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Abstract
Spatio‐temporal clustering is a highly active research topic 
and a challenging issue in spatio‐temporal data mining. Many 
spatio‐temporal clustering methods have been designed for 
geo‐referenced time series. Under some special circum‐
stances, such as monitoring traffic flow on roads, existing 
methods cannot handle the temporally dynamic and spatially 
heterogeneous correlations among road segments when de‐
tecting clusters. Therefore, this article develops a spatio‐
temporal flow‐based approach to detect clusters in traffic 
networks. First, a spatio‐temporal flow process is modeled 
by combining network topology relations with real‐time traf‐
fic status. On this basis, spatio‐temporal neighborhoods are 
captured by considering traffic time‐series similarity in spa‐
tio‐temporal flows. Spatio‐temporal clusters are further 
formed by successive connection of spatio‐temporal neigh‐
bors. Experiments on traffic time series of central London's 
road network on both weekdays and weekends are per‐
formed to demonstrate the effectiveness and practicality of 
the proposed method.

1  | INTRODUCTION

With the rapid development of earth observation technology and the wide usage of sensors, enormous amounts 
of spatio‐temporal data have been collected in recent years. How to adequately and rigorously discover latent and 
significant patterns and knowledge from massive spatio‐temporal data has become a challenge (Han, Kamber, & 
Tung, 2001). Spatio‐temporal clustering is an important technology of data mining and is primarily aimed at ex‐
tracting a series of clusters from spatio‐temporal data to ensure that objects in the same cluster are both similar to 
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each other and distinct from those in other clusters (Miller & Han, 2009; Shekhar, Vatsavai, & Celik, 2009). At pres‐
ent, spatio‐temporal clustering has been widely applied in climate change detection (Birant & Kut, 2007; Deng, 
Liu, Wang, & Shi, 2013; Wu, Zurita‐Milla, & Kraak, 2015; Wu, Zurita‐Milla, Verdiguier, & Kraak, 2017), earthquake 
outbreak detection (Pei, Zhou, Zhu, Li, & Qin, 2010; Liu, Deng, Bi, &Yang, 2014), epidemic analysis (Delmelle, Dony, 
Casas, Jia, & Tang, 2014; Kulldorff, Heffernan, Hartman, Assunção, & Mostashari, 2005), crime hotspot detection 
(Nakaya & Yano, 2010; Shiode & Shiode, 2013), socio‐economic analysis (Hagenauer & Helbich, 2013), and traffic 
analysis (Cheng & Anbaroglu, 2010; Feng, Wang, & Chen, 2014; Xie & Yan, 2013).

In terms of different applications, existing spatio‐temporal clustering methods are mostly designed for five 
types of spatio‐temporal data, namely spatio‐temporal events, geo‐referenced variables, geo‐referenced time se‐
ries, moving objects, and trajectories (Kisilevich, Mansmann, & Nanni, 2010). This study focuses on clustering geo‐
referenced time series, which record time series with respect to measured non‐spatial attribute values at fixed 
locations represented by point/line/area entities. The clusters in geo‐referenced time series should be formed  

F I G U R E  1   Examples of geo‐referenced time series: (a) geo‐referenced time series by point objects, where 
the coordinate pair (x1, y1) indicates the spatial location of P1 and “NA” represents the non‐spatial attribute; (b) 
traffic time series on a road network, where the arrows indicate the driving direction of vehicles, “v1 ” and “s1 ” 
denote a vertex and a segment of the road network, respectively, and “UJT” represents the unit journey time of 
vehicles (Shi et al., 2018)
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by considering both spatio‐temporal proximity and non‐spatial attribute similarity. Figure 1a gives an example of 
geo‐referenced time series by a point entity P1. Under some special circumstances in capturing geo‐referenced 
time series, such as monitoring traffic flow on roads, non‐spatial attribute values (e.g. average velocity of traf‐
fic flows) recorded by each road segment are derived from the flow of vehicles from upstream to downstream 
sensors (Mehboob et al., 2015; Ren, Zhang, Zhang, Wang, & Feng, 2018). Taking the traffic time series shown in 
Figure 1b as an example, vehicles keep driving on roads with directionality, so traffic status in the upstream can 
interact with that in the downstream. For example, in Figure 1b, if the vehicles on s1 maintain adequate speed at t1, 
they can arrive at s4 within t1. Conversely, in the case of traffic congestion at t1, these vehicles may remain on s1 at 
t2. Thus, the correlations among road segments are temporally dynamic and spatially heterogeneous on account of 
various real‐time traffic status and different segment lengths, suggesting that the spatio‐temporal neighborhood 
range of each road segment will vary with changing traffic conditions (Kang, Shekhar, Wennen, & Novak, 2008; 
Min, Hu, & Zhang, 2010; Cheng, Wang, Haworth, Heydecker, & Chow, 2014). Specifically, the range will be larger 
in smooth traffic conditions and smaller in congested traffic conditions. However, existing clustering methods de‐
signed for geo‐referenced time series mostly construct fixed spatio‐temporal neighborhoods by defining a spatial 
coverage and time window. In light of this situation, this study aims to handle the temporally dynamic and spatially 
heterogeneous correlations in traffic time series based on spatio‐temporal flow modeling for accurate and effec‐
tive detection of clusters. The major contributions are as follows:

• Modeling spatio‐temporal flows to construct temporally dynamic and spatially heterogeneous neighborhoods.
• Performing clustering by integrating spatio‐temporal flows to accurately present the traffic running rules.
• Visualizing spatio‐temporal clustering results meticulously to facilitate further analysis.

The remainder of this article is organized as follows. Section 2 reviews related work on geo‐referenced time‐
series clustering and presents the proposed strategy of cluster detection. In Section 3, the proposed method is 
fully elaborated. In Section 4, extensive experiments on real‐life data are performed and analyzed to demonstrate 
the effectiveness and practicability of the proposed method. Section 5 summarizes the most interesting findings 
and presents directions for future research.

2  | RELATED WORK

In this section, a systematic review will first be presented on the methods of cluster detection in geo‐referenced 
time series and in traffic time series on road networks. On this basis, the performance of existing methods on traf‐
fic time series will be critically analyzed.

2.1 | Detection of clusters in geo‐referenced time series

Existing cluster detection methods specifically designed for geo‐referenced time series can be roughly divided 
into partition‐based, density‐based, and model‐based clustering. Partition‐based methods aim to directly aggre‐
gate objects based on their similarities with respect to observed non‐spatial attribute values at different time 
stamps. For example, Zhang, Huang, Shekhar, and Kumar (2003) considered correlation analysis of geo‐referenced 
time series and proposed a filter‐and‐refine approach to find pairs of potentially interacting spatial locations. Wu 
et al. (2015) employed the Bregman block average co‐clustering algorithm with I‐divergence to reveal cluster 
patterns from spatial and temporal dimensions. On this basis, Wu et al. (2017) developed a Bregman cuboid aver‐
age triclustering algorithm with I‐divergence to extract triclusters from spatial, temporal, and any third dimen‐
sions. Furthermore, the K‐means algorithm was adopted to partition these triclusters into spatio‐temporal cluster 
patterns.
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Density‐based methods extract spatio‐temporal clusters by measuring the local density of each object. For ex‐
ample, the ST‐DBSCAN algorithm proposed by Birant and Kut (2007) simultaneously considered spatial distance, 
temporal adjacency, and non‐spatial attribute similarity when defining spatio‐temporal density. On this basis, the 
notions of density‐reachable and density‐connected are proposed to define density‐based clusters. Deng et al. 
(2013) constructed spatio‐temporal neighborhoods using constrained Delaunay triangulation and spatio‐temporal 
autocorrelation. A density‐based clustering process was further performed to discover spatio‐temporal clusters 
by considering non‐attribute attribute similarity between spatio‐temporal adjacent objects.

Model‐based methods perform spatio‐temporal clustering by building models based on statistics or machine 
learning theory. For example, Kulldorff et al. (2005) employed spatio‐temporal scan statistic methods to detect 
outbreaks of epidemics in space and time. In recent years, some machine learning methods—such as the self‐or‐
ganizing feature map (SOM), which is a kind of artificial neural network—have been adopted to efficiently analyze 
spatio‐temporal aggregation patterns from geo‐referenced time series (Feng et al., 2014; Hagenauer & Helbich, 
2013).

2.2 | Detection of clusters in traffic time series on road networks

In addition to the above discussed geo‐referenced time‐series clustering research, specific studies have been 
performed on traffic time series, which can be captured by video surveillance, on road networks (Mehboob et 
al., 2015; Ren et al., 2018). For example, Chen, Zhang, Hu, and Yao (2006) modeled the traffic time series in all 
links as a matrix m×n, where m and n represented the number of time intervals and links, respectively, and im‐
plemented a SOM‐based partitioning to reveal temporal distribution patterns of traffic flows at a certain spatial 
region. Ntoutsi, Mitsou, and Marketos (2008) proposed a hierarchical strategy to cluster sensors by means of 
shape‐based distance between traffic time series, structure‐based distance between sensors, and value‐based 
distance between traffic time series successively. Hu, Luo, Yan, and Shi (2011) measured spatial neighborhood re‐
lationships between road segments by a “shortest path” analysis and employed dynamic time warping to measure 
the similarity between pairs of traffic time series. The two similarity measurements were then combined to parti‐
tion the road network based on fuzzy clustering. Zhou, Lin, and Xi (2013) introduced an agglomerative hierarchical 
clustering method to partition the entire road network by integrating the length of road segments, the number 
of lanes, the traffic time series, and the queue length to measure the similarity between adjacent road segments. 
In addition, Anbaroglu, Heydecker, and Cheng (2014) aimed at clustering non‐recurrent congestion events, which 
were the percentile‐based or space‐time scan statistics‐based extraction of episodes respecting long link journey 
time with high confidence that occurred on spatially adjacent links and at the same time interval.

2.3 | A critical analysis of existing methods

Based on the systematic review of related work, the performance of existing spatio‐temporal clustering methods 
designed for geo‐referenced time series can be summarized as follows.

They do not consider the varying interactions of distinct spatial entities at different time stamps when con‐
structing spatio‐temporal neighborhoods. However, in traffic time series on road networks, there are directional‐
ity and dynamic characteristics of traffic flows. Specifically, taking the simulated data in Figure 1b as an example, 
the driving directions determine the direction relationship between adjacent road segments (e.g. s1 →s4). The 
average velocity of vehicles on a road segment can directly reflect the real‐time traffic status. The spatio‐temporal 
influence extents (i.e. spatio‐temporal neighborhoods) of each road segment will change continuously on account 
of various real‐time traffic conditions (i.e. larger in smooth traffic conditions and smaller in congested traffic 
conditions) (Cheng et al., 2014; Min et al., 2010). Existing traffic time‐series clustering methods were primarily 
designed to partition a road network into a set of subregions, instead of revealing clusters regarding traffic flow 
variables in both space and time. Cheng and Anbaroglu (2010) could discover clusters by measuring traffic flow 
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variable similarity between spatio‐temporal objects, but could not construct temporally dynamic spatio‐temporal 
neighborhoods in the clustering process.

As a matter of fact, without the consideration of vehicles flowing from upstream to downstream, it is difficult 
for existing spatio‐temporal clustering methods to accurately unveil actual traffic mobility patterns. In our previ‐
ous work, the directionality and dynamic nature of traffic flows have been considered in spatio‐temporal anomaly 
detection (Shi, Deng, Yang, & Gong, 2018). Regarding traffic flow similarities, the aim of anomaly detection is to 
find those highly dissimilar spatio‐temporal objects in the data. Using the spatio‐temporal flow modeling proposed 
in this work, this study develops a clustering approach for traffic time series in order to group objects with high 
similarities. Through clustering analysis, this study further focuses on discovering and revealing city traffic flow 
regularities in both spatial and temporal dimensions from a global perspective.

3  | THE SPATIO‐TEMPORAL FLOW‐BASED CLUSTER 
DETECTION METHOD

This study constructs a framework to detect spatio‐temporal flow‐based clusters. The framework contains two 
parts, including spatio‐temporal flow modeling and spatio‐temporal cluster detection, as illustrated in Figure 2.

Spatio‐temporal flow modeling. Existing clustering methods for geo‐referenced time series mostly deter‐
mined a fixed spatio‐temporal coverage for each spatio‐temporal object by defining a cylinder with a spatial radius 
and time window (Birant & Kut, 2007; Deng et al., 2013). With respect to traffic time series on road networks, 
as explained in Section 2.3, the spatio‐temporal neighborhoods of each spatio‐temporal object can vary with the 
continuous change in traffic status. In this case, the topological relationships between road segments are first 

F I G U R E  2   The framework of spatio‐temporal flow‐based cluster detection in traffic time series on a road 
network
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determined. On this basis, spatio‐temporal flows are further constructed by combining the traffic flow direction 
and the real‐time traffic status.

Spatio‐temporal cluster detection. Clustering aims to group highly similar objects into the same cluster, while 
dissimilar objects belong to different clusters. Spatio‐temporal clustering for geo‐referenced time series should en‐
sure that objects in the same cluster are similar in spatial, temporal and non‐spatial attribute dimensions (Shekhar 
et al., 2009). In this case, both spatio‐temporal proximity and traffic flow variable similarity should be considered 
when constructing spatio‐temporal neighborhoods. Likewise, the rates of consecutive change in spatio‐temporal 
flow (i.e. the slope of change proposed in Cheng & Anbaroglu, 2010) should also be small to homogenize neigh‐
borhoods. In addition, the accumulation of gradual changes in the flow will make neighborhoods heterogeneous, 
so the “spatio‐temporal connected” proposal in Deng et al. (2013) is employed to eliminate the inconsistency 
compared with the connected upstream flow. Considering the above issues, the spatio‐temporal neighborhoods 
are constructed for all spatio‐temporal objects and further form subgraphs to indicate spatio‐temporal clusters.

With the full consideration of the above issues, the proposed spatio‐temporal flow‐based clustering method 
can be described in detail by taking traffic time series as the example. Section 3.1 introduces basic definitions 
regarding traffic time series on road networks. Sections 3.2 and 3.3 address the process of spatio‐temporal flow 
modeling and spatio‐temporal cluster detection in succession. The implementation of the proposed method is 
described in Section 3.4.

3.1 | Traffic time series on road networks

This study focuses on investigating the macroscopic spatio‐temporal characteristics of traffic flows on road net‐
works, instead of the individual behavior of each vehicle that can be captured by GPS trajectories. Based on this 
precondition, traffic time series, recording the measured traffic flow variables (i.e. unit journey time and average 
velocity) at a certain time resolution, on a road network, will be selected as the analyzed object. Using the simu‐
lated dataset in Figure 3 as an example, some basic definitions are introduced.

Definition 1: Vertices and road segments. On a road network, the intersections between two roads consti‐
tute a series of vertices, denoted vi (e.g. v1, v2, …, v8) in Figure 3a. These nodes partition a network into a series 
of road segments si (e.g. s1, s2, …, s7) in Figure 3a. Each segment with a certain length is oriented to reflect the 
driving direction of vehicles and can be represented by a ternary array si= (vstarti ,vendi ,leni). This means that vehi‐
cles on si with length leni flow from the start vertex vstarti to the end vertex vendi, denoted vstarti →vendi. In Figure 3a, 
s1  = (v1, v2, 1000 m), s2  = (v4, v2, 800 m), …, s7  = (v5, v8, 550 m).

Definition 2: Spatio‐temporal cells. For each road segment si, the recorded traffic time series regarding 
traffic flow variable tfv can be decomposed into discrete spatio‐temporal cells at each time interval tj, denoted 
stcsi⋅tj= (si,tj,tfvsi⋅tj ). Figures 3b and c simulate the journey time and average velocity of vehicles on each road seg‐
ment in Figure 3a with time interval 300 s. For example, the spatio‐temporal cell (s1, t1, 200 s) signifies that vehi‐
cles require 200 s to pass through s1 during t1. Correspondingly, (s1, t1, 5.0 m/s) signifies that the average driving 
velocity of vehicles on s1 is 5.0 m/s during t1.

3.2 | Modeling of spatio‐temporal flows

To address the directionality and dynamic nature of traffic flows, this section describes a process of spatio‐tem‐
poral flow modeling. First, the directionality of each segment and the topological connectivity among different 
segments together form the matrix of spatial neighbors.

Definition 3: Spatial neighbors. Given a road network, if two road segments si and sj satisfy the condition 
vendi= vstartj, then sj is defined as the first‐order spatial neighbor of si, denoted SN1(si)={∀sj|vendi=vstartj}. Further,  
SN1(si) and the first‐order spatial neighbors of SN1(si) constitute the second‐order spatial neighbors of si, denoted 
SN2(si)=SN1(si)∪{∀sk |sk∈SN1(sj) and sj∈SN1(si)}. In Figure 3a, SN1(s1)={s4} and SN2(s1)={s4, s5, s6, s7}. The nth‐order 
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spatial neighbors can be obtained in this manner. A variable wij can be defined to indicate whether sj belongs to the 
spatial neighbor of si. Specifically, if sj is in SNn(si), then wij is set as 1; else, wij is set as 0. Then, the spatial neighbor 
matrix of this road network can be built. Figures 4a and b illustrate the first‐ and second‐order spatial neighbor 
matrix for all road segments in Figure 3a, respectively.

Definition 4: Spatio‐temporal flows.  Starting from any spatio‐temporal cell stcsi⋅tj= (si,tj,ujtsi⋅tj ), where ujtsi⋅tj
represents the average unit journey time of vehicles passing through si at tj, a process of spatio‐temporal flow 
can be modeled based on the recorded real‐time traffic status of spatio‐temporal cells. Specifically, assuming that 
it costs vehicles the journey time of JT to arrive at stcsm ⋅tn = (sm,tn,ujtsm ⋅tn ) from stcsi⋅tj, Dissm is the distance that has 
been passed through on sm and T is the time interval of the traffic time‐series, the updated Dis′smand JT′ can be 
calculated as:

(1)
Dis

�
sm
=

⎧
⎪⎨⎪⎩

Dissm+
�
(k+1) ∗T−JT

�
∕ujtsm ⋅tn+1 , if (lenm−Dissm ) ∗ujtsm ⋅tn+1 ≥ (k+1) ∗T−JT

0, if (lenm−Dissm )∗ujtsm ⋅tn+1< (k+1) ∗T−JT

F I G U R E  3   A group of simulated traffic time series on a road network: (a) the topological structure of the 
road network; (b) the time series about the journey time JT (s) of vehicles on each segment; and (c) the time 
series about the average driving velocity V (m/s) of vehicles on each segment
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where k is the number of time intervals that have elapsed. Then, the next arrived spatio‐temporal cell after stcsm ⋅tn
can be determined as:

Intuitively, focusing on the simulated dataset in Figure 3, if setting stcs1⋅t1 as the starting cell, as shown in Figure 5a, 
the vehicles will arrive at stcs4⋅t1 after 200 s and 100 s remains in t1. After traveling 120 m (1.2 m/s * 100 s), the 
vehicles will be located at stcs4⋅t2 with 480 m remaining in s4. Using this analogy, Figures 5b and c show the flowing 
of vehicles in t2 and t3, respectively, and the spatio‐temporal flow starting from stcs1⋅t1, denoted STF(stcs1⋅t1 ), can 
be modeled as:

Figure 5 describes the moving process of vehicles and the modeled spatio‐temporal flow, respectively, starting 
from stcs1⋅t1.

3.3 | Detection of spatio‐temporal clusters

Based on the modeled spatio‐temporal flows, two steps are performed to detect spatio‐temporal clusters, includ‐
ing spatio‐temporal neighborhood construction and spatio‐temporal clustering. The two steps will be elaborated 
in the following subsections.

(2)JT=

⎧
⎪⎨⎪⎩

(k+1) ∗T, if (lenm−Dissm ) ∗ujtsm ⋅tn+1 ≥ (k+1) ∗T−JT

k∗T+(lenm−Dissm )∗ujtsm ⋅tn+1 , if (lenm−Dissm ) ∗ujtsm ⋅tn+1< (k+1) ∗T−JT

(3)
Arrival(stcsm ⋅tn ) =

⎧
⎪⎨⎪⎩

stcsm ⋅tn+1 , if (lenm−Dissm )∗ujtsm ⋅tn+1 ≥ (k+1) ∗T−JT

stc1
SN
(sm)⋅tn , if (lenm−Dissm )∗ujtsm ⋅tn+1< (k+1) ∗T−JT

STF
�
stcs1 ⋅t1

�
= stcs1 ⋅t1

1000m
→

200s
stcs4 ⋅t1

120m
→

100s
stcs4 ⋅t2

480m
→

160s

⎡
⎢⎢⎢⎢⎢⎢⎣

stcs5 ⋅t2

280m
→

140s
stcs5 ⋅t3

120m
→

44.4s
…

stcs6 ⋅t2

252m
→

140s
stcs6 ⋅t3

448m
→

224s
…

stcs7 ⋅t2

266m
→

140s
stcs7 ⋅t3

284m
→

113.6s
…

F I G U R E  4   The spatial neighbor matrix of the road network, where S denotes road segments and W indicates 
whether two road segments are spatial neighbors or not: (a) the 1st‐order spatial neighbor matrix; and (b) the 
2nd‐order spatial neighbor matrix

(4)
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F I G U R E  5   The modeling of spatio‐temporal flow starting from stcs1⋅t1: (a) the flow of vehicles in t1; (b) the 
flow of vehicles in t2; and (c) the flow of vehicles in t3
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3.3.1 | Spatio‐temporal neighborhood construction

For each spatio‐temporal cell, its spatio‐temporal neighborhoods should be the members of spatio‐temporal flow 
starting from this cell and a consecutive spatio‐temporal chain must be formed by considering non‐spatial at‐
tribute similarity. The non‐spatial attribute similarity can be measured using the differences of attribute values 
between spatio‐temporal adjacent cells, which may be roughly categorized into absolute and relative differences 
(Cheng & Anbaroglu, 2010). In the process of clustering, gradual changes regarding attribute values should be 
taken into account as well (Deng et al., 2013). Taking Figure 6 as an example, if the thresholds for absolute and 
relative differences are respectively set at 5 and 3, specific cases in spatio‐temporal neighborhood construction 
can be described as:

(i)  Sudden changes regarding absolute differences. In Figure 6a, the absolute difference between G and H is 
18 and significantly larger than the absolute difference threshold. Hence, the connectedness between G 
and H (i.e. G → H) should be broken.

(ii)  Sudden changes regarding relative differences. In Figure 6b, the relative difference of G → H equals 4, 
which is smaller than the absolute difference threshold. However, considering the upstream object of G 
(i.e. F), the relative difference between G and H can be calculated as (G → H)/(F → G) = 4. This value is 
larger than the relative difference threshold, so the object H cannot be connected to G.

(iii)  Gradual changes in the flow. In Figure 6c, the absolute difference between any two adjacent objects is 
equivalent to 1. For J → K, the difference between K and the average value of A→…→J is 5.5, which is 
larger than the absolute difference threshold. In other words, the gradual changes lead the object K to be 
separated from the flow A→…→J.

Motivated by the above issues, the notions of spatio‐temporal reachable and spatio‐temporal connected will 
first be introduced.

Definition 5: Spatio‐temporal reachability. Given any cell stcq in STF(stcsi⋅tj ), the absolute and relative differ‐
ences between stcq and its upstream adjacent cell stcp regarding traffic flow variable values can be respectively 
expressed as:

(5)A_Diff(stcp, stcq)=

⎧
⎪⎨⎪⎩

���ujtstcq −ujtstcp
��� , if

���ujtstcq −ujtstcp
���>𝜀1

𝜀1, if
���ujtstcq −ujtstcp

���≤𝜀1

,where stcq≠ stcsi ⋅tj

F I G U R E  6   Three cases in the process of spatio‐temporal neighborhood construction: (a) sudden changes 
regarding absolute differences; (b) sudden changes regarding relative differences; and (c) gradual changes in the 
flow
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where stco is the upstream adjacent cell of stcp; ε1 is a threshold that can determine whether the absolute differ‐
ence between stcq and stcp is small enough to be ignored. Further, if A_Diff(stcp, stcq) ≤ ε2 and R_Diff(stcp, stcq) ≤ ε3, 
where ε2 and ε3 are another two given thresholds, then it is defined that there exists spatio‐temporal reachability 
from stcp to stcq.

Definition  6:  Spatio‐temporal  connectivity.  Let STF(stcsi⋅tj →…→ stcp) represent the spatio‐temporal flow 
from stcsi⋅tjto stcp. The absolute and relative differences between stcq and STF(stcsi⋅tj →…→ stcp) can be calculated 
 respectively as:

where stcq≠ stcsi ⋅tj

where ujtSTF(stcsi ⋅tj→…→stcp)
 represents the average unit journey time of cells in STF(stcsi⋅tj →…→ stcp). If 

A_Diff[STF(stcsi ⋅ tj→…→ stcp),stcq]≤�2 and R_Diff[STF(stcsi⋅tj →…→ stcp), stcq] ≤ �3,then the cell stcq is defined to be 
spatio‐temporal connected to stcsi⋅tj.

Definition 7: Spatio‐temporal neighborhoods. For any cell in STF(stcsi⋅tj ), only if both its upstream adjacent cell 
is spatio‐temporal reachable from it and it is spatio‐temporal connected to stcsi⋅tj will this spatio‐temporal flow 
continue; else, the flow will stop and the cell is considered a broken point. In STF(stcsi⋅tj ), all upstream cells of this 
broken point will constitute the spatio‐temporal neighborhoods of stcsi⋅tj, denoted STN(stcsi⋅tj ).

3.3.2 | Spatio‐temporal clusters detection

Based on the constructed spatio‐temporal neighborhoods, spatio‐temporal clusters can further be extracted by 
constructing a graph.

Definition 8: Spatio‐temporal clusters. In the spatio‐temporal neighborhoods of any cell, all members con‐
nected to their adjacent ones constitute a chain and all chains can further form a graph jointly. In this graph, each 
connected subgraph will constitute a spatio‐temporal cluster. Taking Figure 7 as an example, the constructed 
spatio‐temporal neighborhood relationships among distinct cells are represented by arrows. On this basis, a  
series of separated subgraphs can be formed by the spatio‐temporal neighborhoods 

(i.e.stcs1 ⋅t2 → stcs4 ⋅t2 →

⎧⎪⎨⎪⎩

stcs5 ⋅t2 → stcs5 ⋅t3 →…

stcs7 ⋅t2 → stcs7 ⋅t3 →…
 and stcs6 ⋅t2 → stcs6 ⋅t3). Each subgraph is finally defined as a spatio‐tem‐

poral cluster STCi, as indicated in Figure 7.

(6)R_Diff(stcp, stcq)=

⎧
⎪⎨⎪⎩

���ujtstcq−ujtstcp
���

A_Dif fstco→stcp

, if stcp≠ stcsi ⋅tj
���ujtstcq−ujtstcp

���
�1

, if stcp= stcsi ⋅tj

(7)

A_Diff[STF(stcsi ⋅tj →…→ stcp), stcq]=

⎧
⎪⎨⎪⎩

���ujtstcq −ujtSTF(stcsi ⋅tj→…→stcp)
��� , if

���ujtstcq −ujtSTF(stcsi ⋅tj→…→stcp)
���>𝜀1

𝜀1, if
���ujtstcq −ujtSTF(stcsi ⋅tj→…→stcp)

���≤𝜀1

(8)R_Diff[STF(stcsi ⋅tj →…→ stcp), stcq] =

⎧⎪⎪⎨⎪⎪⎩

���ujtstcq −ujtSTF(stcsi ⋅tj→…→stcp)
���

A_Diff[STF(stcsi ⋅tj →…→ stco), stcp]
, if stcq≠ stcsi ⋅tj

���ujtstcq −ujtSTF(stcsi ⋅tj→…→stcp)
���

�1
, if stcq= stcsi ⋅tj
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3.4 | The implementation of the proposed method

Based on the aforementioned definitions, the pseudo‐code of the proposed method can be elaborated as in 
Algorithm 1.

Algorithm 1: [Detection of spatio‐temporal clusters]

Input: A road network RN, traffic time series TTS, thresholds ε1, ε2, and ε3 
Output: Spatio‐temporal clusters STCs 
Procedure: 
BEGIN 
   For each road segment si on the road network RN 
      Do{ 
          si.SN = Get_SN(RN);// get spatial neighborhoods of si 
         } 
   End For 
   For each spatio‐temporal cell stcsi⋅tj in the traffic time series TTS 
       stcsi� ⋅tj� = stcsi⋅tj; 
       Do{ 
         stck = Get_STF(stcsi⋅tj, si′.SN, TTS, ε1);// construct spatio‐temporal flow STF(stcsi⋅tj) 
          If A_Diff[STF(stcsi ⋅ tj→… ),stck]≤�2 && R_Diffstcsi′ ⋅t

j′
→stck

≤�3 &&… 

           A_Diff[STF(stcsi ⋅ tj→… ),stck]≤�2 && R_Diff[STF(stcsi⋅tj →… ), stck]≤�33 
        Then 
         stcsi⋅tj.STN.add(stck);// get spatio‐temporal neighborhoods of stcsi⋅tj 
           stcsi� ⋅tj� = stck; 
          Else 
            Exit Do 
         End If 
         } 
   End For 
   For each spatio‐temporal cell stcsi⋅tj in the traffic time series TTS 
       Do{ 
        STCs = Sub_Graph(stcsi⋅tj.STN, TTS);// Get spatio‐temporal clusters 
         } 
   End For 
END

F I G U R E  7   An example of spatio‐temporal clustering. Here, s1, s4, s5, s6, and s7 are consistent with the 
corresponding road segments in Figure 3; the constructed spatio‐temporal neighborhood relationships among 
distinct cells are represented by arrows; STC denotes spatio‐temporal clusters
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The most time‐consuming part is the construction of spatio‐temporal neighborhoods considering spatio‐tem‐
poral flows. In this part, the time complexity derives primarily from determining the next arrived spatio‐temporal 
cell and determining whether this cell can be placed into the spatio‐temporal neighborhood of the starting cell. Let 
N and M denote the number of spatio‐temporal cells and the average volume of spatio‐temporal neighborhoods, 
respectively. The time complexity of this process is approximately O(N*M), where N»M. As a result, it is available 
for the proposed method to perform on large traffic datasets.

4  | EXPERIMENTAL COMPARISONS AND ANALYSIS

This section evaluates the effectiveness and practicality of the proposed method with experiments performed 
on real‐life datasets. Section 4.1 elaborates the utilized datasets. Sections 4.2 and 4.3 elaborate the comparisons 
and analysis of the results by performing experiments on two groups of datasets. A discussion of the experimen‐
tal results is given in Section 4.4. The proposed method was implemented using the MATLAB language. All the 
experiments were conducted on a computer with the Mac OS operating system, one 2.9 GHz Intel Core i5 CPU, 
and 8.0 GB RAM.

4.1 | Real‐life datasets

The experimental datasets were captured by the London Congestion Analysis Project (LCAP) network, which is 
a system of automatic number plate recognition cameras designed to collect the journey time of vehicles on the 
road network of London. Specifically, the cameras were installed on the vertices of the road network and utilized 
to read the number plates of passing vehicles. The time that vehicles take to pass two adjacent cameras was re‐
corded as the journey time on the corresponding road segment. On this basis, the average journey time of vehicles 
on each road segment every 300 s was calculated to form the traffic time series. As very few vehicles moved on 
the roads in the night, unreliable data was unavoidably collected during this time period. As a result, only those 
traffic time series recorded during the daytime period (i.e. 7:00–20:00 in this study) are adopted to perform the 
experiments. For each day, 12 record items were captured each hour and 156 data items were recorded in total. 
The road network in central London includes 22 road segments and the traffic time series were recorded from 
January 5th, 2009 to March 5th, 2009.

Considering the heterogeneity of road segment length, the time series regarding unit journey time on each 
road segment (i.e. the total journey time of vehicles divided by the length of the corresponding road segment) was 
utilized in our experiments. Figure 8 presents the road network structure of central London, reproduced from 
Cheng, Haworth, and Wang (2012). It indicates the real spatial distribution of the road network and describes the 
information regarding the vertices constituting each segment, the length of each segment, and the topological and 
directional relationships between segments. To facilitate the representation and analysis, the road network was 
simplified using simple systematic signs to denote each segment [i.e. (Road1, Road2, …, Road22)].

To detect spatio‐temporal clusters hidden in traffic flows on workdays and weekends, the traffic time series 
recorded on two days (i.e. January 5th, 2009—Monday and January 10th, 2009—Saturday) were employed in our 
experiments.

4.2 | Case study I: Spatio‐temporal cluster detection in traffic time series on January 
5th, 2009

To demonstrate the effectiveness and practicability of the proposed method, spatio‐temporal clusters were 
first detected from the traffic data on January 5th, 2009. For comparison, a classical spatio‐temporal clustering 
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algorithm ST‐DBSCAN (Birant & Kut, 2007), derived from the commonly used density‐based clustering method 
DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), was also applied to this dataset.

4.2.1 | The testing of thresholds

For any cell stcsi⋅tj, the members in its spatio‐temporal neighborhoods STN(stcsi⋅tj ) may be broken points with re‐
spect to other cells’ spatio‐temporal neighborhoods. These spatio‐temporal neighborhoods are defined as being 
adjacent to STN(stcsi⋅tj ). The non‐spatial attribute differences between STN(stcsi⋅tj ) and its adjacent spatio‐temporal 
neighborhoods, abbreviated as inter‐neighborhood differences, can be used to quantize the independence of 
STN(stcsi⋅tj ). In addition, the non‐spatial attribute similarity between different members of STN(stcsi⋅tj ), abbreviated 
as intra‐ neighborhood similarities, can describe the homogeneity of STN(stcsi⋅tj ). According to the objective of 
spatio‐temporal clustering, the ratio between intra‐neighborhood similarities and inter‐neighborhood differences 
is calculated as an index (denoted STNs_QI) to quantitatively evaluate the overall quality of the constructed spa‐
tio‐temporal neighborhoods. A more detailed process of calculation is discussed in our previous work (Shi et al., 
2018). A small STCs_QI indicates small differences in inner spatio‐temporal neighborhoods and large differences 
between adjacent spatio‐temporal neighborhoods. That is, a smaller STCs_QI corresponds to a result that is more 
acceptable. Based on this criterion, the selection of thresholds is elaborated as follows.

In the three thresholds, ε1 and ε3 are utilized to adaptively homogenize spatio‐temporal neighborhoods, so 
they were tested first by ignoring ε2 (i.e. ε2 = +∞). By setting ε3 to 2.0, 2.5, and 3.0, Figure 9a displays the testing 
results, where ε1 changed in the range [1 s/km, 50 s/km] with an interval of 1 s/km. One can see that the STCs_QI 
all have apparent local minimum values in the range [17 s/km, 25 s/km] for ε1. Different values of STCs_QI were 
further calculated by setting ε1 to 17 s/km, 18 s/km, …, 25 s/km, respectively, with ε3 changing in the range [1.1, 
1.2, …, 5.0]. The minimum value of STCs_QI appeared in [ε1 = 20 s/km, ε3 = 2.5]. Thus, [ε1 = 20 s/km, ε3 = 2.5] was 
adopted to further test ε2. Let ε2 change from 1 s/km to 250 s/km with an interval of 1 s/km to capture a series of 
STCs_QI values, as shown in Figure 9b. This reveals that STCs_QI gradually tends to be stable when ε2 attains 70 s/
km. This means that a certain result can be captured with a combination of ε1 and ε3, except for those extremely 

F I G U R E  8   The distribution of the road network in the center of London, including the spatial distribution in 
the real world and detailed information regarding the road network (Cheng et al., 2012)
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large distances that must be identified by ε2. As a result, the thresholds are set to [ε1, ε2, ε3] = [20 s/km, 70 s/
km, 2.5].

4.2.2 | Experimental results

Using the determined thresholds, the proposed method spent 1.20 s to obtain the spatio‐temporal clustering re‐
sults, as shown in Figure 10. Specifically, Figure 10a indicates the distribution of spatio‐temporal clusters, denoted 
by different symbols, in the traffic time series by amplification. In these results, those small clusters containing 
relatively few cells can be regarded as outliers (He, Xu, & Deng, 2003). Generally, a numeric parameter should be 
assigned to distinguish large and small clusters. Here, clusters containing less than 10 cells were identified as outli‐
ers and discarded. One can see that there were three significantly large clusters, namely Cluster 1, Cluster 2, and 
Cluster 3. Cluster 1 virtually occupied the entire time period; Cluster 2 and Cluster 3 were in the 7:00–10:00 and 

F I G U R E  9   The testing of thresholds: (a) ε1; and (b) ε2
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13:00–17:00 periods, respectively. Figure 10b exhibits the spatio‐temporal distribution of Cluster 1, Cluster 2, and 
Cluster 3, respectively. The spatio‐temporal flow in Cluster 1 could basically be divided into four parts: ① Road 
12 → Road 13 → Road 14 in 7:00–10:00; ② the entire road network in 10:00–13:30; ③ 

Road22

Road21

⎫⎪⎬⎪⎭
→Road20→

⎧⎪⎨⎪⎩

Road19

Road18
  in 13:30–18:00; and ④ Road9→

⎧⎪⎨⎪⎩

Road10

Road11→Road12→Road13→Road14
 in 

13:30–18:00. Cluster 2 contained the majority of cells on all road segments, except Roads 12, 13, and 14 in 

F I G U R E  1 0   Spatio‐temporal clusters obtained by the proposed method from the traffic time series on 
January 5th, 2009: (a) the distribution in the traffic time series, where cells in the same cluster are denoted by 
the same symbol; and (b) the spatio‐temporal distribution of the top three large clusters, where each cluster is 
denoted using the symbol in accordance with that in Figure 10(a)
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7:00–10:00. Further, the spatio‐temporal flow Road3→
⎧⎪⎨⎪⎩

Road4→Road5

Road6→Road7→Road8→Road15→Road16
 in 13:30–

17:00 was discovered in Cluster 3.
In summary, in 7:00–10:00, Roads 12, 13, and 14 had shorter unit journey time (approximately 100 s/km), 

which separated them from other segments. As the volume of vehicles gradually increased in the three segments 
and decreased in other segments, the two parts of segments met at approximately 10:00. Then, after 13:30, the 
spatio‐temporal flow in Cluster 3 was separated from Cluster 1 owing to the longer unit journey time. In fact, the 
most significant cluster (i.e. Cluster 1) described the normal spatio‐temporal distribution pattern of traffic time 
series on January 5th, 2009. Meanwhile, Cluster 2 and Cluster 3 revealed the main rush hours and congested road 
segments in the morning and afternoon, respectively. In addition, some small clusters (e.g. Clusters 14, 17, and 19 
in Figure 10a) also described traffic congestion; however, they represented anomalous situations as they included 
a very small number of cells.

For ST‐DBSCAN, a heuristic strategy was proposed by Ester et al. (1996) to determine the necessary thresh‐
olds (i.e. Eps and MinPts). Specifically, MinPts is suggested to be set to ln(N) with respect to a database of size N. 
For each object, the distance to its MinPts‐neighbor can be captured, denoted MinPts‐distance. By sorting all the 
MinPts‐distances in descending order, the distance corresponding to the first valley of the sorted curve is selected 
as the threshold Eps. Using the selected thresholds, 0.41 s were spent to obtain the spatio‐temporal clustering 
results by ST‐DBSCAN, as presented in Figure 11. For the top three large clusters, Cluster 1 occupied the entire 
time period, whereas the cells in Cluster 2 were located primarily in 15:00–20:00. The discreteness of the spatio‐
temporal clusters was further highlighted in Figure 11b. For example, only one spatio‐temporal cell in Road 8 was 
assigned to Cluster 1, which formed a “neck” and weakened the connectivity of the cluster. Similarly, this kind of 
single cell existed in Cluster 2 and Cluster 3.

Furthermore, it is necessary to perform quantitative evaluation of the proposed clustering method by means 
of clustering validation measures, which include external and internal validation. In the case that class labels are 
not given, it is suitable to employ internal clustering validation measures. Related work has demonstrated that 
the S_Dbw index outperforms other indices by considering the combined impacts of monotonicity, noise, density, 
subclusters, and skewed distributions (Liu, Li, Xiong, Gao, & Wu, 2010). The S_Dbw index is constructed with a 
combination of inter‐cluster separation and intra‐cluster compactness (Halkidi & Vazirgiannis, 2001). Specifically, 
the inter‐cluster separation compares the densities between each pair of cluster centers and their midpoints. 
The ratio of the average standard deviation of clusters to the standard deviation of the dataset is calculated to 
measure the intra‐cluster compactness. A small S_Dbw value indicates a suitable clustering result. Considering 
the unit journey time of traffic flows, the calculated S_Dbw values of clusters detected by the proposed method 
and ST‐DBSCAN were 0.1694 and 0.1891, respectively. This illustrates that the proposed method outperformed 
ST‐DBSCAN.

4.3 | Case study II: Spatio‐temporal cluster detection in traffic time series on January 
10th, 2009

To further analyze the difference regarding spaito‐temporal clusters between weekends and workdays, the pro‐
posed method was also executed on the traffic time series on January 10th, 2009.

Based on the testing strategy introduced in Section 4.2.1, the thresholds ε1, ε2, and ε3 could respectively be 
determined as 28 s/km, 70 s/km, and 1.4. Then, the proposed method captured the spatio‐temporal clusters, as 
visualized in Figure 12, after running for 1.13 s. Figure 12a indicates that the spatio‐temporal clusters were more 
scattered compared with those of the traffic time series on January 5th, 2009. Figure 12b can summarize the 
spatio‐temporal distribution of the top three large clusters as: Cluster 1 included all the road segments except 
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Road 1, Road 2, and Road 5 in 17:00–20:00; Cluster 2 was formed by Road9→
⎧⎪⎨⎪⎩

Road10

Road11→Road12
 in 7:00–12:00; 

Cluster 3 could be divided into ① Road12→Road13→Road14 in 12:30–16:00; and ② 

Road9→

⎧⎪⎨⎪⎩

Road10

Road11→Road12→Road13→Road14
 in 16:00–18:00.

F I G U R E  11   Spatio‐temporal clusters obtained by ST‐DBSCAN from the traffic time series on January 5th, 
2009: (a) the distribution in the traffic time series, where cells in the same cluster are denoted by the same 
symbol; and (b) the spatio‐temporal distribution of the top three large clusters, where each cluster is denoted 
using the symbol in accordance with that in Figure 11(a)
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In summary, the unit journey time was small in the three clusters, approximately 100–300 s/km. They basically 
divided the day into three time periods: 7:00–12:00, 12:30–17:00, and 17:00–20:00. More importantly, Cluster 1 
in Figure 10 and Cluster 3 in Figure 12 both highlighted the spatio‐temporal influence on the traffic time series. 
Specifically, Roads 12, 13, and 14 were located downstream on the road network. Hence, during 12:30–16:00, the 
cells in these three segments were self‐contained (i.e. Part ① of Cluster 3); then, they were gradually influenced by 
the upstream cells and merged with them to constitute Part ② of Cluster 3. This could reflect the dynamic nature 
of traffic flows on a road network.

F I G U R E  1 2   Spatio‐temporal clusters obtained by the proposed method from the traffic time series on 
January 10th, 2009: (a) the distribution in the traffic time series, where cells in the same cluster are denoted by 
the same symbol; and (b) the spatio‐temporal distribution of the top three large clusters, where each cluster is 
denoted using the symbol in accordance with that in Figure 12(a)
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4.4 | Discussion of experimental results

In Cheng et al. (2012), both the global and the local spatio‐temporal autocorrelation structure of the road network 
of central London was analyzed, choosing the traffic time series for 33 consecutive Tuesdays. They divided the 
traffic time series on weekdays into three periods: 7:00–10:00 (AM peak), 10:00–16:00 (interpeak), and 16:00–
19:00 (PM peak) by considering the different behaviors of traffic flows. Increasing unit journey time during the 
AM peak indicated the building of rush hour. Focusing on the clustering results on Monday (a weekday) by the 
proposed method, as shown in Figure 10, the rush hour in the AM peak could be characterized by Cluster 2. One 
can see that spatio‐temporal cells in Roads 12–14 were separated from others by Cluster 2 due to the shorter unit 
journey time. In essence, local stronger cross‐correlations in the range of Roads 12–14 were extracted by Cheng 
et al. (2012). Then, the gradually decreasing unit journey time reflected that the vehicles on the roads returned 
to free‐flow during the interpeak period. Correspondingly, Cluster 1 in Figure 10 presented the evolving process 
of free‐flowing traffic status and vehicles on all roads were under free‐flow during 10:00–13:00. After 13:00, 
Cluster 3 revealed that Roads 3–8 and Roads 15–16 became busy again. Consistently, Cheng et al. (2012) pointed 
out that the PM peak should begin earlier due to the stronger seasonal component in the interpeak period. The 
comparisons illustrate that consistent discoveries were obtained with Cheng et al. (2012)’s conclusions from spa‐
tio‐temporal autocorrelation analysis, which can demonstrate the effectiveness and practicability of the proposed 
method.

Nevertheless, the results analyzed by Cheng et al. (2012) could not be repeated by ST‐DBSCAN. ST‐DBSCAN 
needs users to set a fixed spatio‐temporal coverage, so it can only extract those static spatio‐temporal regions 
with local high density. In the real world, traffic flows on road networks present a dynamic nature. The above 
discussion illustrates that the proposed method can capture this characteristic and provide more suitable results 
compared with ST‐DBSCAN.

Moreover, the spatio‐temporal clusters extracted by the proposed method can further elaborate the tem‐
porally dynamic and spatially heterogeneous spatio‐temporal autocorrelation structure of traffic data on a road 
network obtained by Cheng et al. (2012). Different spatio‐temporal distribution patterns of traffic flows were also 
discovered on weekends compared with weekdays in this study. This will facilitate the making of distinct traffic 
management plans for weekdays and weekends by traffic operators.

5  | CONCLUSIONS AND FUTURE WORK

In this article, a novel approach was developed for the accurate detection of clusters in traffic time series on road 
networks by handling the temporally dynamic and spatially heterogeneous correlations among road segments. 
Spatio‐temporal flows are first modeled based on the topological relationships of the road network and the real‐
time traffic status. For each spatio‐temporal cell, its spatio‐temporal neighborhood was built by considering both 
spatio‐temporal reachability and spatio‐temporal connectivity in its spatio‐temporal flow. Further, spatio‐tem‐
poral clusters are detected by extracting connected graphs based on spatio‐temporal neighbors. Compared with 
a classical spatio‐temporal clustering method (ST‐DBSCAN), the effectiveness and practicality of the proposed 
method were demonstrated by experimenting on the traffic time series on both weekdays and weekends on the 
road network of central London. For practical purposes, employing the proposed method to cluster traffic time 
series day by day on the whole network can help traffic operators discover the spatio‐temporal characteristics 
of traffic flows on each day. Furthermore, by comparing the results of different days in a month or in a year, they 
can further discover periodical patterns of spatio‐temporal clusters, which will be valuable in setting up optimum 
traffic management plans.

Our future work will be focused on three aspects. First, the selection of thresholds can to a large degree limit 
the practicability of the proposed method. As a result, it should be optimized by employing domain‐related knowl‐
edge to guide the selection and testing of thresholds for different application demands in the future. Second, is 
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to construct a statistical clustering model by considering the statistical significance of thresholds involved in the 
proposed method. Third, is to improve the proposed method, adapting it so as to support the processing of real‐
time data streams for traffic monitoring.
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