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Abstract

The success of training accurate models strongly depends on
the availability of a sufficient collection of precisely labeled
data. However, real-world datasets contain erroneously la-
beled data samples that substantially hinder the performance
of machine learning models. Meanwhile, well-labeled data
is usually expensive to obtain and only a limited amount is
available for training. In this paper, we consider the problem
of training a robust model by using large-scale noisy data in
conjunction with a small set of clean data. To leverage the in-
formation contained via the clean labels, we propose a novel
self-paced robust learning algorithm (SPRL) that trains the
model in a process from more reliable (clean) data instances
to less reliable (noisy) ones under the supervision of well-
labeled data. The self-paced learning process hedges the risk
of selecting corrupted data into the training set. Moreover,
theoretical analyses on the convergence of the proposed algo-
rithm are provided under mild assumptions. Extensive exper-
iments on synthetic and real-world datasets demonstrate that
our proposed approach can achieve a considerable improve-
ment in effectiveness and robustness to existing methods.

1 Introduction

The availability of well-labeled data is becoming a key fac-
tor for training a machine learning model with high com-
plexity, such as deep neural networks (LeCun, Bengio, and
Hinton 2015). However, collecting a large-scale dataset with
clean labels usually requires cumbersome verification work
by human beings, which is time-consuming and expensive.
Usually it is much easier to obtain a small set of data pre-
cisely labeled by human experts and collect large quantities
of noisy labels by using crowd-sourcing (Brabham 2008)
or “weak annotators” based on heuristics (Branson, Perona,
and Belongie 2011). For example, to collect the training
images of certain keywords, one possible solution using a
“weak annotator” is to search with the keyword in an im-
age search engine such as Google Images1. However, the
images collected by searching for a polysemous word such
as “apple” will show not only the fruit, but also the logo or
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1https://images.google.com/

products of Apple company. Although it is simple and inex-
pensive for a so-called “weak annotator” to collect a massive
amount of training data, the training samples will inevitably
contain a large amount of noise.

Leveraging the prior knowledge of clean labels in noisy
data is actually a crucial issue in practice, but existing ro-
bust learning methods (McWilliams et al. 2014; Zhang et
al. 2017b) typically focus more on eliminating noisy data.
Also, the data collected by “weak annotator” or crowd-
sourcing can be too noisy for existing robust methods to
train an accurate model. Moreover, existing works that uti-
lize additional clean labels are usually designed for spe-
cific tasks such as image classification (Zhang et al. 2017a;
Veit et al. 2017). These methods typically utilize clean la-
bels in large-scale noisy data based on their additional do-
main knowledge (Jiang et al. 2017; Li et al. 2017b); how-
ever, these approaches are difficult to handle extremely noisy
data and heavily relied on their domain knowledge (Li et al.
2017b), which makes them difficult be used in more gen-
eral problems. For those seeking to address these issues, the
major challenges can be summarized as follows. 1) Infeasi-
bility to train an accurate model by using clean or noisy
data individually. Training models in a small amount of
well-labeled data will usually cause the overfitting problem
and result in an inaccurate model. On the other hand, weakly
labeled data may contain a large amount of corrupted data,
e.g., more than 50% data can be corrupted, which makes it
hard for most of the robust learning approaches to resist the
noise. 2) Difficulty to learn models from noisy data under
the supervision of a small amount of clean labels. Models
trained in a small amount of clean data is highly prone to
overfitting and bias. If the biased model is directly applied
to identify the uncorrupted samples in noisy data, some cor-
rupted samples can be mistakenly included in the training
set. 3) Lack of domain knowledge to utilize clean labels to
extract the uncorrupted samples from noisy data. Most
of the existing work using additional clean labels depends
on extra domain knowledge, such as utilizing the informa-
tion of label relations in a knowledge graph (Li et al. 2017b)
for image classification task. However, such domain knowl-
edge is usually hard to obtain in practice and prevents these
methods to be more extensively used in general situations.
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To address all these technical challenges, this paper
presents a novel self-paced robust learning approach, named
SPRL, to leverage the clean labels in noisy data by a self-
paced training process based on samples in a nearly opti-
mal sequence on the noisiness. The main contributions of
this paper are as follows: 1) Formulating a framework to
leverage the clean labels in noisy data. A framework is
proposed to utilize clean labels in a large-scale noisy dataset.
Specifically, the clean labels are assumed to contain a lim-
ited size of data while the noisy dataset may contain an ex-
tremely large amount of data corruption. The presented ap-
proach to tackle robust regression and classification tasks
can be generally used in various tasks. 2) Proposing a self-
paced robust learning algorithm to train models under
the supervision of clean labels. The proposed algorithm
learns the data samples from clean to noisy under the su-
pervision of clean labels, which hedges the risk of involving
corrupted data into the training set. Furthermore, the algo-
rithm learns the training data in an order that are dynami-
cally determined by the feedback of the learner itself with-
out additional prior knowledge, which makes it extensively
utilized in practice. 3) Providing a theoretical analysis on
the convergence of the proposed algorithm. We prove that
our self-paced robust learning algorithm converges under the
assumption that the loss function selected for the estimated
model has a finite lower bound. Specifically, the objective
function of our algorithm monotonically decreases in accord
with the increasing learning pace parameter until it reaches
the lower bound. 4) Conducting extensive experiments for
performance evaluations. The proposed method was eval-
uated on both synthetic data and real-world datasets in ro-
bust regression and classification tasks with different corrup-
tion and data-size settings. The results demonstrate that our
approach consistently outperforms existing methods along
multiple metrics. To the best of our knowledge, this is the
first work to train models from noisy dataset by utilizing
clean labels in a self-paced learning process.

The rest of this paper is organized as follows. Section 2 in-
troduces the problem formulation. The proposed self-paced
robust learning algorithm is presented in Section 3. Experi-
ments on synthetic and real-world datasets are presented in
Section 4. Section 5 reviews related work and the paper con-
cludes with a summary of the research in Section 6.

2 Problem Formulation

In the setting of self-paced robust learning for leveraging
clean labels in noisy data, we consider the samples to be
provided in two parts with different qualities: a small set
of well-labeled samples with little data corruption Ds ={
(x1, y1) , . . . , (xk, yk)

}
and a weakly labeled dataset

Dw = {(xk+1, yk+1), . . . , (xn, yn)} in large size, where
xi ∈ Rp represents the ith sample data and yi is the cor-
responding label. We assume the well-labeled data contains
k samples and the weakly labeled data has n − k samples,
where n is much larger than k (n� k).

The goal of our study is to infer the model parameter w ∈
Rp based on the uncorrupted data samples D+ = Ds ∪D+

w ,
where the set D+

w represents the uncorrupted data samples

Table 1: Math Notations

Notations Explanations

p number of feature in data matrix X
k number of samples in the clean dataset
n number of samples in the entire dataset
X,y data matrix and its corresponding label vector
w parameters of estimated model
w̃ model parameter trained in the clean set
v instance weight vector
λ parameter to control the learning pace
μ step size of parameter λ
L loss function of estimated model

in the weakly labeled dataset Dw, in which the samples are
correctly labeled. All the samples inDs are uncorrupted and
correctly labeled. Therefore, our purpose is to fully utilize
the uncorrupted data samples in both the clean set Ds and
the noisy set Dw, which can be formalized as follows:

ŵ = argmin
w∈Rp

∑
i∈Ds∪D+

w

L(yi, f(xi,w)
)
+ ψ(w), (1)

where L is the loss function to measure the error between
label yi and the estimated value from model f . For exam-
ple, the linear model f(xi,w)

)
= xT

i w and squared loss
‖yi − f(xi,w)

)‖22 can be applied to a regression problem.
The regularization term ψ(w) restricts the complexity of
model parameters w. The notations used in this paper are
summarized in Table 1.

The problem defined in Equation (1) is challenging in
the following two aspects. First, the uncorrupted set D+

w in
the weakly labeled set Dw is unknown. Simply ignoring the
whole noisy data Dw is not a proper solution because the
amount of well-labeled data is not large enough to train an
accurate model. Second, the weakly labeled data Dw can be
extremely noisy or even contain adversarial data corruption,
which makes the uncorrupted samples in Dw difficult to es-
timate. In the next section, we present a self-paced-learning
approach to address these challenges.

3 Proposed Method

In Section 3.1, we propose the SPRL algorithm to utilize
clean labels in training noisy datasets. Then, the conver-
gence analysis of our algorithm is presented in Section 3.2.

3.1 SPRL Algorithm

In order to utilize the prior knowledge on the high-quality
data Ds on the weakly labeled data Dw, we reformulate our
objective function J as follows:

argmin
w∈Rn,v∈[0,1]

J (w,v;λ) =

k∑

i=1

L(yi, f(xi,w)
)
+

n∑

i=k+1

viL
(
yi, f(xi,w)

)
+ ‖w‖22 + θ‖w − w̃‖22 − λ

n∑

i=k+1

vi,

(2)
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Algorithm 1: SPRL ALGORITHM

Input: X ∈ Rp×n, y ∈ Rn, θ ∈ R, λ0 ∈ R, λ∞ ∈ R,
μ ∈ R

Output: solution w(t+1), v(t+1)

1 w̃ ← argminw
∑k

i=1 L
(
yi, f(xi,w)

)
+ ψ(w)

2 Initialize w0 = w̃, ε > 0, t← 0
3 repeat
4 for i = k + 1 . . . n do

5 vt+1
i ←∞

(
L(yi, f(xi,w

t)
)
< λt

)

6 Update wt+1 by Equation (6) with fixed vt+1 and
w̃.

7 λt+1 ← λt ∗ μ
8 if λt+1 > λ∞ then

9 λt+1 ← λ∞
10 t← t+ 1
11 until ‖J (wt+1,vt+1;λt+1)− J (wt,vt;λt)‖2 < ε
12 return wt+1, vt+1

where L represents the loss function and variable vi is
denoted as the weight of the ith data instance, which is al-
lowed to take any value in the interval [0, 1]. The first term
is the total loss of the clean set Ds, in which we assume all
the samples in clean set are included into our training set.
The second term represents the total loss of noisy set Dw,
where the samples are selected by the instance weight vec-
tor v. The term ‖w‖22 is to control the complexity of model
parameters w. The variable w̃ represents the model weights
trained by the clean setDs. Since the clean set is assumed to
contain few data corruption, we can minimize the following
objective function without considering its data noises:

w̃ = argmin
w

k∑
i=1

L(yi, f(xi,w)
)
+ ψ(w), (3)

where ψ(w) is the regularization term to control the com-
plexity of w̃. The term θ‖w − w̃‖22 is to control the differ-
ence between the estimated model and the model ŵ trained
in the clean set only. If a larger parameter θ is given, the al-
gorithm prefers to give a similar estimated model as the ŵ.
The last term λ

∑n
i=k+1 vi is the regularization term for in-

stance weights v, where parameter λ controls the learning
pace.

The problem defined in Equation (2) can be solved based
on alternate convex search (ACS) method (Gorski, Pfeuffer,
and Klamroth 2007). When model parameter w is fixed, the
variable v in the iteration t+1 can be solved by the following
sub-problem:

vt+1
i = argmin

vi∈[0,1]

n∑
i=k+1

viL
(
yi, f(xi,w

t)
)− λt

n∑
i=k+1

vi,

(4)
where λt represents the value of λ in the tth iteration. A

closed-form solution of vt+1 can be given as follows:

vt+1
i =

{
1, if L(yi, f(xi,w

t)
)
< λt

0, otherwise
(5)

When we fix the value of variable vt+1, variable wt+1 can
be solved by the following sub-problem:

wt+1 = argmin
w∈Rp

k∑
i=1

L(yi, f(xi,w)
)

+

n∑
i=k+1

vt+1
i L(yi, f(xi,w)

)
+ ‖w‖22 + θ‖w − w̃‖22

(6)

The sub-problem can be easily solved by an off-the-shelf
optimizer when the loss function is convex. In traditional
self-paced learning, the value of variable λ is increased un-
til the objective function is converged. However, in robust
learning, when λ grows, more corrupted samples with larger
losses will be gradually added into the training set. Even a
few corrupted samples can lead to an extremely large loss if
the value of λ is too large. Therefore, in order to keep the
corrupted data out of our training set, we introduce a thresh-
old parameter λ∞ to control the size of training set.

The details of the SPRL algorithm are presented in Al-
gorithm 1. In Line 1, the model parameter w̃ is trained in
the clean set. In Lines 2, the variable w0 is initialized as
the value of w̃. The variable vt+1 is updated in Line 5 with
variable wt fixed. After which, the model parameter wt+1

is optimized by Equation (6) in Line 6 with the variables
vt+1 fixed. In Lines 8-11, the parameter λ is enlarged to in-
clude more data instances in the training set, where λ∞ is
the threshold parameter for λ and μ is the step size. The al-
gorithm will be stopped when the objective function is con-
verged in Line 13. The convergence of the algorithm will be
proved in Section 3.2.

3.2 Convergence Analysis

In this section, we will present the theoretical analysis on the
convergence of the proposed algorithm.

First, the assumption on the loss function L is as follows.

Assumption 1 (Lower Bound). The loss function L in prob-
lem (2) has a lower bound B as follows:

B = min
w
L(y, f(x,w)

)
> −∞ (7)

This assumption can be easily satisfied by most loss func-
tions; e.g., least-squares loss and hinge loss have their lower
bound B = 0. Then we can get the following property of the
objective function:

Lemma 1. The objective function J in Equation (2) is
lower bounded as follows:

lim
t→∞J (w

t,vt;λt) > −∞ (8)
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Proof. The objective function J has the following property:

J (wt,vt;λt)

(a)

≥
k∑

i=1

B +

n∑
i=k+1

vtiB + ‖wt‖22 + θ‖wt − w̃‖22

− λt
n∑

i=k+1

vti
(b)

≥ kB +
n∑

i=k+1

vtiB − (n− k) · λ∞
(9)

Inequality (a) follows from L(yi, f(xi,w
t) ≥ B and vti ≥

0. Inequality (b) follows from ‖wt‖22 ≥ 0, θ‖wt−w̃‖22 ≥ 0,
and λ∞ is the maximum threshold of parameter λ. When
all the vti are equal to 1, λt

∑n
i=k+1 v

t
i reaches its mini-

mum value (n − k) · λ∞. When lower bound B ≥ 0, we
have

∑n
i=k+1 v

t
iB ≥ 0; otherwise, when B < 0, we have∑n

i=k+1 v
t
iB ≥ (n− k) · B. Therefore, we have

J (wt,vt;λt) ≥ kB +min
{
0, (n− k) · B}− (n− k) · λ∞

= kB + (n− k) · (min
{
0, ·B}− λ∞

)

(10)
Since B > −∞ and λ∞ is constant, we have
J (wt,vt;λt) > −∞ for ∀t = 1 . . .∞.

Theorem 1. When Assumption 1 is satisfied, Algorithm 1
converges with the following property:

lim
t→∞

∥∥J t+1 − J t
∥∥
2
= 0 (11)

The proof of Theorem 1 can be found in supplemen-
tary document: https://xuczhang.github.io/papers/aaai20
sprl supp.pdf

4 Experiment

In this section, the proposed SPRL algorithm is evaluated
on synthetic and real-world datasets in robust regression and
classification tasks. After the experiment setup has been in-
troduced in Section 4.1, we present results on the robust re-
gression task compared against several existing methods on
both synthetic and real-world datasets in Section 4.2, along
with performance results for the binary classification task in
Section 4.3. The analysis on parameter λ is presented in sup-
plementary document. All the experiments were conducted
on a 64-bit machine with an Intel(R) Core(TM) quad-core
processor (i7CPU@3.6GHz) and 32.0GB of memory. De-
tails of both the source code and datasets used in the experi-
ments can be found in supplementary document.

4.1 Experiment Setup

Datasets and Labels Our datasets consist of synthetic
and real-world data. The simulation samples for linear re-
gression were randomly generated according to the model
y = XTw∗ + u + ε, where w∗ is the ground truth coeffi-
cients and u is the adversarial corruption vector. ε represents
the additive dense noise, where εj ∼ N (0, σ2). We sampled
the ground-truth regression coefficients w∗ ∈ Rp as a ran-
dom unit norm vector. The covariance data X was drawn in-
dependently and identically distributed from xi ∼ N (0, Ip)

where Ip is identity matrix, and the uncorrupted response
variables were generated as y∗ = XTw∗+ε. The corrupted
response vector was generated as y = y∗ + u, where the
corruption vector u was sampled from the uniform distri-
bution [−5‖y∗‖∞, 5‖y∗‖∞]. The set of uncorrupted points
was selected as a uniformly random subset of [n]. Similarly,
the authentic samples for the binary classification task were
generated according to the model y∗ = sign(XTw∗ + ε),
where ε is the additive dense noise. The labels of corrupted
samples were set as the opposite values in y∗.

For the real-world datasets, we chose the BlogFeedback
dataset (Buza 2014) for the robust regression task to predict
the number of blog comments in the upcoming 24 hours.
The data originates from blog posts with 280 feature at-
tributes, including the total number of comments before base
time and the number of comments in the first 24 hours after
the publication of the blog post. We chose the first 21,000
data samples as the training set, in which the clean set con-
tains 1,000 samples and the noisy set contains the remain-
ing 20,000 samples. Additional data corruption was sam-
pled from the uniform distribution [−0.5yi, 0.5yi], where yi
denotes the blog feedback number of the ith sample data.
For the classification task, we chose the Large Movie Re-
view dataset (Maas et al. 2011) collected from the IMDb
website2 for sentiment classification of movie reviews. The
first 12,000 data samples were used as training set, of which
2,000 samples were used as the clean set and the remaining
samples as the noisy set. Additional data corruption was also
added into the noisy set by reversing their labels. The other
10,000 data samples were chosen as the testing set. The fea-
tures were represented as the tf-idf value of each word. One
thousand features with the largest tf-idf values were chosen
in our experiment.

Evaluation Metrics For the robust regression task, we
measured the performance of the regression coefficients re-
covery using the L2 error e = ‖ŵ − w∗‖2 in the syn-
thetic data, where ŵ represents the estimated coefficients
for each compared method and w∗ is the ground truth re-
gression coefficients. For the BlogFeedback dataset, we use
the root-mean-squared-error (RMSE) to evaluate the perfor-
mance of blog feedback prediction. Defining ŷ and y∗ as
the predicted feedback number and ground truth number, re-
spectively, the root-mean-squared-error can be presented as
RMSE(ŷ,y∗) = 1

n‖ŷ − y∗‖2, where n is the number of
samples. To validate the performance for binary classifica-
tion, precision, recall, and F1-score are measured by com-
paring the estimated labels with the actual ones on both the
synthetic and real-world datasets.

Comparison Methods We use the following methods to
evaluate the performance of our algorithm in the robust re-
gression tasks: 1) The Linear Regression on Clean Data
(LR-CL) method takes the linear regression on the clean data
only without using the noisy data. 2) The Linear Regression
on All Data (LR-AL) method takes the linear regression on
all the data without using the prior knowledge of the clean
labels. 3) The method RLHH (Zhang et al. 2017b) applies

2http://www.imdb.com
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(a) p=400, k=1K, n=6K, dense noise (b) p=400, k=1K, n=11K, dense noise (c) p=400, k=2K, n=12K, dense noise

(d) p=800, k=1K, n=6K, dense noise (e) p=200, k=1K, n=11K, no dense noise (f) p=400, k=1K, n=11K, no dense noise

Figure 1: Performance on Regression Coefficient Recovery for Different Corruption Ratios in Uniform Distribution.

Table 2: Mean Absolute Error of Blog Feedback Prediction

Corruption Ratio

10% 30% 50% 70% 90% Avg.

LR-CL 1.159 1.161 1.153 1.164 1.173 1.162
LR-AL 7.254 17.116 10.459 17.226 8.334 12.0778
WSL 0.981 1.280 2.562 2.154 1.375 1.6704
SPL 0.973 1.189 3.666 4.382 4.525 2.947

SPRL-W 0.919 2.627 2.493 4.547 5.797 3.2766
SPRL 0.971 1.107 1.036 1.053 1.046 1.0426

a recently proposed heuristic hard-thresholding based ro-
bust method, in which the entire dataset was directly applied
without utilizing the prior knowledge of clean labels. 4) A
variant of the weakly supervised learning method (Jiang et
al. 2017) (WSL) is applied to estimate the uncorrupted sam-
ples of the noisy set under the supervision of clean labels
by the feedback of the loss function. The method can also
be regarded as a non-paced version of SPRL. 5) The tradi-
tional self-paced learning algorithm (SPL) (Kumar, Packer,
and Koller 2010) was also compared in our experiments with
the parameter λ = 0.1 and the step size μ = 1.1. 6) SPRL-
W is a variant of our proposed method SPRL without using
the clean data set in its objective function. In particular, the
first term in Equation (2) is omitted. To evaluate the per-
formance in the binary classification task, we applied the
following competing methods: 1) The SVM on Clean Data
(SVM-CL) method uses the binary support vector machine
on the clean data only without using the noisy data. 2) The

SVM on All Data (SVM-AL) method takes the support vector
machine method on the entire dataset without using the prior
knowledge of the clean dataset. 3) A recently proposed ro-
bust logistic regression algorithm, called RoLR (Feng et al.
2014), which estimates the parameter through a linear pro-
gramming procedure, was also compared. 4) A similar WSL
method using the SVM loss function was also evaluated in
the robust classification task. 5) The self-paced learning al-
gorithm (SPL) (Kumar, Packer, and Koller 2010) was also
compared in the robust classification task with the initial pa-
rameter λ = 0.1 and the step size μ = 1.1. 6) SPRL-W using
the classification loss function was also compared with the
same setting as the SPL method. For our proposed method,
SPRL, we choose the parameter λ∞ as 1 and 3.5 for re-
gression and classification tasks, respectively. All the results
from comparison methods were averaged over 10 runs.

4.2 Performance on Robust Regression

Regression Coefficient Recovery on Synthetic Data
Figure 1 shows coefficient recovery performance for differ-
ent settings on corruption ratios and data sizes. Specifically,
Figure 1a and Figure 1b present the recovery performance
for different amounts of noisy data with the same amounts
of features and clean data. Looking at the results, we can
conclude: 1) The SPRL methed outperforms all the com-
peting methods, including the traditional self-paced learn-
ing method with the same parameter settings. 2) LR-CL has
stable performance because the clean data is not affected by
the change of corruption ratio. However, if a model is merely
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Table 3: Performance on Binary Classification (F1, Precision, Recall)

feature=200, clean set=100, noisy set=5K feature=400, clean set=100, noisy set=5K

10% 20% 30% 40% 10% 20% 30% 40%

SVM-CL 0.657,0.656,0.659 0.654,0.650,0.658 0.676,0.667,0.686 0.674,0.688,0.661 0.628,0.629,0.628 0.639,0.640,0.638 0.626,0.621,0.630 0.620,0.627,0.613
SVM-AL 0.928,0.927,0.929 0.900,0.902,0.898 0.835,0.831,0.838 0.750,0.754,0.747 0.918,0.916,0.920 0.860,0.861,0.859 0.786,0.796,0.776 0.665,0.670,0.661

RoLR 0.814,0.817,0.810 0.842,0.840,0.845 0.804,0.795,0.814 0.724,0.730,0.719 0.827,0.834,0.820 0.788,0.790,0.785 0.747,0.758,0.736 0.650,0.659,0.641
WSL 0.886,0.889,0.883 0.791,0.792,0.789 0.745,0.739,0.752 0.706,0.715,0.697 0.870,0.873,0.868 0.786,0.789,0.783 0.690,0.690,0.690 0.644,0.653,0.635
SPL 0.946,0.946,0.946 0.903,0.905,0.902 0.809,0.805,0.813 0.665,0.666,0.665 0.916,0.921,0.912 0.824,0.822,0.826 0.739,0.744,0.735 0.608,0.614,0.602

SPRL-W 0.944,0.942,0.946 0.913,0.916,0.910 0.799,0.796,0.802 0.694,0.699,0.689 0.905,0.903,0.906 0.811,0.815,0.808 0.754,0.760,0.749 0.637,0.647,0.628
SPRL 0.968,0.965,0.971 0.922,0.918,0.928 0.871,0.874,0.866 0.751,0.742,0.754 0.935,0.936,0.932 0.864,0.863,0.865 0.780,0.785,0.783 0.681,0.691,0.674

feature=200, clean set=200, noisy set=5K feature=200, clean set=200, noisy set=10K

10% 20% 30% 40% 10% 20% 30% 40%

SVM-CL 0.758,0.756,0.759 0.722,0.720,0.725 0.734,0.730,0.739 0.734,0.738,0.730 0.715,0.718,0.712 0.730,0.734,0.726 0.732,0.728,0.736 0.701,0.697,0.705
SVM-AL 0.942,0.939,0.944 0.897,0.891,0.904 0.853,0.846,0.861 0.749,0.743,0.756 0.948,0.946,0.950 0.932,0.934,0.930 0.898,0.899,0.897 0.787,0.790,0.784

RoLR 0.833,0.833,0.834 0.834,0.834,0.834 0.808,0.806,0.811 0.699,0.693,0.705 0.879,0.877,0.882 0.886,0.884,0.888 0.665,0.668,0.662 0.771,0.770,0.771
WSL 0.905,0.899,0.911 0.827,0.825,0.829 0.796,0.794,0.798 0.743,0.747,0.740 0.902,0.900,0.904 0.856,0.861,0.851 0.798,0.801,0.795 0.722,0.718,0.727
SPL 0.950,0.951,0.949 0.905,0.899,0.912 0.810,0.810,0.810 0.665,0.665,0.665 0.967,0.965,0.969 0.959,0.963,0.954 0.869,0.875,0.864 0.687,0.689,0.686

SPRL-W 0.949,0.949,0.949 0.896,0.892,0.900 0.822,0.823,0.821 0.745,0.736,0.755 0.966,0.964,0.969 0.950,0.953,0.946 0.902,0.903,0.900 0.721,0.722,0.721
SPRL 0.963,0.967,0.960 0.926,0.925,0.927 0.876,0.878,0.875 0.768,0.780,0.763 0.981,0.977,0.985 0.959,0.954,0.963 0.920,0.928,0.912 0.787,0.782,0.793

(a) Clean set=2K, Noisy set=10K, Corruption Ratio=10% (b) Clean set=2K, Noisy set=10K, Corruption Ratio=50%

Figure 2: Sentiment Classification Performance on Movie Reviews

trained in clean data with a small data size, the performance
is almost two times worse than that of SPRL. When the cor-
ruption ratio is larger than 80%, it outperforms the other
competing methods except for SPRL because little uncor-
rupted data is contained in the noisy set. 3) LR-AL always
performs worse than the other methods since it does not
consider the data corruption and the prior knowledge on the
clean set. 4) RLHH has a competitive performance when the
data corruption is less than 50%, however, when the cor-
ruption ratio is over 60%, the recovery error increases dra-
matically. 5) The recovery errors of SPL and SPRL-W also
dramatically increased when the corruption ratio was over
60% because these two methods do not properly utilize the
prior knowledge of the clean set. 6) The WSL method per-
forms around 10% worse than SPRL, which shows the self-
paced training process can improve performance in the ro-
bust learning problem. When the size of the clean set in-
creases, Figure 1c shows similar results as Figure 1a with a
decreased overall recovery error. When the number of fea-
tures increases in Figure 1d, the overall recovery error in-
creased around 200% on average for all the methods. Fig-
ures 1e and 1f present the performance in a no-dense-noise

setting. Since LR-CL has no impact on different corruption
ratios, it can always recover the ground truth coefficient ex-
actly. However, SPRL can still outperform the other methods
under different corruption ratios, achieving a close recovery
of the ground truth coefficient.

Blog Feedback Prediction Table 2 shows the results of
blog feedback prediction in different corruption settings.
Since the RLHH method cannot perfectly handle data cor-
ruption greater than 40%, its result is not shown in Table 2.
From the results, we can conclude: 1) SPRL consistently out-
performs the other competing methods except when the cor-
ruption ratio is 10%, in which case most of the methods have
extremely close results. 2) The error of the SPL and SPRL-
W methods increase dramatically when the corruption ratio
is raised. However, SPRL has consistent performance with
little impact of the corruption ratio. 3) WSL has competi-
tive results, but its error is still around 40% larger than our
proposed method. 4) LR-CL method has good performance
when the data is extremely noisy. However, our proposed
method still gets 11.9% improvement when combining both
clean and noisy data. 5) LR-AL performs the worst since it is
simply applied in the entire dataset without considering the
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data corruption.

4.3 Performance on Robust Classification

Binary Classification on Synthetic Data Table 3 shows
the results on the robust binary classification task on dif-
ferent settings of features and data sizes. From the results,
we conclude: 1) The SPRL method outperforms all the com-
peting methods consistently in different settings, including
RoLR, whose corruption ratio parameter uses the ground
truth value. 2) SVM-CL trained on the clean set performs
worse than the other methods, which shows that utilizing the
large-scale noisy data is important when the size of clean set
is small. 3) SVM-AL has a competitive performance when
the size of the clean set is not large enough for training. But
our proposed method, SPRL, can still perform better than
SVM-AL even when 40% of the data labels are corrupted.
4) The SPRL-W method usually performs better than SPL
when the corruption ratio is larger than 20%. This is because
SPRL-W utilizes the prior knowledge on the clean set, which
greatly helps when the corruption ratio increases.

Sentiment Classification of Movie Reviews The perfor-
mance on sentiment classification of IMDb movie reviews
is shown in Figure 2. We use box plots to show the distribu-
tion of results based on the five number summary: minimum,
first quartile, median, third quartile, and maximum. The re-
sults are run on 20 independent datasets sampled from the
IMDb dataset with different corruption ratios. From the re-
sults, we can conclude: 1) SPRL outperforms the other com-
peting methods in different settings of corruption ratio. 2)
When the corruption ratio is small, the performance of SVM-
CL is worse than all the other methods. However, when the
corruption ratio is increased, its F1 scores are better than all
the other methods except SPRL, which has a consistent per-
formance. 3) When the corruption ratio increases, the perfor-
mance of SPRL-W degrades dramatically since the clean set
is not included in its training set. 4) Even when the corrup-
tion ratio is 50%, SPRL still performs better than SVM-CL
because it can utilize the uncorrupted data in the noisy data
to improve its performance in the training process.

5 Related Work

In this section, the work related to this paper is summarized
from the following two aspects.

5.1 Self-Paced Learning

In recent years, self-paced learning (Kumar, Packer, and
Koller 2010) has received widespread attention for vari-
ous applications in machine learning, such as image clas-
sification (Jiang et al. 2015), event detection (Jiang et al.
2014a) and object tracking (Zhang et al. 2016). Inspired
by the learning process of humans and animals (Bengio et
al. 2009), self-paced learning (SPL) (Kumar, Packer, and
Koller 2010) considers to approach training data in a mean-
ingful order, from easy to hard, to facilitate the learning
process. Unlike standard curriculum learning (Bengio et al.
2009), which learns the data in a predefined curriculum
design based on prior knowledge, SPL learns the training

data in an order that is dynamically determined by feed-
back during the learning process itself, which means it
can be more extensively utilized in practice. Furthermore,
a wide assortment of SPL-based methods (Pi et al. 2016;
Ma et al. 2017) have been developed, including self-paced
curriculum learning (Jiang et al. 2015), self-paced learning
with diversity (Jiang et al. 2014b), multi-view (Xu, Tao, and
Xu 2015), and multi-task (Li et al. 2017a; Keerthiram Mu-
rugesan 2017) self-paced learning. In addition, several re-
searchers have conducted theoretical analyses of self-paced
learning. Meng et al. (Meng, Zhao, and Jiang 2015) provides
a theoretical analysis of the robustness of SPL, revealing that
the implicit objective function of SPL has a similar configu-
ration to a non-convex regularized penalty. Such regulariza-
tion restricts the contributions of noisy data samples to the
objective, and thus enhances the learning robustness. Ma et
al. (Ma, Liu, and Meng 2017) proved that the learning pro-
cess of SPL always converges to critical points of its implicit
objective under mild conditions. However, none of the ex-
isting self-paced learning approaches can be applied to our
problem of leveraging clean labels in noisy data.

5.2 Robust Learning

A large body of literature on the robust learning problem
has been established over the last few decades. Most of the
studies aim to directly learn from noisy labels and focus
on noise-robust algorithms. For instance, (Chen, Carama-
nis, and Mannor 2013) proposed a robust algorithm based
on trimmed inner product. (McWilliams et al. 2014) pro-
posed a sub-sampling algorithm for large-scale corrupted
linear regression. (Bhatia, Jain, and Kar 2015) and (Zhang et
al. 2017b) proposed hard-thresholding based methods with
strong guarantees of coefficient recovery under a mild as-
sumption on datasets. Another group of methods focus on
removing or correcting mislabeled data. For example, some
work utilized heavy-tailed distributions (Zhu, Leung, and He
2013) such as Student t-distribution and Poisson distribution
to model the mislabeled data, while others detected these
outliers based on Gaussian distribution (Solberg and Lahti
2005; Hodge and Austin 2004) under the assumption that
outliers have a small probability of occurrence in the popu-
lation. Some methods do not assume any prior knowledge
on the data distribution based on kernel functions (Late-
cki, Lazarevic, and Pokrajac 2007; Roth 2006). These ap-
proaches utilize kernel functions to approximate the actual
density distribution and declare the instances lying in the
low probability area of the kernel density function as out-
liers. However, all these approaches typically jointly learn
the clean and noisy data together, but cannot fully leverage
the information contained in the clean set.

6 Conclusion

In this paper, a self-paced robust learning algorithm is pro-
posed to leverage clean labels in noisy data. To achieve this,
the self-paced learning process selects data instances from
clean to noisy under the supervision of the well-labeled data,
which helps to hedge the risk of learning from corrupted
data samples. Moreover, theoretical analysis shows that our
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SPRL algorithm can be converged when the loss function
is lower bounded. Extensive experiments on both synthetic
data and real-world data on robust regression and classifica-
tion tasks demonstrate that the proposed algorithm outper-
forms the other comparable methods over a range of differ-
ent data settings.
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