiveness
and efficiency of the proposed techniques. We evaluated
the proposed methods using two different Twitter
datasets: the Latin America civil unrest dataset and
the United States influenza outbreaks dataset. For
comparison, we implemented a broad range of other
algorithms. The results demonstrated that the pro-
posed methods consistently outperformed the com-
peting methods, namely LASSO, DQE, traditional
multitask learning models, and their variants. We
also performed sensitivity analyses to reveal the
impact of the parameters on the performance of the
proposed methods. Multiple case studies are pro-
vided to demonstrate the utility of the proposed
method in practical applications.

The rest of this paper is organized as follows. Section 2
reviews the background to this research and related work,
and Section 3 introduces the problem. Section 4 presents
our proposed multi-task feature learning models, and
Section 5 presents two efficient algorithms based on IGHT.
The experiments on real Twitter datasets are presented in
Section 6, and the paper concludes with a summary of the
research in Section 7.

2 RELATED WORK

This sections introduces the related work in the areas of 1)
temporal mining of social media; 2) event detection and
forecasting; 3) supervised and unsupervised learning; and
4) multitask learning.

Temporal Mining of Social Media. In recent years, much
attention has been paid to this area, which focuses on
modeling the temporal pattern such as evolutional publich
sentiment [25], dynamic topic [33], online collabrative envi-
ronments [16], and information diffusion [31]. Tan et al. [25]
proposed two topic models that leverage lexicon-based
knowledge to characterize the variations of the public senti-
ment. Zhao et al. [33] developed a framework that can track
themes of targeted domain dynamically utilizing the hetero-
geneous links such as co-occurrence, friendship, authorship,
and replying. Guan et al. [16] proposed a method for locat-
ing appropriate expert on relevant knowledge by modeling
and identifying people’s knowledge based on their web
activities. Zhang et al. [31] leverage triadic structures to
investigate the formation of other neighboring links trig-
gered by “following” links.

Event Detection. A large body of work focuses on the
identification of ongoing events, including earthquakes [23],
disease outbreaks [24], and other types of events [3], [18],
[29]. In general, these researchers use either classification or
clustering to extract tweets of interest and then examine the
spatial [23], temporal [29], or spatiotemporal burstiness [18]
of the extracted tweets. However, instead of forecasting
events in the future, these approaches typically uncover
them only after their occurrence.

Event Forecasting.Most research in this area focuses on tem-
poral events and ignores the underlying geographical infor-
mation. This approach is generally used for events such as the
forecasting of elections [20], stock market movements [9], dis-
ease outbreaks [22], and crimes [28]. These studies can be
grouped into three categorizes: 1) Linear regression model,
where simple features, such as tweet volumes, are utilized to
predict the occurrence time of future events [9], [20]; 2) Non-
linear models, where more sophisticated features such as
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topic-related keywords are used as the input to build forecast-
ing models using existing methods such as support vector
machines or LASSO [28]; and 3) Time series-based methods,
where methods such as autoregressive models are used to
model the temporal evolution of event-related indicators (e.g.,
tweet volume) [2].However, few existing approaches can pro-
vide true spatiotemporal resolution for predicted events.
Wang et al. [28] developed a spatiotemporal generalized addi-
tive model to characterize and predict spatio-temporal crimi-
nal incidents, but their model requires demographic data.
Ramakrishnan et al. [21] built separate LASSOmodels for dif-
ferent locations to predict the occurrence of civil unrest events.
Zhao et al. [34] also designed a newpredictivemodel based on
topic models that jointly characterize the temporal evolution
for both the semantics and geographical burstiness of social
media content.

SupervisedApproaches.They involve considering a set of sta-
tionary terms whose distribution can be learned from histori-
cal data. For example, LASSO regression methods estimate a
sparse predictivemodel based on a predefined set of keyword
terms (vocabulary) for each location that predicts the proba-
bility of an ongoing event in this location in each predefined
time interval (e.g., hourly or daily) [21]. Similarly, burst detec-
tion methods search for geographic regions (cities) where the
aggregated counts of certain predefined terms are abnormally
high compared with the counts for the same terms outside
those cities. For example, Sakaki et al. utilize spatiotemporal
Kalman filtering, which is similar to space-time burst detec-
tion, to track the geographical trajectory of hot spots of tweets
related to earthquakes [23].

Unsupervised Approaches. They utilize a set of dynamic
terms that could be different in different time intervals, and
apply unsupervised learning techniques for event detection.
Here, the dynamic query expansion method (DQE) itera-
tively expands a predefined set of seed terms (e.g., protest,
strike, march) by using current tweets to identify and rank
new terms that are relevant to ongoing events, then retain
the top terms and tweets containing these terms for further
modeling [32]. Clustering-based methods search for novel
spatial clusters of documents or terms using predefined
similarity metrics, such as cosine similarity and social simi-
larity for documents [3], or auto-correlations [2] and co-
occurrences [29] for terms.

Multi-Task Learning. Multi-task learning (MTL) models
multiple related tasks simultaneously to improve generali-
zation performance [10], [26]. Many MTL approaches have
been proposed in the past [36]. In [14], Evgeniou et al. pro-
posed a regularized MTL that constrained the models of all
tasks to be close to each other. The task relatedness can also
be modeled by constraining multiple tasks to share a com-
mon underlying structure, e.g., a common set of features [5],
or a common subspace [4]. MTL approaches have been
applied in many domains, including computer vision and
biomedical informatics. To the best of our knowledge, how-
ever, ours is the first work that applies MTL for civil unrest
forecasting.

3 PROBLEM SETUP

Suppose there are m locations (e.g., cities, states) in the
country of interest, and each location l has nl;t 2 Z tweets in
each time interval t (e.g., hour, day). Define a matrix
Cl;t 2 Zp�nl;t , whose ði; jÞth entry, denoted as Cl;tði; jÞ, refers
to the frequency of the ith term in the jth tweet. Here p

refers to the size of the vocabulary V . We are also given a
binary variable Yl;t 2 f0; 1g for each location l at time t,
which indicates the occurrence (‘yes’ or ‘no’) of a future
event. Therefore, given the input data Cl;t, the goal is to pre-
dict the future event occurrence Yl;t for a specific location l
at a future time interval t ¼ tþ d based on the tweets data
collected, where d is called the lead time of forecasting.

This work is built upon two of our previous predictive
models, namely LASSO [21] and dynamic query expansion
(DQE) [32]. Suppose we have a subset of keywords of size d
in V that are relevant to the domain of interest and prede-
fined by the domain experts, and denote A as the corre-
sponding incidence matrix, A 2 ½0; 1�d�p. Define a matrix
Kl;t as follows: Kl;t ¼ A � Cl;t � 1, where 1 refers to a vector of
all ones. It is clear that Kl;t 2 Zd�1 is the vector of keywords
frequencies in location l at time t. The LASSO model learns
a separate sparse linear regression model for each location l,

argmin
wl

wl
TKl;t � Yl;t

�� ��2
2
þ r1 wlk k1;

where the regularization parameter r1 controls the sparsity,
and wl 2 Rd�1 is the vector of regression coefficients that
need to be estimated. We need to estimate m � d parameters
in total for them separate LASSO regression models.

DQE is based on the idea that the specific topics of events
under targeted domain could be quite varied and hence we
must seek to grow our vocabularies of interest on the fly.
Term co-occurrence is generally deemed to be an indicator of
semantic proximity. A tweet and its replying tweets are causal
in context, similar in semantics, and consistent in theme.
Given a short seed query (e.g., “protest” and “march” for civil
unrest domain), DQE adopts a query expansion strategy to
expand the new keywords (e.g., “#OccupyWallSt” and
“corruption”) that appear with seed query in the same tweets
or replying tweets. The volume and pattern of tweets contain-
ing these keywords are then utilized for event detection or
forecasting. Denote Ið�Þ as the indicator function. For each
location l and time t, define the number of tweets containing
any of the k dynamic keywords S

ðkÞ
t as Dl;t;k. Then, the DQE-

based event forecasting can be formulated as a function
Yl;t ¼ IðDl;t;k > gÞ, that is, Yl;t ¼ 1 if Dl;t;k is larger than the
threshold g; Yl;t ¼ 0, otherwise. The dynamic keywords are
expanded and ranked from the seed query based on the
tweets data C�;t ¼ fCl;tgl, where the seed query S0 is an initial
set of few semantically coherent keywords that characterize
the concept of the targeted domain. Specifically, the keyword
expansion process is formulated as follows:

Pt ¼ FtðBT
t �Bt þBT

t RtBtÞ � P0;

where P0 2 RjV j�1 is the initial weight vector of all the words
in V , ½P0�i;1 ¼ IðVi 2 S0Þ, and Vi is the ith word.Bt is the adja-
cency matrix between tweets and words. R 2 RjCtj�jCtj is the
tweet-replying matrix, and ½Rt�ij ¼ 1 means there is replying
relationship between tweet i and tweet j; ½Rt�ij ¼ 0, otherwise.
F 2 RjV j�jV j is the inverse document frequency (IDF) matrix
of F , which is a diagonal matrix such that ½F �ii refers to the
IDF of the word Vi. Pt 2 RjV j�1 is the updated weight vector.
Finally, the dynamic keyword set S

ðkÞ
t is defined as the top k

wordswith the largest weights according toPt.
There are three main challenges when using either

LASSO or DQE individually: (1) The LASSO model only
uses a set of predefined fixed keywords, called “static
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features,” which may not capture fast-evolving expressions
in Twitter, thus making it difficult to predict future events
that are related to a small set of new keywords that are not
included in the fixed keyword set. (2) The LASSO model
trains an individual model for each location, but many small
cities may have insufficient information in the training set to
build an accurate forecasting model. (3) DQE requires two
types of thresholds, namely 1) k, the number of dynamic
keywords expanded from the seed query, and 2) g, the least
number of tweets, each of which can contain any of the
dynamic keywords, to indicate the occurrence of an event.
However, it is difficult to set these two thresholds based on
domain experience. In the next section, we present a novel
computational approach based on multi-task learning that
addresses all three of these challenges.

4 MODELS

As defined above, LASSO uses the “static feature” set Kl;t,
which is the count of predefined keywords in location l at
time t. DQE uses the “dynamic feature” setDl;t;k, which is the
number of tweets containing the top k dynamic keywords at
location l at time t. Because it is difficult to predefine an opti-
mal k, we propose to make use of multiple k values in the
range of ½1; s� (here s is a user-specified parameter; our experi-
ments show that using a set of s ¼ 20 values is sufficient), and
then learn the optimal k automatically within the proposed
multi-task learning framework. This results in Dl;t ¼
fDl;t;kgsk¼1; Dl;t 2 Rs�1, which corresponds to the “dynamic
feature” set for location l and time t. We combine the informa-
tion used in LASSO and DQE by forming a new data matrix
Xl;t ¼ ½Kl;t;Dl;t� 2 RðdþsÞ�nl;t . For notational simplicity, we
will remove the subscript t throughout the rest of this paper.

We aim to build m models fwiji ¼ 1; . . . ;mg to predict
the occurrence of events for the m locations. A simple
approach is to learn these m models (tasks) independently,
ignoring the task relatedness. However, such an approach
does not consider the intrinsic relationships among differ-
ent locations (e.g., cities, states), and the resulting models
may not be accurate as some locations may not have suffi-
cient information in the training set. To address this issue,
we propose to build the forecasting models for all m loca-
tions simultaneously by extracting and utilizing appropri-
ate shared information across tasks while retaining their
heterogeneity [36]. Fig. 1 illustrates the proposed multi-
task learning framework. Learning multiple related tasks
simultaneously effectively increases the sample size for
each location, since when we learn a model for a specific
location, we also use information from all other locations.

Intuitively, the events that occur at different locations
around the same time could well involve similar topics,
thus the tweets from different locations may share many
common keywords that are related to the events. This led
us to explore multi-task feature learning (MTFL) models
that constrain multiple related models to select a common
set of features. Note that the heterogeneity among tasks is
characterized as the difference in the weights of features for
different tasks. For example, for two locations: a metropolis
and a village, the importance of 1,000 protest tweets to them
differs, which can be characterized by the difference in the
value scales of their models’ feature weights. Specifically,
we chose to explore four multi-task feature learning models:

� Regularized multi-task feature learning model,
� Constrained multi-task feature learning model I,
� Constrained multi-task feature learning model II,
� Constrained multi-task feature learning model III.

Each of these four models formulates the multi-task learn-
ing problem by following a general paradigm, i.e., to mini-
mize a penalized empirical loss,

min
W
LðWÞ þ �gðW Þ; (1)

or by implementing a constrained version,

min
W
LðW Þ s.t. gðWÞ � l: (2)

where LðWÞ is the empirical loss on the training set. Here
we use a smooth and convex loss function, e.g., the least
squares and logistics loss. gðWÞ is the regularization term
that encodes task relatedness, which is typically non-
smooth or even non-convex. Therefore, LðWÞ tries to tailor
each model to its specific task while gðWÞ tends to find
shared patterns across different tasks. � (or l) is a tuning
parameter to balance the tradeoff between them.

Different regularization/constraint terms capture differ-
ent types of task relatedness [1], [12], [14], [17]. In this paper,
we adopt the logistic loss, and characterize the model relat-
edness by restricting all models to select a common set of
features. We discuss each of the four models in turn below.

4.1 Regularized MTFL Model
The jth element in model wi indicates the importance of the
jth feature for the ith task. In the regularized MTFL model,
we restrict all tasks to share a common set of top features,
so the forecasting models for all cities are based on the same
subset of features. This can be achieved by grouping the jth
elements of all tasks together and selecting the top groups.

Fig. 1. The flowchart of the proposed multi-task learning model.
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Specifically, we consider the m entries of the jth row of the
matrix W as a group and use the l2;1-norm regularization to
identify the top groups [5]. Thus, the jth feature, which cor-
responds to the jth element in the models, is likely to be
selected or not by all the models simultaneously, achieving
our desired goal. Mathematically, we employ the following
multi-task feature learning model,

min
W
LðWÞ þ r0kWk2;1 þ r1kWk2F ; (3)

where the first term is the data fitting term under logistic
loss for all tasks such that LðWÞ ¼Pm

i¼1
P

t log ð1þ
expð�Yi;tðwi �Xi;tÞÞ and kWk2;1 denotes the l2;1 norm of
matrix W which encourages all tasks to select a common set
of features, and it can be computed as the summation of
l2-norm of each row in W . The regularization parameter r0
controls the sparsity. We include a small multiple of the Fro-
benius-norm regularization, i.e., kWk2F , to enhance the
robustness of the model. Problem (3) is a convex problem
and can be solved by the FISTA algorithm [6].

4.2 Constrained MTFL Model I
In the regularized MTFL model above, the model sparsity is
controlled by the parameter r1, which is less interpretable
than the number of features selected. It is thus preferable to
develop a model that directly controls the number of fea-
tures to be selected. To this end, we introduce a constraint
in the model that ensures that a specific number of rows of
W will be non-zero, so we control the number of features
included in the model. In particular, consider the following
constrained multi-task feature learning model,

min
W
LðWÞ þ r1kWk2F ;

s.t.
X
j

Iðkwjk > 0Þ � r:
(4)

Here wj is the jth row of W and Ið�Þ is the indicator func-
tion. The constraint in (4) ensures that the number of non-
zero rows of W is no larger than r, so no more than r
features will be selected. Note that the convexity property
no longer holds for Model (4). We will use the iterative
Group Hard Thresholding framework to solve (4). More
details are provided in the next section.

4.3 Constrained MTFL Model II
The constrained model above does not distinguish between
the static and dynamic features. Recall that the first d features
correspond to the d static features, while the last s features
correspond to the use of s dynamic features. The feature val-
ues thus have very different meanings and in general, d is
much larger than s. In our experiments, d is around 2,000,
while s is around 10 to 20. Thus, it is best to restrict the num-
ber of features selected from these two groups separately. In
addition, in the current DQE model, only one dynamic fea-
ture is used and a common threshold value is applied for all
cities in the same country. It is thus natural to restrict the
number of dynamic features selected (out of the total s candi-
dates) to be one. To achieve these goals, we propose the fol-
lowing model, which selects u features from the d static
features, and selects v features from the s dynamic features,

min
W
LðWÞ þ r1kWk2F ;

s.t.
X
j

Iðkwj
Kk > 0Þ � u;

X
j

Iðkwj
Dk > 0Þ � v;

(5)

where WK is the model matrix corresponding to the set of
static features, and WD is the model matrix corresponding
to the set of dynamic features. The structure of the model
is depicted in Fig. 2. As for Problem (4), u and v are
user-specified parameters that control the number of fea-
tures selected for the static feature set and dynamic feature
set, respectively. We set v ¼ 1 in our experiments, although
our model is actually more general in that the user can select
an arbitrary number of dynamic features.

Problem (5) is non-convex due to the use of nonconvex
constraints. Similar to Problem (4), we can apply the Itera-
tive Group Hard Thresholding algorithm to solve Prob-
lem (5). We show the details of our proposed algorithm for
Problem (5) in Section 5.

4.4 Constrained MTFL Model III
In the model CMTFL-II, the selection of static features in
Equation (5) is known to be NP-hard and the existing effi-
cient methods such as Iterative Hard Thresholding cannot
guarantee a global optimization [7]. Additionally, the
CMTFL-II model requires users to specify an appropriate
number of static features. This target is difficult to accom-
plish by human labor and time consuming to achieve by
cross-validation when the number of features is large and
sensitive to the performance. To address these challenges,
we propose Constrained MTFL model III (CMTFL-III),
which automatically and globally optimizes the number of
selected static features while still retaining the advantage of
CMTFL-II, i.e., ensuring the selection of v dynamic features.
CMTFL-III is formulated as below,

min
W
LðW Þ þ r0kWKk2;1 þ r1kWk2F ;

s:t:
X
j

Iðkwj
Dk > 0Þ � v;

(6)

where W ¼ fWK ;WDg is the model matrix consisting of the
set of static features WK and dynamic features WD. As for
Problem (5), v is a user-specified parameter that controls the
number of features selected for the set of dynamic features.
We again set v ¼ 1 in our experiments, although our model
is more general in that the user can select an arbitrary

Fig. 2. Illustration of constrained MTFL model II. Each column repre-
sents the model for a specific location. The ith row in WK indicates the
feature values for the ith static feature (i.e., keyword), and the jth row in
WD corresponds to the jth dynamic feature (i.e., threshold value). Col-
ored entries represent non-zero values in the model matrix, while white
entries represent zeros.
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number of dynamic features. As in Problem (5), Problem (6)
is non-convex due to the use of nonconvex constraints.
Problem (6) is solved by another proposed algorithm, which
applies the Iterative Group Hard Thresholding algorithm
and FISTA algorithm alternately until convergence is
achieved. We show the details of our proposed algorithm
for Problem (6) in Section 5.2.

4.4.1 Discussions

Based on multi-task learning framework, all of the proposed
models rMTFL, CMTFL-I, CMTFL-II, and CMTFL-III can
utilize the shared information among the event forecasting
tasks of different spatial locations. The model rMTFL is the
most basic one, which merely enforces the similar set of fea-
tures to be selected across different tasks. However, in some
situations that the user need to specify how many features
to be selected, more sophisticated models are required that
can constrain the number of selected features. This problem
can be handled by the models CMTFL-I, CMTFL-II, and
CMTFL-III. Among them, CMTFL-I can constrain the total
number of selected features according to the user’s need.
rMTFL and CMTFL-I are unable to distinguish among dif-
ferent types of features. But in event forecasting in social
media, in addition to traditional static features, the dynamic
features are crucial and need to be ensured to be selected.
Both CMTFL-II and CMTFL-III can address this problem by
a constraint on the number of dynamic features to be
selected. The difference between them lies in the strategy of
static features selection. CMTFL-II utilizes a non-convex for-
mulation for the static feature selection that cannot guaran-
tee global optima, while CMTFL-III adopts a convex
formulation which can be optimized exactly and efficiently.

5 ALGORITHM

The FISTA algorithm performs well for convex problems [6],
[12], [36]. However, Problems (4), (5), (6) are all non-convex.
Even worse, they also involve discrete constraints, which
make the problems particularly challenging to solve. Moti-
vated by the success of the iterative hard thresholding algo-
rithm for solving l0-regularized problems [7] and recent
advances in nonconvex iterative shrinkage algorithms [15],
[30], we propose to employ the Iterative Group Hard
Thresholding framework to solve both problems.

Algorithm 1. Algorithm for CMTFL-I and CMTFL-II

Require:XX, YY , r, h > 1
Ensure: solutionWW
1: InitializeW 0, h 1.
2: for i 1; 2; . . . do
3: Initialize L
4: for j 1 . . .m do in parallel
5: Hj  rf 0ðwi�1

j Þ
6: end for
7: repeat
8: Si  Wi � 1

LrH
9: Wi  proj Sið Þ (defined in Lemma 1)
10: L hL
11: until line search criterion is satisfied
12: if the objective stop criterion satisfied then
13: returnWi

14: end if
15: end for

5.1 Algorithm for Models CMTFL-I and CMTFL-II
Note that Problem (4) is a special case of Problem (5) with
v ¼ 0. We thus focus on Problem (5) in the following discus-
sion. The details are summarized in Algorithm 1. Here, data
parallelism strategy is utilized to achieve the calculation of
the gradientrf 0ðwi�1

j Þ in parallel form different tasks. First,
the variable H to store the array of gradients is defined.
Then all of the tasks are evenly assigned onto multiple pro-
cessors to calculate rf 0ðwi�1

j Þ. After the calculation, the
results from each processor are sent back to each Hj 2 H.
The detailed settings are specified in experiment section.

Recall Problem (4), and denote fðWÞ ¼ LðWÞ þ r1kWk2F .
The key idea of IGHT is to first use the gradient information
in the current iteration to provide the first-order approxima-
tion of the objective function, then apply the projection
operators to ensure the next iteration satisfies the given
constraints. Specifically, we use the combination of the
linear approximation of the function fðWÞ at a given point
W 0 and a quadratic penalty term, and solve the following
problem,

min
W

fðW 0Þ þ hrfðW 0Þ;W �W 0i þ r

2
kW �W 0k2F ;

s.t.
X
j

Iðkwj
Kk > 0Þ � u;

X
j

Iðkwj
Dk > 0Þ � v;

(7)

where r is a positive constant that can be estimated by
a line search scheme. By ignoring the constants and re-
arranging the terms in Problem (7), we obtain the follow-
ing sub-problem:

min
W

1

2
kW � Sk22

s.t.
X
j

Iðkwj
Kk > 0Þ � u

X
j

Iðkwj
Dk > 0Þ � v:

(8)

where S ¼W 0 � 1
crfðW 0Þ. Problem (8) aims to find the

optimal point satisfying the constraint set that is closest to a
fixed point S. This can be treated as a Euclidean projection
problem, denoted as proj(�), even though the constraint set
is not convex. The key step in the IGHT framework solves
the projection problem in (8). It is not hard to show that
Problem (8) admits a closed-form solution as it can be
decomposed into two independent problems, one for each
block of features, as summarized in the following lemma.

Lemma 1. The projection Problem (8) admits a closed-form solu-
tion, given below:

wj
K ¼ Sj

K; if j 2 VK

0; otherwise

�
(9)

and

wj
D ¼ Sj

D; if j 2 VD

0; otherwise

�
(10)

where SK consists of the first d rows of S, Sj
K is the jth row of

SK , SD consists of the last s rows of S, Sj
D is the jth row of

SD, VK is the index subset of f1; 2; . . . ; dg of size u, including
all rows of SK that are among the top u rows of SK in term of
the length of the row vector, and VD is the index subset of
f1; 2; . . . ; sg of size v, including all rows of SD that are among
the top v rows of SD in term of the length of the row vector.
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One remaining issue is how to estimate the step size,
which determines the amount of movement made along a
given search direction. In this paper, we apply the well-
known Lipschitz criterion to select the step size. Finally, the
time complexity of the proposed Algorithm 1 is
Oðq � r � ðsþ dÞ �m � T Þ, where q and r are the numbers of
iterations for the outer and inner loops, respectively, T is
the total number of the time intervals.

5.2 Algorithm for Model CMTFL-III
Note that Problem (6) encompasses an l2;1-norm in the objec-
tive function similar to that in Problem (3) and utilizes a
l0-norm constraint similar to that in Problem (4). Accordingly,
the solution to Problem (6) combines these notions from
IGHT and FISTA. The details are summarized inAlgorithm 2.
Similar to Algorithm 1, data parallelism has been applied to
different tasks in the loop in Line 4 and the loop in Line 10.

Algorithm 2. Algorithm for CMTFL-III

Require:XX, YY , r0, r1, h > 1
Ensure: solutionWW
1: InitializeW 0, h 1.
2: for i 1; 2; . . . do
3: Initialize L,H
4: for j 1 . . .m do in parallel
5: Hj  rf 0ðwi�1

j Þ
6: end for
7: repeat
8: S  Wi�1 � 1

LrH
9: Wi

D  proj SDð Þ
10: for j 1 . . . d do in parallel
11: ½Wi

K �j  prox‘2;1ð½SK �jÞ
12: end for
13: L hL
14: until line search criterion is satisfied
15: Wi  Wi

K ;W
i
D

� �
16: if the objective stop criterion satisfied then
17: returnWi

18: end if
19: end for

The key idea of the algorithm for CMTFL-III is as

follows. First, we denote f Wð Þ ¼Pm
j f 0ðwjÞ, where f 0ðwjÞ ¼P

t log ð1þ expð�Yj;tðwj �Xj;tÞÞ þ r1 wj

�� ��2
F
. Applying a lin-

ear approximation, we get the first-order approximation to
the original objective function in Problem (6), as shown in
the following equation,

min
W

f W 0
� �þ rf W 0

� �
;W �W 0

� 	

þ r

2
W �W 0

�� ��2
F
þ r0 WKk k2;1

s:t:
X
j

wj
D

�� ��
0
� v;

(11)

where r is a positive constant that can be estimated using a
line search scheme. By ignoring the constants and re-arrang-
ing the terms in Problem (11), we obtain the following
equivalent problem:

min
W

1

2
W � Sk k2F þ r0 WKk k2;1

s:t:
X
j

wj
D

�� ��
0
� v;

(12)

where S ¼W 0 � 1
Lrf W 0ð Þ. Note that Problem (12) can be

decomposed into the following two subproblems:

min
WD

1

2
WD � SDk k2F

s:t:
X
j

wj
D

�� ��
0
� v;

(13)

and

min
WK

1

2
WK � SKk k2F þ r0 WKk k2;1 (14)

where Problem (13) can be solved by applying the hard
thresholding algorithm and Problem (14) can be solved
using the FISTA algorithm.

The time complexity of the proposed Algorithm 2 is
Oðq � r � ðsþ gdÞ �m � T Þ, which is composed of the computa-
tion of the dynamic features Oðq � r � s �m � T Þ and static fea-
tures Oðq � r � g � d �m � T Þ where g � d ¼ OðdÞ is the
computation time for a block soft thresholding on the
weights of static features and g is a constant.

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed
multi-task learning formulations. First, we evaluate the
effectiveness and efficiency of the methods using multiple
real datasets and compare the results with those obtained
using existing baseline methods on multiple event forecast-
ing tasks. We then move on to study the parameter sensitiv-
ity of the methods. Finally, we provide several empirical
case studies of event forecasting for civil unrest and influ-
enza outbreaks to demonstrate the utility and practicality of
these forecasting models.

6.1 Experiment Setup
In the experimental evaluation, two datasets for different
regions, Latin America and the United States, were utilized
for the research on civil unrest and influenza outbreaks,
respectively.

6.1.1 Datasets

For the datasets on Latin America, the raw data was
obtained by randomly sampling 10 percent (by volume) of
the Twitter data from July 2012 to May 2013 in 4 countries,
namely Brazil, Paraguay, Mexico, and Venezuela, as shown
in Table 1. Twitter data collection is partitioned into a
sequence of date-interval subcollections. The Twitter data
for the period from July 1, 2012 to December 31, 2012 is
used for training, while the data for the second half of the
period, from January 1, 2013 to May 31, 2013, is used for the
performance evaluation. The locations of the tweets are geo-
coded by the geocoder in [21]. The event forecasting results
are validated against a labeled events set, known as the
gold standard report (GSR), exclusively provided by MITRE
[19]. GSR is a collection of civil unrest news reports from the
most influential newspaper outlets in Latin America [32], as
shown in Table 1. An example of a labeled GSR event is
given by the tuple: (CITY ¼ “Hermosillo”, STATE ¼
“Sonora”, COUNTRY ¼ “Mexico”, DATE ¼ “2013-01-20”).

For the datasets in the United States, the raw data was
crawled from January 2011 to April 2014 in all 50 states, as
shown in Table 1. As in the first dataset, Twitter data collec-
tion is partitioned into a sequence of date-interval subcollec-
tions. The Twitter data for the period from January 1, 2011 to
December 31, 2012 is used for training while the second half
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of the period, from January 1, 2013 toApril 30, 2014, is used for
the performance evaluation. The locations of the tweets are
geocoded by the Carmen geocoder [13], which resolves the
location of each tweet into a tuple containing information at
the country, state, county, and city level. About 70 percent of
the tweets in our dataset are assigned a location by Carmen.
The forecasting results for the flu outbreaks are validated
against the corresponding influenza statistics reported by the
Centers for Disease Control and Prevention (CDC) [11]. CDC
publishes the weekly influenza-like illness (ILI) activity level
within each state in the United States based on the proportion
of outpatient visits to healthcare providers for ILI. There are 4
ILI activity levels: minimal, low, moderate, and high, where
the level “high” corresponds to a salient flu outbreak and is
considered for forecasting. An example of a CDC flu outbreak
event is: (STATE¼ “Virginia”, COUNTRY¼ “United States”,
WEEK¼ “01-06-2013 to 01-12-2013”).

6.1.2 Settings

In this experiment, two types of features are utilized. As
described above, the first type consists of static features,
which examine the relevance of tweets to fixed keywords.
Specifically, these are defined as the daily counts of the key-
words in the tweets. For the civil unrest domain, the keyword
set includes 614 civil unrest related words (such as “protest”
and “riot”), 192 phrases (such as “election fraud”), and coun-
try-specific actors (e.g., political parties and public figures).
For each keyword, its translations in Spanish, Portuguese,
and English are all included. For the influenza outbreaks, the
keyword set includes 545 disease-related words extracted
based on the keywords list used in [35]. The second type con-
sists of dynamic features,which examine the volumeof tweets
containing dynamic keywords. Specifically, dynamic features
are a set of counts, where each count is the number of daily
tweets containing any of the top k (k 2 ½1; s�) dynamic key-
words. The dynamic keywords are extracted and ranked
based on dynamic query expansion (DQE) [32], which utilizes
both semantic and social relationships to expand real-time
keywords from the original seed query, as described in Sec-
tion 3. For the civil unrest domain, the seed query terms
include: “protest”, “march”, “movement”, “patriotic”,
“manifest”, and their translations in Spanish and Portuguese.
For the influenza outbreaks domain, the seed query terms
include: “flu”, “influenza”,“h1n1”,“h5n1”, and “h7n9”. In
this experiment, swas set to 20. Thuswe have 20 dynamic fea-
tures. The experiments were conducted on a 64-bit machine
with 80 processors (Intel Xeon CPU E7-4850@2.00 GHz) and
528.0GBmemory. Our parallel algorithm is based on openMP
with the C++ compiler GCC 5.1.0.1 20 threads were used for
each parallel loops in theAlgorithms 1 and 2.

In the experiment, given the day-by-day tweet data, the
event forecasting task is to utilize one day tweet data to pre-
dict whether or not there will be an event in the next day for
a specific city (for the civil unrest domain), or a specific state
(for the influenza outbreaks domain). To perform this task,
we create a training set and a test set for each city (or state),
where each data sample is the daily tweet observation with
the above-mentioned features. On the training set, we set the
label for each data sample as “1” if there is an event on the
next day; and “0” otherwise. The predicted events are struc-
tured as tuples of (date, city/state). A predicted event is
matched to a GSR event if both the date and city/state attrib-
utes are matched; otherwise, it is considered a false forecast.
To validate the prediction performance, the Area Under the
Curve (AUC) of Receiver operating characteristic (ROC)
curve were adopted. ROC curve illustrates the performance
of a binary classifier as its discrimination threshold is varied.
The curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold set-
tings. The AUCmeasures the area below this curve, which is
awell-recognizedmetric to reflect the comprehensive perfor-
mance of a classifier.

6.1.3 Comparison Methods

The following methods are included for the performance
comparison:

1) LASSO [27]. For each location, two LASSO models
are trained utilizing different sets of features: i) both
static and dynamic features, and ii) only static fea-
tures (denoted as LASSO-K). The regularization
parameters of these models for different cities are set
based on a 10-fold cross validation.

2) DQE-based event forecasting (DQEF). This model
only considers the dynamic features, as explained in
Section 3. The number of top dynamic keywords, k,
and the tweet count threshold g are set for each coun-
try by a 10-fold cross-validation on the training set.

3) DQEF+LASSO. For each location, the DQEF method
is first used to perform the forecasting. If there is no
predicted event, i.e., Yl;t ¼ 0, the LASSO model using
only static features will be employed for forecasting.

4) Regularized Multi-task Feature Learning Model
(rMTFL). For each country, an rMTFL model is built
where each task consists of the event forecasting for a
location. This model utilizes three sets of features: i)
both static anddynamic features, ii) only static features
(denoted as rMTFL-K); and iii) only dynamic features
(denoted as rMTFL-D). The regularization parameters
r1 and r0 are set based on a 10-fold cross-validation.

5) Constrained multi-task feature learning model I
(CMTFL-I). For each country, a model is built where

TABLE 1
Twitter Datasets and Gold Standards (GSR)

Country Domain Time Period #Tweets (million) Gold Standarda #Events

Brazil civil unrest 07/01/2012-05/31/2013 57 O Globo; O Estado de S~ao Paulo; Jornal do Brasil 451
Paraguay civil unrest 07/01/2012-05/31/2013 8 ABC Color; Ultima Hora; La Nac�ıon 563
Mexico civil unrest 07/01/2012-05/31/2013 51 La Jornada; Reforma; Milenio 1,217
Venezuela civil unrest 07/01/2012-05/31/2013 45 El Universal; El Nacional; Ultimas Not�ıcias 678
the United States influenza 01/01/2011-04/30/2014 9,586 Centers for Disease Control and Prevention 127

aIn addition to the top 3 domestic news outlets in each country, the following news outlets were included: The New York times; The Guardian; The Wall street
Journal; TheWashington post; The international Herald tribune; The times of London; and Infolatam.

1. Downloadable: http://tdm-gcc.tdragon.net/download. Dec. 2016.
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each task consists of the event forecasting for a loca-
tion. All the tasks share the same features, i.e., both
static and dynamic features. The feature number
constraint r and the regularization parameter r1 are
set based on a 10-fold cross-validation.

6) Constrained multi-task feature learning model II
(CMTFL-II). Once again, for each country, a model is
built where each task is the event forecasting for a
location. All the tasks share the same features, i.e.,
static and dynamic features. We use a 10-fold cross-
validation to set the regularization parameter r1, the
numbers of static features u, and dynamic features v
for each country. The sensitivities of these three
parameters are discussed in Section 6.3.

7) Constrained multi-task feature learning model III
(CMTFL-III). For each country, a model is built
where each task consists of the event forecasting for
a city/state. All the tasks utilize both static and
dynamic features and we use the a 10-fold cross-vali-
dation to set the regularization parameters r0, r1 and
dynamic features v for each country.

6.2 Performance
The proposed and comparison methods are evaluated on
both the civil unrest and influenza outbreak datasets. Both
quantitative and qualitative evaluations are conducted,
described in more detail in the following.

6.2.1 Quantitative Evaluation

Table 2 summarizes the comparison among the various
methods for event forecasting in five different datasets.
Among them, four datasets of four different countries Vene-
zuela, Mexico, Brazil, and Paraguay are in civil unrest
domain; the other dataset is for flu outbreaks in the United
States. The results show that the methods that utilize both
static and dynamic features perform better than those utiliz-
ing either one alone. For example, the rMTFL model outper-
forms rMTFL-D and rMTFL-K by 3 and 6 percent,
respectively. These results confirm the effectiveness of com-
bining both types of features for event forecasting. Among
all the methods, the four proposed models rMTFL,
CMTFL-I, CMTFL-II, and CMTFL-III achieve the score over
0.73, outperforming the baselines. The data presented in
Table 2 show that the multi-task models outperformed the
traditional LASSO models by 20 percent on average. This
reveals the advantage enjoyed by the multi-task models,
which can select features by learning from similar forecast-
ing tasks for all the cities (or states). The generalization and
stability of the forecasting performance can be improved by
learning models for different cities together, especially for
those cities that lack sufficient training samples. And

CMTFL-III obtains the best overall performance in these five
datasets. For the countries Venezuela, Mexico, and United
States, CMTFL-III achieves the best performance, and for the
other two datasets, Brazil and Paraguay, it still achieves the
second and third best performance among all the 10 meth-
ods. This is likely because: (1) CMTFL-III is able to ensure the
inclusion of dynamic features, which is demonstrably more
effective than only using static features alone in the model-
ing; and (2) Unlike CMTFL-I and CMTFL-II, CMTFL-III does
not require the determination of the number of selected static
features or the number of selected total features, which are
parameters sensitive to the performance, as shown in Fig. 5.
And it is time-consuming to tune them by cross-validation
when the total number of all the features is non-small.

6.2.2 Qualitative Evaluation

Table 3 shows the specific features selected by different
models, including LASSO, rMTFL, CMTFL-II, and CMTFL-
III for several cities in two countries, namely Mexico (where
Spanish is spoken) and Brazil (where Portuguese is spoken).
As Table 3 shows, CMTFL-II and CMTFL-III effectively
select static features (i.e., keywords) that are very relevant
to civil unrest, and the selection is stable and consistent
across different cities. The geographical heterogeneity is
reflected in the difference of the top features selected by the
models of different locations. Moreover, the selection of
dynamic feature(s), as shown in the bottom row, enhances
the capacity to consider the burstiness of tweets containing
dynamic keywords. The rMTFL model also performs effec-
tively when selecting civil unrest-related keywords as the
top static features. However, this model cannot guarantee
the selection of dynamic features because it fails to select
dynamic features in any of the listed cities for Brazil. The
static features the LASSO model selects are not consistent
across different cities and, more importantly, are not as rele-
vant and sufficient as those identified by the above-three
multi-task learning models in several cities, especially in
smaller cities, such as Oaxaca and Cuernavaca. Addition-
ally, the selection of dynamic features is not guaranteed, as
is the case in Morelia and Bras�ılia.

Table 4 shows the specific features selected by the differ-
ent models, including LASSO, rMTFL, CMTFL-II, and
CMTFL-III for several states of the United States for out-
breaks of influenza. According to Table 4, CMTFL-III
achieves most effective selection of static features (i.e., key-
words) that are relevant to the description of catching flu,
such as “flu”, “sick”, “cold”, and “chills”. CMTFL-II obtains
effective selection of related keywords, but involves rela-
tively more general keywords like “stay” and “around”
while misses some important ones like “flu” and “illness”.
Table 4 also shows that performance of CMTFL-II and
CMTFL-III are stable and consistent across different states,

TABLE 2
Event Forecasting Performance in AUC

Dataset DQEF LASSO-K DQEF+LASSO LASSO rMTFL-D rMTFL-K rMTFL CMTFL-I CMTFL-II CMTFL-III

Venezuela 0.5358 0.5586 0.633 0.6073 0.6486 0.6497 0.7889 0.7363 0.758 0.8011
Mexico 0.5397 0.4989 0.5627 0.5749 0.6817 0.6151 0.6831 0.6719 0.6934 0.7019
Brazil 0.4954 0.451 0.5108 0.4774 0.6466 0.4295 0.605 0.6049 0.6518 0.651
Paraguay 0.5592 0.5657 0.7177 0.6237 0.8307 0.6605 0.8013 0.8039 0.8232 0.8151
Flu 0.4706 0.6824 0.4783 0.6497 0.7207 0.74 0.7501 0.7643 0.7687 0.8036
Overall 0.4939 0.6236 0.519 0.6243 0.7114 0.6934 0.7369 0.7406 0.7519 0.7786
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regardless of whether it is a large state such as New York
state or one with a small tweet volume like Alaska. More-
over, the selection of dynamic feature(s) is ensured, as
shown in the bottom row, thus enhancing the capacity to
consider the burstiness of tweets containing flu-related
dynamic keywords. The rMTFL model also selects some
influenza-related keywords as its top static features. How-
ever, the quality of the top keywords is not as high as that
for CMTFL-III. The selected static features for the LASSO
model are not consistent across different states and, more
importantly, not as relevant and sufficient as the above-two
multi-task learning models in several states, especially those
with a small tweet volume, such as Alaska, where only one
static keyword “immune” is selected. Additionally, the
selection of dynamic features is not ensured, for example in
Nebraska, Washington, and New York.

6.3 Parameter Sensitivity Study
There are totally five tunable parameters in all the four
proposed models, rMTFL, CMTFL-I, CMTFL-II, and
CMTFL-III model, namely 1) the regularization parameter
r0 for rMTFL and CMTFL-III; 2) the Tikhonov regulariza-
tion parameter r1 for all the four models; 3) the number
of selected static features u for CMTFL-II; 4) the number
of selected dynamic features v for CMTFL-II and CMTFL-
III; and 5) the number of all the features for CMTFL-I. In
this experiment, the AUC scores for the Venezuela data-
set are illustrated; those for the other datasets exhibit a
very similar pattern.

Fig. 3 illustrates the performance of the proposed model
versus, r0, the regularization parameter. By varying r0 over
a large range from 0.001 to 500, the performance in terms of
AUC remains stable for CMTFL-III. The AUC score for

TABLE 3
Top 10 Static Features (Translated Into English) and the Selection of Dynamic Features for the Civil Unrest Domain

Mexico Brazil

Methods Features Mexico City Cuernavaca Guadalajara Morelia Oaxaca Bras�ılia Rio de Janeiro S~ao Paulo

LASSO
Static

block complaint request request help send problem throw
fight gunfire confront meet power power water bond
work tranquility water water avoid food official unit
help forward danger danger forward work defeat
hearsay power results results money fight send
president avoid order order street government forward
initiation help help national control
occupy national national employ confront
request initiation expensive
power town finish

Dynamic TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE

rMTFL
Static

fight fight remember employ university participant expensive prisoners
movement hate street remember allow increased strength expensive
election hungry work unit work expensive gringo increase
president street hate water develop prepare cries cries
congress sent president university hatred include progress force
initiative calling unit change problem protest participant include
progress hungry poor class progress strength protest censorship
hard work permit statement released march student progress
help eliminate killing force congress gringo censorship prepare
government forcibly remove problem killing screams include student

Dynamic TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

CMTFL-II
Static

protest police university movement block shooting attack march
fight protest expected occupy money order block resolve
president struggle movement encounter encounter movement occupy attack
government patriot manifest hunger memories throw arrest warrant
movement movement occupy national change government control payment
death hunger hate change police submit kill poor
poor student change request occupy march followers claim
national block class fear steal national throw block
expected work block money fight block ask hatred
wait memories official country president attack march problem

Dynamic TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

CMTFL-III
Static

protest force treaty punishment burning justice abortion force
crisis protesters matches Rejected revenge atrocity punishment atrocity
rage development killer eviction control protest racism Justice
impose embargo angry fire embargo Racism extreme punishment
embargo military assault ban problem solve protest protest
conflict punishment conflict crisis town community poor attack
call-for effort march force march unity minister torture
angry march unemployment army military organized kill censorship
fight violence defeat embargo to break censorship hate power
hate criminal Workers attorney labor punishment Burning military

Dynamic TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE means there is at least one dynamic feature being selected; FALSE means no dynamic feature selected. CMTFL-II and CMTFL-III can ensure the selection
of effective dynamic feature(s). CMTFL-III obtains the features with higher quality.
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rMTFL increases by 0.13 when r0 increases from 0.001 to
0.01 and becomes stable after that.

Fig. 4 shows that by varying r1 over a large range from
0.001 to 500, the AUC scores for all the four models remain
stable with the fluctuation ranges less than 0.02.

Fig. 5 shows the sensitivity results of varying the number
of selected features for different models. Fig. 5a demonstrates

that by changing the number of dynamic features from 1 to
20, the AUC scores change within 0.04 for both CMTFL-II and
CMTFL-III. In Fig. 5b, the number of static features is shown
to be sensitive to the performance of the model CMTFL-II.
The dramatic fluctuation of AUC happens every 10-20
increase of the number of selected static features. This demon-
strates the difficulty in tuning the parameter in the model

TABLE 4
Top 10 Static Features and the Selection of Dynamic Features for the Influenza Outbreaks Domain

the United States

Methods Features Wyoming Nebraska Washington New York California Alaska Florida NewMexico

LASSO
Static

four birds jadi drop fast immune kalo officially
excuse drop tired chicken sleep four tea
works thinks 101 vomiting decided past juga
job dealing birds late ill 12s drop
diet warm 2nd bottle started pigs strains
cancelled body cancer quickly quite pissed die
boss pissed classes miserable normal heard nausea
ankle practice hands ate less tea swear
complicate masks miss brought years infected fight
NIH class recover hrs gak wasn gettin

Dynamic TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

rMTFL
Static

catching warm ankle drop fast immune 12s comining
jab goin poor chicken appetite fever pigs slime
vaccination drop pray begginning tired strep ebola thanks
excuse practice gym hospitalize quite bug past vomiting
daughter thinks disease month lemon bird wasn tea
quickly class jadi infections energy week helps less
outbreak pissed finally kind vomit flu tea positive
poor excuse quarantine throat sleep virus practice catch
died dealing thera bro normal vaccination heard starting
four body severe barely killing tomorrow kalo weak

Dynamic TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

CMTFL-II
Static

sucks strep house house house sick year days
week stay away around school cold soon stay
bed around days doctor fever bed tonight coming
home house tonight school days school bug tomorrow
work bed bug away sucks around symptoms away
days feeling stay sick tonight home coming strep
sick work doctor symptoms bug swine since bug
year days bed bed stay away tomorrow house
doctor week school home bed throat around soon
around tomorrow week tonight tomorrow bug work sick

Dynamic TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

CMTFL-III
Static

flu stomach cold bed bed chills stomach sick
sick cold sick stomach days illness flu stomach
cold sick bed cold feeling trip soon bed
days feeling week days cold official sick cold
bed week days soon week wanted days days
feeling days flu family sick bring work flu
stomach bed sucks sucks soon decided awful week
week soon stomach week work cancelled body feeling
work work soon feeling sucks avoid least work
soon flu feeling sick family taking pretty soon

Dynamic TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE means there is at least one dynamic feature being selected; FALSE means no dynamic feature selected. CMTFL-II can ensure the selection of effective
dynamic feature(s). CMTFL-III obtains the features with higher quality.

Fig. 3. Sensitivity analysis for the regularization parameter r0. Fig. 4. Sensitivity analysis for the regularization parameter r1.
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CMTFL-II and the advantage ofCMTFL-III because its param-
eter r0 is not that sensitive as shown in Fig. 3. Finally, the num-
ber of the selected features for the model CMTFL-I is also
sensitivewith the fluctuation as large as 0.2.

6.4 Scalability Analysis
To examine the scalability of the proposed methods, we can
measure the training runtimes of all the methods when
varying the number of tasks and features. Here, we present
the results of our experiments for the influenza outbreak
dataset; the performance on the civil unrest dataset exhibits
a similar pattern.

Fig. 6 compares the running times for all the methods
when the number of features they utilize changes from 5 to
100. As can be seen from the graph, the runtimes of all the
methods basically increase linearly with the number of fea-
tures. Among them, the methods DQEF+LASSO, LASSO-K,
and LASSO require shorter runtimes compared to other
methods because they are much simpler. The parallel com-
puting strategy for the proposed models effectively reduces
the computation time. CMTFL-III achieves a relatively low
computation time among the proposed models due to the
parallel strategy for computing in both different features
and tasks as shown in Steps 4 and 10 of Algorithm 2.

To examine the scalability for an increasing number of
tasks, Fig. 7 illustrates the running times of all the methods
when the number of tasks jumps from 4 to 40. Similar to the
situation shown in Fig. 6, the runtimes of all the methods
increase linearly with the number of tasks, demonstrating
good scalability of the proposed methods with the number of
tasks. Note that, the simplest methods, namely DQEF
+LASSO, LASSO-K, and LASSO, achieve little shorter

runtimes on average. The proposedmethods such as CMTFL-
III and CMTFL-II are also very efficient (i.e., less than 10s
when considering 40 tasks) for practical applications such as
these thanks to the use of parallel optimization algorithms.

6.5 Case Studies
We observed numerous interesting events predicted by three
of the proposed approaches, CMTFL-I, CMTFL-II, and
CMTFL-III, in our experiments. For the civil unrest domain,
Figs. 8 and 9 depict two waves of civil unrest events that
occurred on March 17th, 2013 in Brazil, and April 17th, 2013
in Paraguay, respectively. For the influenza outbreak domain,
Fig. 10 illustrates the influenza outbreaks occurring between
Feb. 10th, 2013 and Feb. 16th, 2013 in the United States.

6.5.1 Case Studies on Civil Unrest Forecasting

For the case studies in the civil unrest domain, Fig. 8 shows
three events in Brazil, among which Event 1 and Event 2 hap-
pened in large cities, namely Sao Paulo and Rio de Janeiro,
respectively, while Event 3was in a smaller city, Niter�oi. Note
that the city Niter�oi does not have any training sample. The
proposed CMTFL-II and CMTFL-III models successfully pre-
dicts all three of these events, even the one that occurred in
Niter�oi. This is because CMTFL-II andCMTFL-III jointly learn
the models for all the tasks (i.e., cities), so even where the
model of the city has no training sample, it can still be esti-
mated using data from other cities. The LASSO model pre-
dicts two of the events but fails to forecast Event 3. This is
because the LASSO model is trained for each city individu-
ally, and so events that occur in a city with no training sample
cannot be predicted. The rMTFL model only predicts one
event, that in Rio de Janerio. Its failure to discover the events

Fig. 6. Scalability on number of features.

Fig. 7. Scalability on number of tasks.

Fig. 8. A map of civil unrest events and forecasting hotspots on March
17th, 2013 in Brazil.

Fig. 9. A map of civil unrest events and forecasting hotspots on April 17,
2013 in Paraguay.

Fig. 5. Sensitivity analysis for the number of selected features.
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in the two other cities might be due to its exclusion of the
dynamic features after training, as shown in Table 3. This
reduces its capacity to uncover the burstiness of dynamic key-
words. This confirms the need for a separate selection of the
static and dynamic features, as in our proposed CMTFL-II
model.

Fig. 9 shows four events in Paraguay, among which
Event 2, Event 3, and Event 4 were successfully predicted
by CMTFL-II. And Event 1, Event 3, and Event 4 were suc-
cessfully predicted by CMTFL-III. rMTFL predicted Event 2
and Event 3, while LASSO failed to predict any of the
events. As shown in Table 1, Paraguay is a country where
the number of reported events is large but the volume of
tweets is relatively small, so the ratio of #tweets (or #events)
is less than one third of that seen in other countries. The
sparsity of tweet data makes forecasting more difficult for
Paraguay for methods that do not incorporate using multi-
task learning, as shown in Table 2.

6.5.2 Case Study on Forecasting Influenza Outbreaks

For the case study on the influenza outbreak domain, Fig. 10
shows that there were basically four states with high influ-
enza activity in the United States that week, among which
Nevada and Kansas are two states with relatively small aver-
age volume of tweet postings. The proposed rMTFL,
CMTFL-II, and CMTFL-III models successfully predicted all
of the events for both the smaller and larger states. This is
because they jointly learned the models for all the tasks (i.e.,
cities). Even the model of the state (in this case, Alaska) with
the fewest training samples can still be estimated by using
data from other states. Among them the CMTFL-III per-
formed the best because it did not generate any false posi-
tives while rMTFL and CMTFL-III have one false alarm in a
state. This again demonstrated the effectiveness of CMTFL-
III in optimizing the static feature selection and ensuring the
inclusion of dynamic features. The LASSO model success-
fully predicted two of the influenza outbreak events but
failed to forecast the events in Nevada and Kansas. This is
because the LASSO model is trained for each state individu-
ally, and thus the performance for events in states with small
training sets cannot be guaranteed. However, although both
the rMTFL and CMTFL-II models successfully identified all

the events, they also generated several false alarms. For
example, the rMTFL model generated 3 false alarms in the
states of Mississippi, Oklahoma, and Florida. CMTFL-II gen-
erated only one false alarm, for the state of Colorado, which
does actually coincide with nontrivial flu activity. The better
performance of CMTFL-II compared to rMTFLmight be due
to the consideration of dynamic features. Overall, this case
study confirms the need for a separate selection of the static
and dynamic features, as in our CMTFL-II model.

7 CONCLUSION

This paper presents a novel multi-task learning framework to
address the problem of spatial event forecasting in Social
Media. Existing methods are not able to concurrently address
critical challenges, such as the dynamic patterns of features,
and geographic heterogeneity. Our work considers the esti-
mation of predictive models in different locations as a multi-
task learning problem, thus making it possible to use shared
information between locations and effectively increasing the
sample size for each location. We further model the static and
dynamic features using different constraints to balance both
the homogeneity and diversity between these two types of
features. We propose a set of efficient algorithms based on the
IGHT that are able to predict spatial events in real time. Our
empirical results demonstrate that we can effectively detect
civil unrest and influenza outbreak events, outperforming
existing methods by a substantial margin on both precision
and recall. Multiple case studies are provided to demonstrate
the usefulness of the proposed method in practical applica-
tions. In future work, we plan to extend our multi-task learn-
ing framework by exploring more complex relationships
between locations and integrating human domain knowledge
as priors.
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