
39

Virtual Metering: An Efficient Water Disaggregation
Algorithm via Nonintrusive Load Monitoring

BINGSHENG WANG, Google Inc.

ZHIQIAN CHEN, Virginia Tech

ARNOLD P. BOEDIHARDJO, U. S. Army Corps of Engineers

CHANG-TIEN LU, Virginia Tech

The scarcity of potable water is a critical challenge in many regions around the world. Previous studies have

shown that knowledge of device-level water usage can lead to significant conservation. Although there is

considerable interest in determining discriminative features via sparse coding for water disaggregation to

separate whole-house consumption into its component appliances, existing methods lack a mechanism for

fitting coefficient distributions and are thus unable to accurately discriminate parallel devices’ consumption.

This article proposes a Bayesian discriminative sparse coding model, referred to as Virtual Metering (VM),

for this disaggregation task. Mixture-of-Gammas is employed for the prior distribution of coefficients, con-

tributing two benefits: (i) guaranteeing the coefficients’ sparseness and non-negativity, and (ii) capturing the

distribution of active coefficients. The resulting method effectively adapts the bases to aggregated consump-

tion to facilitate discriminative learning in the proposedmodel, and devices’ shape features are formalized and

incorporated into Bayesian sparse coding to direct the learning of basis functions. Compact Gibbs Sampling

(CGS) is developed to accelerate the inference process by utilizing the sparse structure of coefficients. The

empirical results obtained from applying the new model to large-scale real and synthetic datasets revealed

that VM significantly outperformed the benchmark methods.
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1 INTRODUCTION

The shortage of fresh water is emerging as one of the most critical resource issues facing our
society. Gilbert reported that around 80% of the world’s population suffers from water shortages
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Fig. 1. The Laplace prior and smoothed posterior of Toilet’s coefficients. The Laplace prior is plotted for the

interval [−5, 5], and the posterior is plotted for the interval [0, 5] due to its non-negativeness. Left: Whole

view of Laplace prior versus posterior. The Laplace prior can only guarantee the sparseness with the peak

near zero; for the posterior, the large peak near zero is evidence that the coefficients are sparse while the

small peak near 1.8 illustrates the cluster of active coefficients. Right: Close-up of the area near the small

peak, showing the comparison of the posterior and the Laplace prior.

(Gilbert 2010), and existing resources are only sufficient to fulfill our needs for the next 60–70
years (Gleick 2000). In the United States, urban water consumption is responsible for 50–80% of the
water supplied by public water supply systems and 26% of the nation’s entire usage (Vickers 2001),
so significant efforts are now being devoted toward residential water conservation (Chen et al.
2011; Larson et al. 2012). Previous studies have shown that detailed information on the water con-
sumed by individual devices can help consumers reduce their consumption significantly (Froehlich
et al. 2012). Water disaggregation, the task of separating total consumption into its composite com-
ponents, is thus crucial for establishing a sustainable future for potable water (Gerwen et al. 2006).
The research reported here therefore sought to build an effective disaggregation model capable of
automatically extracting useful insights from thousands of households’ smart meter readings.
Sparse coding (or sparse representation) provides excellent general models for signal classifica-

tion, recognition, and source separation (Jiang et al. 2011; Roweis 2001; Virtanen 2004; Grosse et al.
2007; Mairal et al. 2009; Wright et al. 2009). Water disaggregation can conveniently be formulated
as a source separation or classification problem. For the regularization term, the following issue
must be considered: Does the Laplace distribution (l1 term) overpenalize true large coefficients?
For low sampling rate (1/900 Hz) sensing data, the consumption amounts for each of the devices
usually combine to form a cluster which is much larger than zero. This will create at least two
peaks in the distribution of coefficients: One large peak near zero represents the sparse structure,
and one or more small peaks located far from zero represent the active coefficients. For example,
the consumption for the device Toilet will typically be about 0.5−4.5 gallons, so with normalized
basis functions, the active coefficients for Toilet will form one or more clusters which are far away
from zero while its nonactive coefficients are near zero. Figure 1 showed the Laplace prior and
smoothed posterior of Toilet’s coefficients, revealing that the Laplace prior lacks the capability to
fit the coefficients because (i) the left part shows that it is unable to inherently secure the coeffi-
cients’ non-negativeness1 and (ii) the right part indicates that the prior fails to capture the small
peak of active coefficients. We therefore applied the Mixture-of-Gammas prior to mitigate these
two problems.

1In the context of this disaggregation problem, the coefficients are not allowed to be negative since negative coefficients

are meaningless for constructing device consumption components.
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The key idea of Virtual Metering (VM) is to deploy and measure the device-level consumption
in some homes and then use the data gathered to estimate the device-level consumption for other
homes based on their aggregated smart meter readings, rendering it unnecessary to install subme-
ters on individual devices by estimating the consumption using statistical algorithms.Mixture-of-

Gammas can then be applied as the prior distribution for the coefficients to alleviate the overpe-
nalization of the l1 term due to the true large active coefficients. Compared with Laplace, Student-t
or mixture-of-Gaussians (Attias 1999; Olshausen and Millman 2000), Mixture-of-Gammas will not
lead to negative activations, but instead will guarantee the sparseness and capture realistic coeffi-
cient distributions: One Gamma captures those nonactive coefficients with a small shape and large
rate distribution, while one or more other Gammas capture active coefficients with a small rate dis-
tribution. Next, a sparse coding-based statistical framework is proposed for discriminatively
training the basis functions, targeted specially at accurately separating the aggregated data. After
implementing a formal process to abstract the shape features for each device, the basis functions
are initialized using the invariant features and smoothed to adapt to the variances of label training
data. The parameters for each device are estimated under the Bayesian framework using Expec-
tation Maximization (EM) and Gibbs sampling. The learned parameters for each device can then
be combined for disaggregation. To enhance the new model’s power of separation, the compound
basis functions are further learned to adapt the bases to the aggregated consumption. By utilizing
activations’ sparse structure, Compact Gibbs Sampling (CGS) is designed to expedite the model’s
learning. In summary, the contributions of this article are as follows:

—Design of a Bayesian discriminative disaggregation model: Bayesian sparse cod-
ing with Mixture-of-Gammas prior is utilized as the generative model for each device.
A Bayesian discriminative model is presented for disaggregation by first combining the
learned models of each device, after which the discriminative capability of the combined
model is enhanced through adapting bases to the aggregated data.

—Analyses and formalizations of shape features for smart meter readings: Rigorous
analyses and definitions of shape features are presented by exploring the prior knowledge
with respect to individual device consumption patterns. We use the results of the analyses
to direct the learning of basis functions, and we show how it can help improve the disag-
gregation performance.

—Development of efficient and effective learning algorithms: CGS is presented for effi-
cient inference and learning by utilizing the sparse structure of activations. CGS is capable
of drawing equivalent samples to those utilized in conventional Gibbs sampling but requires
on average substantially fewer operations per sample.

—Comprehensive experiments to validate the effectiveness and efficiency:Wedemon-
strated the effectiveness and efficiency of the proposed model with extensive experiments
based on both real and synthetic datasets. The evaluation results show that our model sig-
nificantly outperformed the baselines at both the whole-home and device levels.

This article is organized as follows: Section 2 surveys related work on water disaggregation and
sparse learning. Section 3 introduces the terminologies used and necessary background knowl-
edge. Section 4 describes the sparse coding-based statistical formulation for VM. Section 5 provides
the algorithms for inference and parameters estimation. The effectiveness of VM is illustrated with
extensive experiments in Section 6. Section 7 presents our conclusions.

2 RELATEDWORK

Energy Disaggregation and Nonintrusive Load Monitoring (NILM): With the widespread
deployment of smart meters in many countries, water disaggregation is emerging as an interesting
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new research direction in urban computing (Zheng et al. 2014). Pressure-based sensors have been
designed for installation on water fixtures to help identify activity and estimate the corresponding
attributes, such as consumption and quality, for individual household devices (Larson et al. 2012;
Froehlich et al. 2009, 2011; Liu et al. 2016). By utilizing both occupancy sensors and whole-house
water flow meter data, Srinivasan et al. (2011) categorized the aggregated consumption at the
fine-grained device level. Although such methods are capable of achieving about 90% accuracy,
they depend on high-sampling-rate sensing data (as high as 1 Khz) to capture the characteristic
open–close signatures of devices. Recently, Ellert et al. (2016) modified the Viterbi algorithm
to apply a supervised method to an unsupervised disaggregation problem without requiring
the installation of water submeters or water sensors. A Hidden Markov Model (HMM)-based
approach was developed in Chen et al. (2011) for separating low-sampling-rate (1/900 Hz) data,
while (Nguyen et al. 2013a, 2013b) proposed a hybrid combination of HMM and Dynamic Time
Warping (DTW) to automate the categorization of residential water end use events and estimate
devices’ consumption. Makonin et al. (2016) presented a new load disaggregation algorithm that
ultilized a super-state hidden Markov model and a new Viterbi algorithm variant which caputures
dependencies between loads. However, an HMM-based structure inherently restricts its ability
to infer consumption for parallel devices. Wang et al. (2012) applied a featured discriminative
dictionary to extend the sparse coding model to estimate devices’ consumption from aggregated
data, but this approach lacks a mechanism to capture the distribution of coefficients. A deep
sparse coding-based model was presented in Dong et al. (2013) that fully utilizes the limited label
data and performs disaggregation in a sequential manner; however, the model is sensitive to the
disaggregation structure, and the learning process is of high computational complexity when
seeking the optimal architecture for disaggregation. Recently, different deep learning models such
as Recurrent Neural Network (RNN) (Kelly and Knottenbelt 2015), Convolutional Neural Network
(CNN) (Kelly and Knottenbelt 2015; Zhang et al. 2016), Auto encoder (Kelly and Knottenbelt 2015),
and a combination of deep learning and HMM (Huss 2012; Zhang et al. 2016; Mauch and Yang
2016) have been applied to the energy disaggregation problem.

Sparse Learning: For water disaggregation, the key is the ability to identify the discriminative
features of devices; that is, to learn the discriminative basis functions for sparse coding. The con-
vex learning form of basis functions is derived via probabilistic reasoning by maximizing the
likelihood functions (Olshausen and Field 1996; Lewicki and Sejnowski 2000) and then applying
an iterative refinement method for training the dictionaries (Engan et al. 1999; Kreutz-Delgado
et al. 2003). Based on the given signal and dictionary, several algorithms have been proposed for
the computation of the representation coefficients. Matching Pursuit (MP), Orthogonal Matching
Pursuit (OMP), and Order Recursive Matching Pursuit (ORMP) all provide solution to l0 regulariza-
tion (Pati et al. 1993; Mallat and Zhang 1993; Gharavi-Alkhansari and Huang 1998). Basis Pursuit
(BP) and coordinate descent are presented for l1 regularization (Chen et al. 1998; Wu and Lange
2008), while FOCal Underdetermined System Solver (FOCUSS) is designed for lp (0 < p ≤ 1) reg-
ularization (Gorodnitsky and Rao 1997). Although an l1, l0, or lp regularization term can be used
to derive sparse solutions, this approach does suffer from a lack of variability for the customiza-
tion of coefficients’ prior distribution. The specific choice of sparse prior is critical to the objective
optimization and basis function learning (Körding et al. 2003). Olshausen andMillman (2000) intro-
duced Mixture-of-Gaussians to better match the posterior distribution by adapting the parameters
of prior to the data, where Gibbs sampling is employed for sampling of intractable posterior dis-
tributions (Geman and Geman 1984). However, it lacks a mechanism to guarantee the coefficients’
non-negativeness. A Laplace ScaleMixture (LSM) prior was suggested by Garrigues and Olshausen
(2010) to model dependencies among coefficients, leading to multiplicative modulation and group
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sparsity. Even though this method has many advantages, it requires a topographical layout for
organizing the features by solving a large-scale optimization problem.

3 PRELIMINARIES

Notations and concepts: Suppose there is a total of D devices, such as Toilet and Shower. For

each device d = 1, 2, . . . ,D, Y(d ) ∈ RN×P is used to denote its consumption matrix, where N is the
number of intervals in one day and P is the number of days. The pth day’s consumption of device

d is denoted as y
(d )
·,p . The water usage of device d for interval i of day p is denoted as y (d )

i,p . Ȳ is used

to indicate the aggregated water consumption over all devices: Ȳ =
∑D
d=1 Y

(d ) . The pth column

of Ȳ holds the aggregated consumption of the pth day for a given household. The ith element

of ȳ·,p , denoted as ȳi,p =
∑D
d=1 y

(d )
i,p , is the aggregated consumption at interval i in day p. During

the training course, we have the individual device’s consumption data, Y(1),Y(2), . . . ,Y(D ) , while
during the testing course, only the aggregated data Ȳ are available, with the goal being to separate

it into Ŷ(1), Ŷ(2), . . . , Ŷ(D ) .

Sparse coding for the disaggregation task:2 Sparse coding techniques represent a signal y ∈
R
N×1 (in this case, smart meter readings) using a small number of basis functions chosen from an

overcomplete dictionary H ∈ RN×M :

y = Hx + u, (1)

where x is a sparse activation/coefficient vector belonging to RM×1, and u ∈ RN×1 represents the
noise. Intuitively, the best method to derive sparse coding coefficients x is to apply the l0 constraint
by optimizing the following problem:

min
H,x

��y − Hx��22 + λ‖x‖0, (2)

where ‖x‖0 is the number of non-zero items in vector x. Due to the fact that optimization with an
l0 term is NP-hard (Donoho 2006), a typical approximation is to penalize the coefficients via an l1
regularization formulation:

min
H,x

��y − Hx��22 + λ‖x‖1. (3)

From a Bayesian perspective, the l1 norm is equivalent to using a Laplace prior on the coefficients x,

P (x) =
1

2b
exp

(
− ‖x‖1

b

)
. (4)

The sparse coding utilized for the disaggregation approach originates from the source separa-
tion problem (Schmidt and Olsson 2006; Schmidt et al. 2007): First train individual models for each

device Y(d ) and then use the learned models to decompose an aggregated signal. Formally, the

data matrix for device d is modeled as Y(d ) = H(d )X(d ) + u(d ) , where H(d ) ∈ RN×Md is the dictio-
nary (or basis functions) for device d , and the columns of H(d ) contain a set ofMd basis functions;
X(d ) ∈ RMd×P represents the activations (or coefficients) of the deviced’s dictionary, and u denotes
the 0-mean, τ -precision white noise (Olshausen and Field 1997). Additionally, the activations X(d )

are designated sparse (i.e., most of X(d ) are zero entries), which is designed for learning overcom-
plete representations of the data. As stated in the introduction, a common approach for achieving
sparsity is to apply an l1 regularization to the activations. Due to the non-negative nature of water
consumption, a further constraint is adopted to ensure the non-negativeness of both activations

2A showcase of disaggregation is shown in A.
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and bases (Hoyer 2002). Specifically, for each device d , the basis functions can be learned using a
non-negative sparse coding objective:

min
X(d ) ≥0,H(d ) ≥0

1

2
���Y(d ) − H(d )X(d )���2F + λ∑

q,r

(X(d ) )qr

subject to
���H(d )

., j
���2 ≤ 1, j = 1, 2, . . . ,Md

, (5)

where Y(d ) , H(d ) , and X(d ) are as defined in the previous section, and λ ∈ R+ is a regularization
parameter to balance the importance of sparseness and reconstruction error. ‖A‖F is the Frobenius
norm, and ‖a‖2 is the l2 norm. This optimization problem is convex in the optimization of each
variable while holding the other fixed. The objective function defined in Equartion (5) can be

optimized by minimizing the objective alternatively with respect to X(d ) and H(d ) .
Using the preceding procedure, the basis functions can be learned for each deviced = 1, 2, . . . ,D

(i.e.,H(1),H(2), . . . ,H(D )). The previously unseen aggregated signal Ȳ can be disaggregated into the
D components. The individual basis functions are concatenated to form a compound basis function,
and the following objective can then be used to estimate each device’s activations:

X̂(1:D ) = argmin
X(1:D ) ≥0

1

2

���������
Ȳ −

[
H(1) · · · H(D )

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
X(1)

...

X(D )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
���������
2

F

+ λ
∑
d,q,r

(X(d ) )qr , (6)

where X(1:D ) = [(X(1) )T , . . . , (X(D ) )T ]T . Now we are ready to estimate device d’s consumption:

Ŷ(d ) = H(d )X̂(d ) . (7)

The sparse coding model is designed to learn the reconstruction dictionaries for each device, but
it lacks a mechanism to derive basis functions that can minimize the disaggregation error.

Discriminative sparse coding: The basic idea of discriminative sparse coding (Kolter et al. 2010)
is to employ the regularized disaggregation error as the objective function in place of using the
default non-negative sparse coding objective:

Er eд =
D∑
d=1

1

2
���Y(d ) − H(d )Â(d )���2F + λ ∑

d,q,r

(X̂(d ) )qr , (8)

where X̂(1:D ) is achieved by optimizing Equation (6). Minimizing Er eд is likely to achieve much
better basis functions than optimizing Equation (5) for separating the aggregated signal. The best

possible value of X̂(d ) can be achieved by

X̃(d ) = argmin
X(d ) ≥0

1

2
���Y(d ) − H(d )A(d )���2F + λ∑

q,r

(X(d ) )qr . (9)

It is obvious that the coefficients achieved by optimizing Equation (9) are the same as the
activations obtained after iteratively optimizing the non-negative sparse coding objective in

Equation (5). As a result, the discriminative dictionary H̃(1:D ) can be learned by minimizing Equa-

tion (8) while making the activations as close to X̃(1:D ) as possible. Since the change of basesH(1:D )

for optimizing Equation (8) would also cause the resulting optimal coefficients to be changed, the

learned discriminative basis functions (i.e., H̃(1:D )) would be different from the reconstruction bases
(i.e., H(1:D )). Formally, the discriminative dictionary can be learned by optimizing the augmented
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regularized disaggregation error objective:

Ẽr eд
(
Y(1:D ),H(1:D ), H̃(1:D )

)
≡

D∑
d=1

��
1

2
���Y(d ) − H(d )X̂(d )���2F + λ∑

q,r

(X̂(d ) )qr
���

subject to X̂(1:D ) = argmin
X(d ) ≥0

1

2
���Y(d ) − H̃(d )X(d )���2F + λ∑

q,r

(X(d ) )qr

, (10)

where H̃(1:D ) = [H̃(1), . . . , H̃(D )]. H(1:D ) are the reconstruction bases learned from sparse coding

in Equation (5), while H̃(1:D ) are the discriminative bases optimized by moving X̂(1:D ) as close to

X̃(1:D ) as possible. It is important to note, however, that although the discriminative sparse coding
model has been developed to optimize the bases and thus decrease the overall disaggregation error,
it will be unable to control the behaviors of coefficients to derive accurate disaggregation results.

4 VIRTUAL METERING: BAYESIAN DISCRIMINATIVE DISAGGREGATION MODEL

Section 4.1 describes the sparse coding with Mixture-of-Gammas prior to model the generative
process, and the Bayesian discriminative model is developed in Section 4.2.

4.1 Generative Model: Bayesian Sparse Coding with Mixture-of-Gammas Prior

We apply Mixture-of-Gammas as prior of coefficients to capture the consumption amount infor-
mation, and a sparse coding-based generative model is presented for each device. Without loss of
generality, the labels for device and day can be removed, so let y ∈ RN×1 denote one day’s water
consumption of a particular device, H ∈ RN×M denote the basis functions, u denote 0-mean, and
τ -precision white noise. The generative model is:

y = Hx + u. (11)

The conditional probability of one interval’s consumption is given by

P (yi | x,τ ,H) = N (yi | Hix,τ
−1). (12)

Since y1,y2, . . . ,yN are independent and identically distributed (i.i.d.) variables, we have

P (y | x,τ ,H) =
N∏
i=1

P (yi | x,τ ). (13)

Mixture-of-Gammas are employed to model a device’s coefficients: one Gamma is used to guaran-
tee the sparseness with a small shape and large rate distribution, while the other Gammas model
the active coefficients by learning certain shape and rate values. The prior distribution over x j is
given by

P (x j | ξ ) =
K∑
k=1

ωkGamma(x j | αk , βk )

=

K∑
k=1

ωk

βαk
k

Γ(αk )
xαk−1j e−βkx j

. (14)

Since x1,x2, . . . ,xM are i.i.d. variables, we have

P (x | ξ ) =
M∏
j=1

P (x j | ω,α , β ), (15)
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Fig. 2. Representation of the generative model as a directed acyclic graph. The observed variableyi is shown
by the shaded node, while the latent variables x j , zj , and τ are represented by circles. The right box represents
theN independent consumption intervals, while the left box represents theM independent coefficients.ω,α ,

β , and H are model parameters. α0 and β0 are hyperparameters.

where ξ = {ω,α, β } denote the parameters of coefficients, ω = {ω1, . . . ,ωK }, α = {α1, . . . ,αK },
β = {β1, . . . , βK }, K is the number of mixtures, and ωk denotes the mixing proportions, satisfying
the condition that

∑K
k=1ωk = 1.

The parametric form in Equation (14) provides a probabilistic generative description of the co-
efficient in which different Gammas play the role of hidden states. To generate x j , a state zj is first
picked with probability

P (zj ) =
K∏
k=1

(ωk )
zjk . (16)

Then x j can be drawn from the corresponding Gamma,

P (x j | zj ) =
K∏
k=1

[
Gamma(x j | αk , βk )

]zjk
. (17)

Generally, given a certain state

P (zjk = 1) = ωk , (18)

it is possible to ensure the distribution to draw the coefficient:

P (x j | zjk ) = Gamma(x j | αk , βk ). (19)

The prior distribution on τ follows a Gamma distribution with hyper-parameters α0, β0:

P (τ | α0, β0) = Gamma(τ | α0, β0). (20)

This model can be expressed as a directed graph, illustrated in Figure 2.

4.2 Bayesian Discriminative Sparse Coding Model for Disaggregation

The generative models provided in Section 4.1 are not designed to separate the aggregated data as
they lack the capability to decompose an aggregated consumption into its composite components.
The generative models must be improved to adapt to the aggregated data if we are to improve dis-
aggregation performance. Distributions of coefficients are usually invariant over time or homes
since devices’ consumption amplitudes will remain the same or change only slightly. A Bayesian
discriminative disaggregation model is designed to promote the disaggregation performance by
training the model using aggregated data while holding the parameters of coefficients’ distribu-
tions fixed.
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Fig. 3. Representation of the generative model for the discriminative model as a directed acyclic graph. The

observed variable ȳi is shown by the shaded node, while the latent variables x(d ) , z(d ) , and τ̄ are represented

by circles. The box represents the N independent consumption intervals from the dataset. H̄ is the model

parameter, and ᾱ0 and β̄0 are hyper-parameters.

Let H̄ = [H(1),H(2), . . . ,H(D )] denote the compound basis functions. Let ȳ =
∑D
d=1 y

(d ) denote
the aggregated consumption, and let

x̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x(1)

x(2)

...

x(D )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
denote the compound coefficients. Our purpose is to disaggregate the total consumption ȳ into the

usages of individual devices: ŷ(1), ŷ(2), . . . , ŷ(D ) . The aggregated consumption ȳ is generated by

ȳ = H̄x̄ + ū, (21)

where ū is the 0-mean, τ̄ -precision white noise. From the generative model for the aggregated
consumption, we observe that x̄ denotes the overall coefficients and H̄ denotes the basis functions
for constructing the aggregated consumption. The key here is to learn the discriminative H̄ for
estimating individual devices’ consumption. Given the normalized basis functions, the active co-
efficients mainly depend on the consumption amplitude of individual devices, while the nonactive
coefficients are near-zero values. The parameters of coefficients learned with individual devices’
data should be optimal if they are to adequately represent the invariant patterns captured by distri-
butions of coefficients since they are learned with device-level data. The discriminative capability
of H̄ can thus be extended through training with the aggregated data while keeping parameters of

coefficients unchanged (i.e., ξ (1), ξ (2), . . . , ξ (D )).
The conditional probability of one interval’s aggregated consumption is given by ȳi

P (ȳi | x̄, H̄, τ̄ ) = N (ȳi | H̄i x̄, τ̄
−1). (22)

The aggregated interval based consumption ȳ1, ȳ2, . . . , ȳN are i.i.d. variables:

P (ȳ | x̄, H̄, τ̄ ) =
N∏
i=1

P (ȳi | x̄, H̄, τ̄ ). (23)

The prior distribution on τ̄ is given by a Gamma distribution:

P (τ̄ | ᾱ0, β̄0) = Gamma(τ̄ | ᾱ0, β̄0). (24)

A graphical representation of the discriminative model is shown in Figure 3.
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5 INFERENCE AND LEARNING

In this section, the Expectation-Maximization (EM) algorithm (Dempster et al. 1977) is applied
for model learning and parameters estimation. Two sampling-based inference algorithms are pre-
sented to approximate the intractable posterior. Section 5.1 introduces the inference method based
on traditional Gibbs sampling (Geman and Geman 1984). To achieve more efficient and effective
learning, CGS is developed in Section 5.2. The predictive density is evaluated in Section 5.3.

5.1 A Gibbs Sampler for Models’ Inference

Expectation Estimation for Bayesian Sparse Coding with Mixture-of-Gammas Prior: To
perform inference in the Bayesian sparse coding model, we must first construct a Gibbs sampler
for generating samples from the posterior

P (x, z,τ | y,θ0,θ ), (25)

where θ0 = {α0, β0} are hyperparameters and θ = {α, β,ω,H} are model parameters. The samples
of the latent variables W = {x, z,τ } can be constructed by following a Gibbs sampling algorithm
where we iteratively sample from the appropriate conditional distributions of x, z, and τ .
Given particular chosen priors, sampling τ from its conditional distribution can be reduced to a

standard problem:

P (τ | y, z, x,θ ) = P (y, z, x,τ ,θ )

P (y, z, x | θ )
∝ Gamma(τ | αN , βN )

, (26)

whereαN = α0 +
N
2 , βN = β0 +

1
2

∑N
i=1 (yi − Hix)

2. The indicator variable z can be sampled by sam-
pling over individual indicators zjk where k = 1, . . . ,K , j = 1, . . . ,M :

P (zjk = 1 | z \ zjk , y, x,τ ,θ ) ∝ P (zjk = 1 | z \ zjk ,x j ,αk , βk ,ω)

∝ ωkGamma(x j | αk , βk ) . (27)

As expected, the value of zjk mainly depends on the distribution of x j and the value of the mixing
coefficient. Ifωk is large while x j follows a Gamma distribution with parameters αk , βk , then most
samples of zjk will be 1. The latent coefficient x is difficult to sample since its prior distribution is
a mixture of Gammas. We can sample over the individual coefficients x j , where j = 1 . . . ,M :

ln P (x j | y, x \ x j ,τ , z,θ )

∝
N∑
i=1

−τ
2

[
(Hi jx j )

2 − 2Hi jx j

(
yi −

∑
j′�j

Hi j′x j′

)]
+

K∑
k=1

zjk [(αk − 1) lnx j − βkx j ]. (28)

The log-form of the posterior of x j is derived given other hidden variables and observations. It
is clear to see how x j is determined. Since Equation (28) might be non-log-concave, Adaptive
Rejection Metropolis Sampling (ARMS) is applied for the generation of samples (Gilks et al. 1995).
Two factors in Equation (28) decide the probability value: The first factor drives the value of x j
to minimize the error

∑N
i=1 (yi − Hix)

2, while the second factor drives x j to follow a mixture of
K−Gammas.

Expectation Estimation for Bayesian Discriminative Disaggregation Model: The posterior
distribution of Bayesian discriminative disaggregation model is given by

P (x̄, z̄, τ̄ | ȳ, θ̄0, θ̄ ), (29)
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Fig. 4. Illustration of the use of sparse active coefficients. One day’s consumption can be constructed

with several activations of the basis functions. The lines with arrows pointing to bases denote the co-

efficients activating corresponding basis functions: . . . ,xau , . . . ,xav respectively activate basis functions

. . . , hau , . . . , hav , where v 	 M .

where θ̄0 = {ᾱ0, β̄0} are the hyperparameters and θ̄ = {H̄} is the model parameter. Samples of τ̄
could be generated with,

P (τ̄ | ȳ, z̄, x̄, H̄) = P (ȳ, z̄, x̄, τ̄ | H̄)
P (ȳ, z̄, x̄ | H̄)

∝ Gamma(τ̄ | ᾱN , β̄N )
, (30)

where ᾱN = ᾱ0 +
N
2 , β̄N = β̄0 +

1
2

∑N
i=1 (ȳi − H̄i x̄)

2. For each device d = 1, 2, . . . ,D, Equation (27)

can be used to generate samples of z(d ) , and Equation (28) can be used to generate samples of x(d ) .
Then samples of x̄ and z̄ are given by:

z̄ =
[
(z(1) )T , . . . , (z(M ) )T

]T
x̄ =

[
(x(1) )T , . . . , (x(M ) )T

]T . (31)

5.2 Compact Gibbs Sampling

Speeding up the estimation and model learning process is a priority. Suppose there are 103 days
of training data, 200 basis functions for each device, and a total of 5 devices (i.e., D = 5). Perform-
ing 500 Gibbs iterations (i.e., T = 500, which is a typical number in practice) and EM can lead to
convergence within 100 iterations, but, using a traditional Gibbs sampling algorithm, a total of
5 × 1010 samples of coefficients must be generated.
The key idea of CGS is to utilize the sparse structure of coefficients x or x̄. Taking one day’s smart

meter readings as an example, as shown in Figure 4, only a small number of coefficients are active
while others are nonactive (i.e., near-zero values). Therefore, we can concentrate on sampling over
the active coefficients while discarding the sampling process for nonactive coefficients, manually
setting their values to be near zero.
Now, the problem is to predict the “identity” of coefficients for sampling; that is, to determine

the candidates for active coefficients in advance of sampling. Without loss of generality, we can
consider the sampling over x given the observation y, model parameters θ , and other latent vari-
ables z,τ . The basis functions H = [h1, h2, . . . , hM ] are overcomplete, and few bases are necessary
for reconstructing the consumption data y ∈ RN×1. LetHa = [ha1, . . . , hav ] denote the set of basis
functions which can achieve the most accurate reconstruction of y. Note that once Ha is deter-
mined, the active coefficients can be identified at corresponding locations. Since it is difficult or
even impossible to determine the exact Ha , a superset of Ha should be identified as an alternative.
Given the consumption vector y, the qualified bases should cover at least one non-zero consump-
tion value in y, otherwise activating such a basismight increase the error: E = ‖y − Hx‖22 . Formally,
we refer to the qualified basis for y as a Candidate.
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Definition 5.1 (Candidate). Given y ∈ RN×1, hc ∈ H is considered to be a Candidate basis func-
tion for the reconstruction of y if and only if the intersection between the non-zero index of ele-
ments in hc and the non-zero index of elements in y is not empty.

Compared with the process of finding Ha , it is relatively efficient to find the candidate bases for
y. Formally, let Hc denote the set of all candidate bases for y. The relationship between Hc and Ha

is given by:

Proposition 5.2. For ∀ y ∈ RN×1, there is Ha ⊆ Hc , where Ha is the set of basis functions used

for the most accurate reconstruction, while Hc contains all the candidate basis functions for the re-

construction of y.

Proof. Let xa = [xa1,xa2, . . . ,xav ]
T denote the best coefficients used for activating the basis

functions Ha , where xaq > 0,q = 1, 2, . . . ,v . Then the multiplication of Ha and xa achieves the
best reconstruction of y. Thus, it achieves the minimal error:

E� = ‖y − Haxa ‖22 . (32)

Assume thatHa � Hc , and there is at least one basis inHa but not inHc . Without loss of generality,
let h′ ∈ Ha and h

′ � Hc , andx
′ ∈ xa denotes the activation of h′. LetH′a = Ha \ h′ and x′a = xa \ x ′.

Since x ′ ∈ xa , then x ′ > 0. Since h′ � Hc , no non-zero elements in h′ overlap with the non-zero
elements in y. Thereby, h′ · x ′ will not contribute to the construction of y, and

E = ‖y − Haxa ‖22
= ‖y − H′ax′a − h′x ′‖22
≥ ‖y − H′ax′a ‖22 + ‖h′x ′‖22

= ‖y − H′ax′a ‖22 +
N∑
i=1

(
h′ix
′)2

> ‖y − H′ax′a ‖22

. (33)

In Equation (33), the inequality introduced in progressing from Line 2 to 3 is based on the property
of l2 norm. Let r1 = y − H′ax′a and r2 = h′x ′. Two scenarios need to be considered:

—If there is no overlap between non-zero elements in r1 and r2, then the l2 norm in Line 2 can
be naturally decomposed into two parts in Line 3 and the equality holds.

—If an overlap exists between non-zero elements in r1 and r2, let Lover lap denote the overlap
locations in these two vectors. Then the elements in y at locations Lover lap are zero since
all elements in h′ at locations Lover lap are bigger than zero. At the overlap locations, the
values of r1 and r2 are all negative and their l2 norm is larger than the sum of individual l2
norms, and the inequality holds.

The inequality in Equation (33) in Line 5 is due to
∑N

i=1 (h
′
ix
′)2 > 0.

The conclusion in Equation (33) conflicts with the fact that Haxa achieves the minimal error E�

in Equation (32). Therefore, the assumption is not true and Ha ⊆ Hc . �

SinceHa ⊆ Hc , thenHc can be considered as an alternative toHa . To further reduce search times
forHc , any changes inH could be tracked in themaximization step: Only the basis functions whose
elements change from 0 to a positive value or from a positive value to zero need to be considered
for the updating of Hc . Given Hc , in each iteration only the corresponding coefficients xc need to
be sampled, and other nonactive coefficients are manually set to be near-zero values.
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5.3 The Evaluation of Predictive Density

With the learned models, it is now possible to separate each device’s consumption from the ag-
gregated value. The predictive density is:

P
(
ŷ(1), ŷ(2), . . . , ŷ(D ) | ȳ, θ̄

)
=

∫
P

(
ŷ(1), ŷ(2), . . . , ŷ(D ) | W̄, θ̄

)
P (W̄ | ȳ, θ̄ )dW̄

= EW̄ |ȳ
⎡⎢⎢⎢⎢⎣
D∏
d=1

P (ŷ(d ) | W̄, θ̄ )
⎤⎥⎥⎥⎥⎦

. (34)

Standard sampling methods can be used to achieve the expectation of
∏D

d=1 P (ŷ
(d ) | W̄, θ̄ ) over

the posterior distribution. Suppose there is a series of samples W̄(s+1), W̄(s+2), . . . , W̄(T ) (the first s
number of samples have been discarded to remove the effect of initialization), then the following
equation can be evaluated

P
(
ŷ(1), ŷ(2), . . . , ŷ(D ) | ȳ

)
�

D∏
d=1

⎡⎢⎢⎢⎢⎣ 1

T − s
T∑

t=s+1

P
(
ŷ(d ) | W̄(t ), θ̄

)⎤⎥⎥⎥⎥⎦
=

D∏
d=1

⎡⎢⎢⎢⎢⎣ 1

T − s
T∑

t=s+1

N∏
i=1

N
(
ŷ (d )
i | H̄(d )

i x̄(d,t ), τ̄ (t )
)⎤⎥⎥⎥⎥⎦
. (35)

The mode of ŷ (d )
i is given by

ŷ (d )
i =

1

T − s
T∑

t=s+1

H̄
(d )
i x̄(d,t ) . (36)

6 EMPIRICAL RESULTS

Comprehensive experiments on VM were conducted to evaluate the disaggregation performance.
Section 6.1 introduces the experimental design and setup. Section 6.2 evaluates the scalability using
synthetic datasets of various sizes. In Section 6.3, an in-depth evaluation of VM’s effectiveness is
performed at both the whole-home and device levels using a large scale real-world dataset. A
discussion of how best to provide feedback to support consumers’ water conservation efforts is
presented in Section 6.4.

6.1 Dataset and Setup

Dataset: A real-world dataset was collected by Aquacraft (Mayer et al. 1999), consisting of
1,959,817 water use events recorded during a two-year study from 1,188 households across 12
study sites, including Boulder, Denver, Eugene, Seattle, San Diego, Tampa, Phoenix, Tempe and
Scottsdale, Waterloo and Cambridge, Walnut Valley WD, Las Virgenes MWD, and Lompoc. Each
device was labeled with one of 17 categories, and five main device types were considered in the
experiments: Faucet, Dishwasher, Toilet, Shower, and Clothes Washer. This large scale dataset
provides more than 30,000 days’ label data for the evaluation task, and two strategies3 have been
utilized to assess the disaggregation performance: (i) Homogeneous evaluation is employed to
verify the effectiveness and uses the same household data for both training and testing, and
(ii) heterogeneous evaluation is applied to validate the extensibility, which trains models us-
ing some household data and tests on previously unseen households. Since the widely deployed
smart meters report at a low sample rate (Chen et al. 2011), the event records were generalized
into time series with a sample rate of 1/900 Hz.

3Detailed settings for Homogeneous and Heterogeneous evaluations are provided in Section 6.3.
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Baselines: The two proposed models, Virtual Metering with CGS (VM-CGS) and Virtual Meter-
ing with Gibbs Sampling (VM-GS),4 were compared with the following set of baselines. The first is
Bayesian Sparse Coding with Mixture-of-Gammas (BSC-MoG), where the inference is performed
based on Gibbs sampling, and no shape features are customized. The second baseline is Discrimi-
native Disaggregation Sparse Coding (DDSC) (Kolter et al. 2010) with Shape Features (SF) (Wang
et al. 2012); that is, DDSC+SF, which uses shape features to help the learning of DDSC’s basis
functions. An approach combining DDSC with its extensions Total Consumption Priors (TCP)
and Group Lasso (GL) (i.e., DDSC+TCP+GL) is the third baseline. DDSC is also considered in its
own right as a standalone baseline. Another baseline used for comparison is the Factorial Hid-
den Markov Model (FHMM) (Kim et al. 2011). We also evaluate the performance of general deep
learning models by creating fully connected (FC) neural networks with typical norm constraints
(l1, l2). FC-dense is referred to as fully connected neural networks without any constraint. FC-l1 is
actually sparse coding using deep learning (Singh et al. 2016). All tests ran on an Intel i7-2760QM
and Nvidia GTX 1070.

Evaluation Metrics: Both whole-home and device-level evaluation metrics are inspected, and
the whole-home level disaggregation capability is measured utilizing Accuracy (Kolter et al. 2010)
and Normalized Disaggregation Error (NDE) (Kolter and Jaakkola 2012): Accuracy evaluates the
total-day accuracy of the estimation methods, while NDE measures how well the models separate
individual devices’ consumption from the aggregated consumption

Accuracy =

∑
d,p min

(���y(d )·,p ���1, ���ŷ(d )·,p ���1)∑
i,p (ȳ)i,p

(37)

NDE =

√√√√√√∑
d,p

���
���y(d )·,p − ŷ(d )·,p ���22���y(d )·,p ���22

����, (38)

where ŷ
(d )
·,p is the estimated consumption for device d at the pth day.

With respect to device-level evaluation, the quantitative precision, recall, and F-measure are
applied: The precision is the fraction of disaggregated consumption that is correctly separated,
recall is the fraction of true device level consumption that is successfully separated, and the F-

measure for device d is: F (d ) = 2 × Precision(d )×Recall(d )
Precision(d )+Recall(d ) , where

Precision(d ) =

∑
i,p min

(
y (d )
i,p , ŷ

(d )
i,p

)
∑
p,i ŷ

(d )
i,p

(39)

Recall(d ) =

∑
i,p min

(
y (d )
i,p , ŷ

(d )
i,p

)
∑
p,i y

(d )
i,p

, (40)

where ŷ (d )
i,p is the estimated consumption for deviced at the ith interval in thepth day. Additionally,

the average F-measure is used to evaluate the models’ overall disaggregation performance: AF =
1
D

∑D
d=1 F (d ).

4The basis functions of VM-CGS and VM-GS are initialized with the help of Shape Features (SF), which was proposed in

our preliminary work (Wang et al. 2012).
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Table 1. Scalable Evaluations of Disaggregation Methods on Synthetic Data for Time Periods

Varying from 50 to 1,000 Days

Methods
Days

50 100 400 800 1000
0.4625±0.0168 0.5060±0.0178 0.5965±0.0545 0.6295±0.0535 0.6532±0.0557

VM-CGS 0.7511±0.0851 0.7895±0.0354 0.8561±0.0811 0.8971±0.0135 0.9084±0.0524
0.7610±0.0556 0.7246±0.0659 0.6491±0.0515 0.6062±0.0295 0.5925±0.0301
0.4902 ±0.0839 0.5013±0.0711 0.6060±0.0133 0.6465±0.0871 0.6709±0.0345

VM-GS 0.7866±0.0566 0.7807±0.0218 0.8515±0.0520 0.8937±0.0283 0.9158±0.0393
0.7589±0.0407 0.7167±0.0343 0.6205±0.0373 0.6015±0.0340 0.5872±0.0413
0.2790±0.0255 0.3597±0.0343 0.4893±0.0192 0.4925±0.0575 0.5621±0.0619

BSC-MoG 0.6354±0.0317 0.7071±0.0635 0.7821±0.0648 0.7977±0.0243 0.8172±0.0357
0.8346±0.0468 0.7864±0.0941 0.6967±0.0435 0.6861±0.0864 0.6429±0.0542
0.2747±0.0581 0.3235±0.0481 0.4389±0.0291 0.4704±0.0640 0.5167±0.0679

DDSC+SF 0.6050±0.0512 0.6702±0.0376 0.7467±0.0171 0.7551±0.0115 0.7866±0.0115
0.8702±0.0541 0.8209±0.0650 0.7593±0.0720 0.7289±0.0805 0.7091±0.0273
0.1515±0.0895 0.2186±0.0711 0.3421±0.0844 0.3858±0.0865 0.4187±0.0652

DDSC+TCP+GL 0.4804±0.0472 0.5856±0.0333 0.6916±0.0278 0.7218±0.0217 0.7542±0.0481
0.9110±0.0850 0.8674±0.0730 0.7839±0.0401 0.7579±0.0401 0.7289±0.0617
0.1268±0.0931 0.2063±0.0264 0.2621±0.0275 0.3261±0.0753 0.3711±0.0357

DDSC 0.4408±0.0258 0.5523±0.0590 0.6544±0.0417 0.6739±0.0271 0.7154±0.0568
0.9271±0.1080 0.8867±0.0692 0.7923±0.0579 0.7631±0.0401 0.7287±0.0097
0.2843±0.0791 0.3331±0.0694 0.4277±0.0313 0.4641±0.0544 0.4801±0.0484

FHMM 0.5804±0.0631 0.6324±0.0632 0.7289±0.0396 0.7313±0.0235 0.7619±0.0135
0.8729±0.0737 0.8134±0.0564 0.7338±0.0589 0.7128±0.0576 0.6784±0.0160
0.7167±0.0438 0.7280±0.0432 0.7627±0.0045 0.7634±0.0029 0.7601±0.0025

FC-l1 0.8065±0.0533 0.8052±0.0530 0.8276±0.0027 0.8275±0.0018 0.8273±0.0011
0.6350±0.0222 0.5624±0.0176 0.4804±0.0103 0.4792±0.0109 0.5032±0.0140
0.7064±0.0419 0.7397±0.0405 0.7652±0.0236 0.7676±0.0049 0.7569±0.0039

FC-l2 0.7995±0.0626 0.8138±0.0472 0.8165±0.0293 0.8295±0.0025 0.8333±0.0061
0.5659±0.0772 0.4828±0.0825 0.4144±0.0664 0.4295±0.0508 0.4848±0.0224
0.6748±0.0665 0.7056±0.0645 0.7582±0.0348 0.7611±0.0215 0.7569±0.0189

FC-dense 0.8151±0.0613 0.8265±0.0465 0.8205±0.0266 0.8311±0.0063 0.8300±0.0107
0.6049±0.0846 0.5491±0.1158 0.4357±0.0856 0.4493±0.0689 0.4746±0.0538

For each size of data, 10-fold cross-validation was applied and the mean±std of Avg. F-measure, Accuracy, and NDE are

reported, where each metric occupies one line. Bold entries denote the best performance values.

6.2 Scalable Evaluation with Synthetic Data

Various sizes of synthetic data were generated (the detailed generation process is shown in B) and
then used to evaluate the scalability of the proposed models (VM-CGS and VM-GS), reporting both
the whole-home level performance and their comparisons with the baselines. All themethods were
evaluated using the synthetic datasets, varying from 50 to 1,000 days. For each data size, 10-fold
cross-validation is applied and the mean±std of Avg. F-measure, Accuracy, and NDE are shown in
Table 1. The performance of our proposed models was better than that of the baselines for every
data size. The performance of all the methods increased with the data size from 50 to 1,000 days,
and there is a relatively large performance gap from 100 to 400 days. Regardless of the data size,
VM-CGS proved to be capable of achieving nearly the same results as VM-GS, thus validating the
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Fig. 5. Relative computation speeds achieved by VM-CGS compared to VM-GS for both simulated and real-

world datasets (from left to right): Simulation data with 50 days, 100 days, 400 days, 800 days, and 1,000 days

duration; homogeneous and heterogeneous evaluations with real data.

effectiveness and correctness of the proposed CGS sampling method. In comparison to BSC-MoG,
VM-CGS exhibited better performances for Avg. F-measure (from 9% to 18%), Accuracy (from 7% to
12%), and NDE (from 5% to 8%), while DDSC+SF outperformed DDSC with respect to all the three
metrics. These gains can be attributed to the customizations of basis functions with the help of
shape features. BSC-MoG achieved higher Avg. F-measure, Accuracy, and lower NDE than DDSC,
verifying that the choice of Mixture-of-Gammas was a suitable prior for the sparse coefficients.
Comparing DDSC+TCP+GL with DDSC, the TCP and GL extensions played only a small part
in performance enhancement. Also, FHMM achieved similar results to DDSC+SF. Deep models
performed better than the other methods, especially when data are smaller. As data size increased,
our proposed method significantly outperformed FC group in terms of accuracy: VM-CGS (0.8971)
improved FC-l2 (0.8295) by 7% under days = 800; while VM-GS (0.9158) is 7% better than FC-dense
(0.83), which is second best.
Our summary of the computation speeds achieved for the five different-sized groups of data are

shown as the first five bars (from Simulation_50 to Simulation_1000) in Figure 5. Each bar shows
the speedup of VM-CGS relative to VM-GS, and the consistent advantage enjoyed by VM-CGS
(speedup factors from 3.1 to 5.1) clearly demonstrates that CGS considerably reduced the time
required for model learning.

6.3 Water Disaggregation Using Large-scale Real World Data

To assess the disaggregation performance, the proposed models and the baselines were evaluated
using two different procedures: homogeneous and heterogeneous evaluations. In the homoge-

neous evaluation, the performance was evaluated using a 10-fold cross-validation for each home:
The water use events were divided for each home randomly into 10 approximately equal-sized
groups; the preceding methods were trained on the combined data from nine of these groups and
then tested on the group of data withheld; this was repeated, withholding each of the 10 groups
in turn; and the average performance over all homes was reported. In the heterogeneous eval-
uation, to simulate a more practical and realistic situation, a 10-fold cross-validation was used
across homes: All the homes were randomly divided into 10 approximately equal-sized groups
and the models were trained on the combined data from nine of these groups, then the data for the
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Fig. 6. A mixture of two Gammas prior and smoothed posterior of Shower’s coefficients. Left:Whole view of

prior versus posterior. Both prior and posterior have two peaks: A large peak near zero indicates the sparse

structure of the activations, and the small peak near 15 indicates a cluster of active coefficients. Right:

Close-up of the area near the small peak showing the comparison of the prior and posterior.

Fig. 7. Amixture of twoGammas prior and smoothed posterior of ClothesWasher’s coefficients. Left:Whole

view of prior versus posterior. Both prior and posterior have two peaks: A large peak near zero indicates the

sparse structure of the activations, and the small peak near 28 indicates a cluster of active coefficients.Right:

Close-up of the area near the small peak showing the comparison of the prior and posterior.

previously unseen group of homes were used for testing. This process was repeated, withholding
the data for each of the 10 groups in turn, and the average performance was reported.
Before beginning the discussion of the disaggregation performance, let us first examine the

coefficients’ posterior distribution learned with VM-CGS under the setting of heterogeneous
evaluations. The prior versus posterior for Shower andWasher are shown in Figure 6 and Figure 7,
respectively. (The prior versus posterior for the other three devices are shown in B.2). The left part
in Figures 6 and 7 shows thewhole view of the prior versus posterior: In each case, the posterior had
a large peak near zero, capturing the sparse nonactive coefficients’ distribution. As these figures
show, Mixture-of-Gammas prior was capable of capturing the large peak near zero, indicating that
the customized prior was indeed effective in deriving the sparse coefficients. The small peaks in
Figures 6 and 7 were used for fitting the distribution of active coefficients. The right parts of these
two figures show close-ups comparing the shapes of the prior versus posterior for each, zooming
in on the local region near the small peaks: The Mixture-of-Gammas prior generally captured the
posterior well in spite of minor shift in the peak position and a small change in the peak scale.
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Table 2. Disaggregation Results for Homogeneous Evaluations

Methods
Devices

Faucet Dishwasher Toilet Shower Clothes Washer
0.6159±0.1087 0.3632±0.0573 0.6802±0.0611 0.7065±0.0820 0.7352±0.1220

VM-CGS 0.5023±0.0311 0.5517±0.0974 0.5712±0.0859 0.5925±0.0866 0.7761±0.0813
0.5489±0.0345 0.4335±0.0414 0.6151±0.0238 0.6443±0.0852 0.7525±0.0937
0.6187±0.0993 0.3816±0.0266 0.6908±0.0730 0.6946±0.1024 0.7663±0.1035

VM-GS 0.5138±0.0332 0.5494±0.0617 0.5516±0.1145 0.5752±0.0681 0.7856±0.0693
0.5574±0.0326 0.4483±0.0171 0.6035±0.0446 0.6292±0.0828 0.7740±0.0782
0.4496±0.1292 0.2121±0.0462 0.4581±0.0506 0.6493±0.0852 0.6466±0.1273

BSC-MoG 0.4680±0.0252 0.4018±0.0526 0.4419±0.1069 0.5304±0.0556 0.7277±0.0661
0.4522±0.0741 0.2743±0.0356 0.4468±0.0733 0.5819±0.0558 0.6823±0.0952
0.4236±0.0736 0.1555±0.0130 0.4958±0.1072 0.6851±0.0980 0.6230±0.0790

DDSC+SF 0.3268±0.1788 0.4728±0.0914 0.6092±0.0934 0.5185±0.1345 0.4847±0.0728
0.3347±0.1208 0.2324±0.0018 0.5363±0.0385 0.5756±0.0432 0.5451±0.0760
0.2686±0.0567 0.1217±0.0440 0.4995±0.0787 0.3753±0.0776 0.3887±0.0674

DDSC+TCP+GL 0.5472±0.0738 0.3064±0.0335 0.2317±0.0414 0.5472±0.0738 0.3682±0.0973
0.3570±0.0559 0.1722±0.0475 0.3142±0.0421 0.4370±0.0269 0.3750±0.0778
0.2614±0.0582 0.1152±0.0522 0.4603±0.1303 0.3613±0.1213 0.3572±0.0940

DDSC 0.4572±0.1351 0.2764±0.0456 0.2095±0.0788 0.6313±0.0718 0.4394±0.0568
0.3187±0.0057 0.1557±0.0451 0.2759±0.0778 0.4563±0.1153 0.3890±0.0633
0.3626±0.1008 0.1953±0.0768 0.4256±0.0181 0.4808±0.1486 0.5619±0.1157

FHMM 0.4720±0.0543 0.4865±0.0687 0.6646±0.0711 0.2828±0.0593 0.4002±0.1122
0.4001±0.0551 0.2720±0.0850 0.5185±0.0342 0.3547±0.0869 0.4663±0.1148
0.8137±0.0170 0.0683±0.1043 0.8466±0.0154 0.7282±0.0090 0.4331±0.0005

FC-l1 0.7249±0.0239 0.0061±0.0093 0.6673±0.0280 0.3691±0.0191 0.0617±0.0083
0.7662±0.0061 nan±nan 0.7457±0.0120 0.4894±0.0148 0.1078±0.0125
0.8396±0.0291 0.0341±0.0812 0.8642±0.0213 0.7349±0.0094 0.4332±0.0007

FC-l2 0.6734±0.0568 0.0030±0.0072 0.6206±0.0530 0.3312±0.0412 0.0536±0.0104
0.7448±0.0240 nan±nan 0.7203±0.0286 0.4548±0.0373 0.0950±0.0161
0.8496±0.0375 0.0455±0.0910 0.8699±0.0313 0.7407±0.0132 0.4337±0.0008

FC-dense 0.6522±0.0763 0.0038±0.0077 0.6097±0.0733 0.3118±0.0596 0.0464±0.0154
0.7332±0.0363 nan±nan 0.7127±0.0400 0.4348±0.0585 0.0830±0.0254

Ten-fold cross-validation was applied for each home, and the mean±std of precision, recall, and F-measure are reported,

where each metric occupies one line. The bold entries denote the best F-measure.

Homogeneous Evaluation Results: The device and whole-home level evaluation results under
the homogeneous setting are shown in Table 2 and Figure 8, respectively. At the device level, VM-
CGS was capable of achieving similar results to those obtained using VM-GS regarding qualitative
Precision, Recall, and F-measure, proving that CGS could indeed generate samples that were as
good as Gibbs sampling (GS). VM-CGS provided better performance than BSC-MoG, with 6% to
22% improvements in Precision, 3% to 15% improvements in Recall, and 6% to 17% improvements in
F-measure.Meanwhile, DDSC+SF outperformedDDSC. These findings indicate that shape features
were helpful for improving performance. The fact that BSC-MoG achieved higher Precision, Recall,
and F-measure thanDDSC showed that theMixture-of-Gamma priorwas once again a good choice.
TCP and GL were of little significance in performance enhancement since the performance of
DDSC+TCP+GL was similar to that of DDSC. Although FHMM could achieve acceptable results,
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Fig. 8. Whole-home level performance report for homogeneous evaluations: 10-fold cross-validation was

applied and the mean±std of Avg. F-measure, Accuracy, and NDE are plotted as bars.

very similar to those produced by DDSC+SF. At the whole-home level, as expected, the values of
Avg. F-measure, Accuracy, and NDE achieved by VM-CGS were almost the same as those achieved
by VM-GS. Employing shape features enabled VM-CGS and DDSC+SF to outperform BSC-MoG
and DDSC, respectively. The function of Mixture-of-Gammas prior allowed BSC-MoG to produce
higher Avg. F-measure and Accuracy, and lower NDE than DDSC. DDSC+TCP+GL exhibited a
similar performance to DDSC, while FHMMhad a similar performance to DDSC+SF. The FC group
dominated the performance on Faucet and Toilet. However, it performed extremely badly with
Dishwasher and Clothes Washer. This is because the distributions for Dishwasher and Clothes
washer are different from the others, as shown in Figure 9. The distributions of Faucet and Toilet
were smooth, while that of Clothes Washer and Dish Washer were not smooth. Although deep
learning enjoys the advantage of neural networks that can model hidden functions, non-smooth
function poses a challenge to deep modeling.

Heterogeneous Evaluation Results: The device and whole-home level evaluation results are
shown in Table 3 and Figure 10, respectively. With respect to the device-level performance, there
was little difference between the performance of VM-CGS and VM-GS, which confirmed that CGS
was as effective as GS. Table 3 also demonstrates that VM-CGS and DDSC+SF, respectively, im-
proved the device-level performance of BSC-MoG and DDSC with respect to precision, recall, and
F-measure, illustrating the effectiveness of shape features in the learning of models. BSC-MoG
outperformed DDSC, validating the decision to use Mixture-of-Gammas for the learning of co-
efficients. The performance of DDSC+TCP+GL was similar to that of DDSC, demonstrating that
TCP and GL contributed little to performance improvement. FHMM provided barely satisfactory
performance, similar to that of DDSC+SF. For the whole-home level performance evaluation re-
sults, the performance of VM-CGS was almost equivalent to that of VM-GS with respect to Avg.
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Fig. 9. Distributions difference among Clothes Washer, Dish Washer, Faucet, and Toilet.

F-measure, Accuracy, and NDE. By using shape features, VM-CGS and DDSC+SF, respectively,
outperformed BSC-MoG and DDSC. Comparing the results for BSC-MoG and DDSC in terms of
Avg. F-measure, Accuracy, and NDE confirmed that Mixture-of-Gammas prior was indeed a cor-
rect choice for modeling the coefficients’ distribution. As the data presented in the table shows,
DDSC performed as well as DDSC+TCP+GL and FHMM performed as well as DDSC+SF. Similar
to its performance on homogenous data, the FC group performed best on the Faucet and Toilet
evaluation, but the performance dramatically declined at Dishwasher and Clothes Washer.

Cross-Comparisons: Moving on to the results of the comparison between the homogeneous

results in Table 2 and the heterogeneous results in Table 3, both VM-CGS and VM-GS signifi-
cantly outperformed the baseline methods in terms of qualitative precision, recall, and F-measure.
As expected, the performance of all the methods in the homogeneous evaluations is much better
than that of their corresponding heterogeneous evaluations, although both VM-CGS and VM-GS
still achieved acceptable disaggregation results for the heterogeneous case. For both the homoge-
neous and heterogeneous cases, the baselines, especially DDSC, and DDSC+TCP+GL, performed
particularly poorly on the estimation of Dishwasher’s consumption, largely due to the difficulty in
distinguishing the Dishwasher’s consumption from the aggregated value without considering the
shape features or the customization of coefficients’ prior distribution. Mixture-of-Gamma greatly
improved the model performance, illustrating the importance of proper priors for the learning of
coefficients’ representation. As shown in both Figure 8 and Figure 10, the overall performance of
VM-CGS was comparable with that of VM-GS, and both considerately outperformed the baselines
with respect to Avg. F-measure, Accuracy, and NDE. For all methods, the performance decreased
markedly when changing from homogeneous to heterogeneous evaluations.
The greater computational speed achieved by VM-CGS over VM-GS for both homogeneous and

heterogeneous evaluations are respectively illustrated by the last two bars in Figure 5; the height
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Table 3. Disaggregation Results for Heterogeneous Evaluations

Methods
Devices

Faucet Dishwasher Toilet Shower Clothes Washer
0.4679±0.0807 0.2372±0.0686 0.6258±0.0710 0.5408±0.1194 0.5836±0.0573

VM-CGS 0.3999±0.0882 0.3900±0.1244 0.4962±0.0222 0.4185±0.0513 0.7150±0.0587
0.4211±0.0176 0.2837±0.0659 0.5514±0.0200 0.4667±0.0543 0.6393±0.0107
0.4524±0.0863 0.2541±0.0871 0.6469±0.0404 0.5740±0.1360 0.6184±0.0590

VM-GS 0.3902±0.0965 0.4193±0.0790 0.4425±0.0759 0.4362±0.0823 0.7566±0.1034
0.4090±0.0374 0.3069±0.0687 0.5208±0.0437 0.4853±0.0702 0.6773±0.0566
0.3062±0.0913 0.2063±0.0800 0.3264±0.0742 0.4779±0.0732 0.4847±0.0983

BSC-MoG 0.2932±0.0855 0.3015±0.0828 0.3454±0.0517 0.3725±0.0565 0.4082±0.0398
0.2822±0.0290 0.2314±0.0484 0.3353±0.0636 0.4183±0.0613 0.4414±0.0615
0.2997±0.0413 0.1411±0.0334 0.3494±0.0310 0.5185±0.1345 0.5099±0.0323

DDSC+SF 0.2435±0.1505 0.3749±0.0714 0.4299±0.0633 0.3956±0.0916 0.2719±0.0467
0.2462±0.0711 0.2049±0.0459 0.3821±0.0177 0.4362±0.0433 0.3536±0.0452
0.1917±0.0205 0.1125±0.0081 0.1987±0.0266 0.3024±0.0549 0.2927±0.0461

DDSC+TCP+GL 0.2807±0.1444 0.1717±0.0269 0.1716±0.0851 0.4592±0.1321 0.2500±0.1240
0.2192±0.0460 0.1357±0.0140 0.1802±0.0590 0.3551±0.0473 0.2583±0.0863
0.2100±0.0315 0.1110±0.0064 0.1877±0.0327 0.3011±0.0817 0.2782±0.0521

DDSC 0.2299±0.1974 0.1280±0.0472 0.1564±0.0688 0.5658±0.1811 0.3300±0.1465
0.1901±0.0839 0.1158±0.0160 0.1651±0.0407 0.3719±0.0258 0.2936±0.0865
0.3446±0.0320 0.1291±0.0199 0.3863±0.0723 0.2344±0.0233 0.4952±0.1264

FHMM 0.4601±0.0284 0.4623±0.0527 0.4256±0.0181 0.1649±0.0741 0.2252±0.1540
0.3927±0.0133 0.2003±0.0209 0.4025±0.0373 0.1887±0.0520 0.3019±0.1658
0.7999±0.0169 0.0000±0.0000 0.8295±0.0149 0.7120±0.0107 0.4412±0.0009

FC-l1 0.7163±0.0250 0.0000±0.0000 0.6575±0.0235 0.3743±0.0222 0.0759±0.0096
0.7552±0.0073 nan±nan 0.7331±0.0092 0.4901±0.0172 0.1293±0.0142
0.8320±0.0346 0.0000±0.0000 0.8538±0.0269 0.7256±0.0160 0.4421±0.0011

FC-l2 0.6536±0.0658 0.0000±0.0000 0.6041±0.0569 0.3252±0.0523 0.0606±0.0171
0.7285±0.0277 nan±nan 0.7049±0.0298 0.4459±0.0466 0.1057±0.0262
0.8553±0.0439 0.0000±0.0000 0.8712±0.0333 0.7327±0.0166 0.4425±0.0011

FC-dense 0.5904±0.1089 0.0000±0.0000 0.5466±0.0977 0.2847±0.0727 0.0500±0.0206
0.6891±0.0655 nan±nan 0.6642±0.0673 0.4038±0.0727 0.0885±0.0327

Ten-fold cross-validation was applied, and the mean±std of precision, recall, and F-measure are reported, where each

metric occupies one line. The bold entries denote the best F-measure.

of each bar shows the factor by which the average running time of VM-CGS is faster than that of
VM-GS, indicating that the speed advantage of the heterogeneous evaluations was slightly better
than that of the homogeneous evaluations, while VM-CGS achieved a consistent 4.4× to 4.7×
improvement in speed, which was nontrivial for large real-world computations.

6.4 Water Conservation Based on Detailed Feedback

The eventual goal of water disaggregation efforts is to provide feedback to consumers to support
theirwater conservation. VM-CGS could therefore be applied to estimate device-level consumption
and provide detailed usage information to consumers.
Figure 11 illustrates the daily actual and VM-CGS’s estimated consumption for an example test

home under heterogeneous evaluation conditions. With respect to the Aggregated Consumption,
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Fig. 10. Whole-home level performance report for heterogeneous evaluations: Ten-fold cross-validation

was applied and the mean±std of Avg. F-measure, Accuracy, and NDE are plotted as bars.

VM-CGS captured most of the consumptions correctly. Despite some instances of underestimation
or overestimation, the consumption of three devices, Toilet, Shower, and Clothes Washer, were all
estimated fairly accurately. However, VM-CGS had problems estimating some device consumption
precisely. For example, it failed to detect Faucet’s usage at some points and severely overestimated
Dishwasher’s consumption during some intervals. Another incorrectly detected disaggregation
case was that during the interval from 16:30 to 17:15, some of Shower’s consumption was mis-
disaggregated and attributed to one of the other three devices’ usage, while Faucet was overesti-
mated at interval 16:30 and underestimated at interval 16:45. Although these instances of poor es-
timation cases decreased the model’s performance, the estimated time series were still informative
and provided useful device-level consumption patterns that could be used to inform water-saving
actions.
Figure 12 shows the total actual and VM-CGS’s estimated consumption percentages for all

the test homes in the heterogeneous evaluations. VM-CGS correctly identified individual de-
vices’ percentage usage information, in spite of some overestimations for Dishwasher and Clothes
Washer and slight underestimations on Faucet, Toilet, and Shower. In response to such informa-
tion, effective measures can be taken for conservation, such as choosing a water-efficient shower
head or buying a water-saving washing machine.

6.5 Discussion

The preceding experimental results demonstrate that VM-CGS and VM-GS significantly outper-
formed the baselines for the task of water disaggregation under both homogeneous and hetero-
geneous settings. The disaggregation performance of VM-CGS was similar to that of VM-GS, but
VM-CGS achieved greater computational speed over VM-GS. The experimental results verified
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Fig. 11. Illustration of Actual Consumption (Actual Con.) and VM-CGS’s Estimated Consumption (Esti-

mated Con.) for an example home for one 24-hour period, in units of Gallons.

Fig. 12. Total water consumption percentages for the test homes under the heterogeneous setting.

four observations: (i) Appropriate prior selection: The utilization of appropriate priors for the
activations is of significant importance in learning effective models for disaggregation. With the
benefits of Mixture-of-Gammas prior, more accurate activation distributions could be captured,
thus enabling the performance achieved by VM-CGS and BSC-MoG to be better than that of
DDSC+SF and DDSC, respectively. (ii) Bayesian discriminative learning: Given the aggregated
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data, learning discriminative features for disaggregation is of critical importance. By holding
the time/home invariant features (i.e., distributions of coefficients) fixed, Bayesian discriminative
learning is designed to adapt the basis functions to the aggregated consumption for enhancing
disaggregation performance. Comparing the results for BSC-MoG and DDSC regarding Avg.
F-measure, Accuracy, and NDE validated that Bayesian discriminative learning model can achieve
better results than the conventional discriminative model. (iii) Efficient inference process:When
processing large datasets, such as the simulated and real-world datasets used in the experiments,
Gibbs sampling will incur high computational costs, and speeding up model learning process is
a priority. By utilizing the sparse structures of the coefficients, CGS is developed to accelerate
the inference process. The comparisons between VM-CGS and VM-GS confirmed that CGS could
draw equivalent samples to those of conventional Gibbs sampling but require substantially fewer
operations.

7 CONCLUSION

This article presents a sparse coding-based statistical framework for low-sampling-rate water dis-
aggregation. By applyingMixture-of-Gammas as the prior distribution of coefficients, both sparse-
ness and non-negativeness can be inherently guaranteed, and the distribution of both active and
nonactive coefficients can also be captured. Bayesian modeling of the discriminative structure is a
great enhancement of disaggregation performance. The CGS method developed for the fast learn-
ing of VM has been experimentally validated to be both effective and efficient. Using large-scale
synthetic and real datasets, our experimental results showed that VM significantly outperformed
baselines at both the whole-home and device levels.

APPENDIXES

A SHOWCASE OF DISAGGREGATION VIA SPARSE CODING

The disaggregation process estimates device-level consumption from aggregated consumption.
Figure 13 shows an example of real data observation sequences, where devices’ true consumption
curves are the perfect disaggregation results. With the fixture-level consumption data, we can
use sparse coding to learn the dictionaries for each device, which can achieve minimal reconstruc-
tion errors for the corresponding device. For example, the dictionary of Faucet can reconstruct
the consumption of Faucet better than the dictionaries learned for other devices. By combining
the learning dictionaries, we can optimize the objective function of sparse coding to attain the
coefficients for each device. Then, the consumption of devices can be estimated by multiplying
the devices’ dictionary with the corresponding coefficients. The ultimate goal is to make devices’
estimated consumption as close to the true consumption as possible.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 The Generation of a Representative Synthetic Dataset

The goal here is to design a data generator to produce a representative synthetic dataset with a
sampling rate of 1/900 Hz. The generator consists of three components: event dictionary construc-
tion, frequency pattern learning, and data generation.
(1) Event dictionary construction: Five water events (corresponding to five water devices)

are considered: Faucet, Dishwasher, Toilet, Shower, and Clothes Washer. The event dictionary was
built based on the real-world dataset, where each event type pointed to a set of event records for
this particular event type.
(2) Learning frequency patterns: The daily and interval frequency of events was statisti-

cally calculated, where daily frequency was the number of events that happen in one day while
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Fig. 13. Example real data observation sequences for the water disaggregation experiments.

Table 4. Statistically Estimated Parameters for Poisson Distribution,

Where λ Was the Expected Value of Daily Frequency

Parameter

Event Type

Faucet Dishwasher Toilet Shower Clothes Washer
λ 42.0856 1.0784 12.9203 2.3668 2.1761

interval frequency was the number of events starting from the corresponding interval. Based on
the assumption that daily frequency of events followed a Poisson distribution, the data were used
to fit a Poisson distribution with a maximum-likelihood estimation, and the estimated parameters
of all events are shown in Table 4. The Cumulative Distribution Function (CDF) of the interval
frequency was estimated with a kernel density function, and the PDFs and CDFs of events are
respectively illustrated in Figure 14 and Figure 15.

(3)Data generation:The datawere generated day by day. For each day, the Poisson distribution,
which was trained with daily frequency, was first used to sample the number of events for one
day. Then with the CDFs learned with the starting interval frequency, the starting intervals of the
events were sampled for a particular day. Finally, the event records were randomly selected from
the event dictionary. Using this procedure, the simulation data were generated for 50, 100, 400,
800, and 1,000 days to perform scalable evaluations.
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Fig. 14. CDFs of events’ starting interval.

Fig. 15. PDFs of events’ starting interval.
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Figure 14 shows the CDFs of the starting interval for the five devices, while the correspond-
ing Probability Density Functions (PDFs) are shown in Figure 15. Checking the CDF and PDF of
Faucet, we speculate that people use more Faucets before/after breakfast (07:00–09:00) or before/
after dinner (17:30–20:00). For Dishwasher, we observe that it is used more frequently in the
evening (18:00−20:00), and indicates that people like to wash dishes after dinner. With respect
to Toilet, as expected, more Toilets are used before/after getting up (07:00−09:00). The patterns of
Shower are the most distinctive: People take a Shower in the morning (06:00−08:00) or evening
(19:00−21:00). Based on the observation of Clothes Washer, we find that morning (but not that
obviously) is preferred by people for washing clothes.

B.2 Prior versus Posterior over Heterogeneous Evaluations

The results of prior versus posterior for devices Faucet, Dishwasher, and Toilet are respectively
shown in Figures 16, 17, and 18. All of them illustrate that theMixture-of-Gamma prior is capable of
capturing the large peak for the nonactive coefficients and the small peak for the active coefficients.

Fig. 16. A mixture of two Gammas prior and smoothed posterior of Faucet’s coefficients. Left: Whole view

of prior versus posterior. Both prior and posterior have two peaks: A large peak near zero indicates the

sparse structure of the activations, and the small peak near 1 indicates a cluster of active coefficients. Right:

Close-up of the area near the small peak showing the comparison of the prior and posterior.

Fig. 17. A mixture of two Gammas prior and smoothed posterior of Dishwasher’s coefficients. Left: Whole

view of prior versus posterior. Both prior and posterior have two peaks: A large peak near zero indicates

the sparse structure of the activations, and the small peak near 1.5 indicates a cluster of active coefficients.

Right: Close-up of the area near the small peak showing the comparison of the prior and posterior.
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Fig. 18. A mixture of two Gammas prior and smoothed posterior of Toilet’s coefficients. Left:Whole view of

prior versus posterior. Both prior and posterior have two peaks: A large peak near zero indicates the sparse

structure of the activations, and the small peak near 2 indicates a cluster of active coefficients. Right: Close-

up of the area near the small peak showing the comparison of the prior and posterior.
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