
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8362–8372,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8362

Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He†, Xuchao Zhang†, Shuo Lei†∗, Zhiqian Chen+, Fanglan Chen†,

Abdulaziz Alhamadani†, Bei Xiao‡, Chang-Tien Lu†
†Discovery Analytics Center, Virginia Tech, Falls Church, VA, USA

+ Computer Science and Engineering, Mississippi State University, Starkville, Mississippi, USA
‡Department of Computer Science, American University, Washington, DC, USA

†{jianfenghe, xuczhang, slei, fanglanc, hamdani, ctlu}@vt.edu,
+zchen@cse.msstate.edu, ‡bei.xiao@american.edu

Abstract

The uncertainty measurement of classified re-
sults is especially important in areas requir-
ing limited human resources for higher accu-
racy. For instance, data-driven algorithms di-
agnosing diseases need accurate uncertainty
score to decide whether additional but limited
quantity of experts are needed for rectifica-
tion. However, few uncertainty models focus
on improving the performance of text classi-
fication where human resources are involved.
To achieve this, we aim at generating accu-
rate uncertainty score by improving the confi-
dence of winning scores. Thus, a model called
MSD, which includes three independent com-
ponents as “mix-up”, “self-ensembling”, “dis-
tinctiveness score”, is proposed to improve the
accuracy of uncertainty score by reducing the
effect of overconfidence of winning score and
considering the impact of different categories
of uncertainty simultaneously. MSD can be
applied with different Deep Neural Networks.
Extensive experiments with ablation setting
are conducted on four real-world datasets, on
which, competitive results are obtained.

1 Introduction

Text classification is a popular topic with broad
applications. A successful and common model for
text classification is Deep Neural Network (DNN).
However, some real-world applications expect re-
sults with higher accuracy than the ones achieved
by state-of-the-art algorithms. Hence, the most
uncertain predictions need domain experts for fur-
ther decisions (Zhang et al., 2019). To efficiently
leverage the limited human resources, it is essential
to calculate uncertainty score of the model predic-
tion, which quantifies how unconfident the model
prediction is. This paper aims at generating more
accurate uncertainty score through DNNs in the
text classification with human involvement in the

∗Corresponding author.

testing process. This is different from active learn-
ing, which involves experts in the training process.

Though various metrics of the uncertainty score
have been studied (Dong et al., 2018; Wang et al.,
2019; Shen et al., 2019; Xiao and Wang, 2019; Ku-
mar et al., 2019), the existing metrics directly or
indirectly depend on winning score, which is the
maximum probability in a semantic vector (softmax
vector from the last layer of a DNN model) (Thu-
lasidasan et al., 2019). Therefore, improving Con-
fidence of Winning Score (CWS), which describes
how confident the winning score matches the sam-
ple uncertainty and represents the accuracy of the
winning score, is helpful to improve the accuracy
of uncertainty score. To show the effect of im-
proving CWS, this paper considers a basic way to
measure uncertainty score, which is the reciprocal
of winning score (Snoek et al., 2019). However, we
face two challenges in improving CWS: (1) how to
reduce effect of overconfidence of winning score1

to boost negative correlation between the winning
score and sample uncertainty, (2) how to generate
winning scores by considering comprehensive cate-
gories of uncertainty in one model rather than only
one or two categories of uncertainty at a time.

The overconfidence of winning scores has been
neglected by vast previous works in Natural Lan-
guage Processing. We identify the presence of
overconfidence for the training samples: because
the winning scores of training samples are all set
as 1 by one-hot labels, each sample will have the
same uncertainty score. Consequently, the train-
ing sample uncertainty will be the same. Together,
the winning scores and sample uncertainty are the
same for various training samples. Hence, the neg-
ative correlation between the winning scores and
sample uncertainty cannot be guaranteed, which is
a negative effect of the overconfidence. The effect
will affect calculating the uncertainty scores. Con-
cretely, in the testing process, we apply different

1Noted as overconfidence in the paper.



8363

predicted winning scores to match different sample
uncertainty based on a latent assumption that the
predicted winning score is negatively correlated to
the sample uncertainty. However, the assumption is
biased because of the negative effect of the overcon-
fidence. To mitigate the impact of overconfidence,
we generate new training sample representations
with different winning scores, which are also nega-
tively correlated to the sample uncertainty.

Additionally, the process generating the winning
score should consider the impact of different cate-
gories of uncertainty simultaneously, while vast of
the previous works (Shen et al., 2019; Wang et al.,
2019; Xiao and Wang, 2019; Zhang et al., 2019)
only consider one or two categories of uncertainty
at a time2. We assume the partial consideration
will decrease the CWS, and so will the accuracy
of uncertainty score. We verify this assumption
by our ablation experiments. The uncertainty of a
model prediction is derived from two parts: data
uncertainty and model uncertainty. The data uncer-
tainty (Rohekar et al., 2019) is further divided into
two categories: epistemic uncertainty comes from
lack of knowledge, such as only few training data
or out-of-distribution testing data; aleatoric uncer-
tainty is caused by noisy data in the generation of
both training data and testing data. The model un-
certainty (Liu et al., 2019) also has two categories:
parametric uncertainty comes from different pos-
sibilities of parameter values in estimating model
parameters under the current model structure and
training data; structural uncertainty is uncertainty
about whether the current model design (e.g., lay-
ers, loss functions) is reasonable or sufficient for
the current task and training data. Since the so-
lution of structural uncertainty requires extremely
high computations, such as Neural Architecture
Search (NAS) (Zoph and Le, 2016; Xie et al., 2019),
we only reduce or scale the other three categories
of uncertainty simultaneously to improve the CWS.

To address the above two challenges, we propose
a model called MSD, which is named as the initials
of its components (“Mix-up”, “Self-ensembling”,
and “Distinctiveness score”) aiming at handling
overconfidence and various uncertainty with flexi-
bility. The flexibility means that MSD is effective
on different DNN models (Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN)
and Transformer (Vaswani et al., 2017)), and each
component in MSD is independent, which can be

2Please refer to our appendix for detailed comparisons

arbitrarily assembled. The main contributions of
our work can be summarized as follows,
Reducing impact of overconfidence. To reduce
the impact of overconfidence in calculating uncer-
tainty scores, we apply mix-up to generate new
sample representations boosting the negative cor-
relation between the winning scores and sample
uncertainty.
Considering various uncertainty comprehen-
sively. We propose MSD with three components to
handle the epistemic uncertainty, aleatoric uncer-
tainty, and parametric uncertainty simultaneously,
so that the uncertainty score is more accurate.
Designing flexibility of MSD. MSD can be ap-
plied with different DNNs (CNN, RNN, and Trans-
former). Each component in MSD can be assem-
bled with other components arbitrarily due to their
independence.
Implementing extensive experiments. We eval-
uated MSD by the improvement of text classifi-
cation accuracy in simulating human involvement.
The experiments of MSD with ablation setting on
four datasets achieved competitive results, which
demonstrated that MSD generates more accurate
uncertainty scores.

2 Related work

Methods mitigating uncertainty: One main so-
lution to mitigate uncertainty is Bayesian Neural
Network (BNN) (Klein et al., 2017), which is a neu-
ral network with a prior distribution on its weights.
Based on BNN, variational Bayesian inference is
proposed, which finds an approximated distribution
of parameters for the true distribution of parame-
ters by Kullback-Leibler (KL) divergence (Xiao
and Wang, 2019; Wen et al., 2018; Louizos and
Welling, 2017; Malinin and Gales, 2019). Further,
as an approximation of variational Bayesian infer-
ence, Monte Carlo dropout is proposed (Gal and
Ghahramani, 2016; Kendall and Gal, 2017). This
is implemented by training a model with dropout
before every layer, and also performing the dropout
in the testing process to derive results from dif-
ferent sampled parameter sets. Plus, an approxi-
mation of Monte Carlo dropout is tried by only
adding dropout before the last layer (Riquelme
et al., 2018; Snoek et al., 2019). Besides BNN,
noise injection is the other main technique to miti-
gate uncertainty. It has two categories: parameter
noise injection adds noise perturbation in network
weights (Plappert et al., 2017); data noise injection



8364

directly inputs noise perturbation into data (Dong
et al., 2018).

Metrics scaling uncertainty: Many metrics
about uncertainty score are proposed based on
the softmax vectors. As an important element
in the sofmax vectors, winning score is proposed
in (Hendrycks and Gimpel, 2016). Furthermore,
temperature scaling (Guo et al., 2017) is proposed
to get the calibrated probability by adding a scalar
parameter to each class in calculating softmax vec-
tor. Applying winning score as prediction confi-
dence is proposed in (Niculescu-Mizil and Caruana,
2005; Guo et al., 2017). This confidence is fur-
ther applied in Expected Calibration Error (Naeini
et al., 2015), which is the absolute value of the
difference between the accuracy and confidence
of results. Besides, Overconfidence Error is pro-
posed by applying winning score as confidence and
penalizing samples with confidence values greater
than accuracy values (Thulasidasan et al., 2019).
In addition, four metrics for result confidence are
proposed in (Wang et al., 2019) by combining ex-
pectation and variance of predictions from different
sampled parameter sets. In addition, cross-entropy
is applied to calculate uncertainty score by dropout
sampling and bin counting in (Zhang et al., 2019),
which also considers text classification with human
involvement. Different from previous works, we
improve the accuracy of uncertainty score by reduc-
ing the effect of overconfidence and considering
three categories of uncertainty simultaneously.

3 Model

3.1 Basic Text Classification Model

In the traditional text classification model (Zhang
et al., 2019; Shen et al., 2018), given an original
text, we apply preprocessing (tokenization, lemma-
tization, etc.) to get its tokens in discrete num-
bers. Then, a pre-trained token embedding, such
as word2vec (Mikolov et al., 2013) or Glove (Pen-
nington et al., 2014) is applied as a projector. Af-
ter that, a sequence of dense vectors for i-th text
Zi = [zi1, zi2, ..., zin] is derived by the embedding,
where zij is the embedding of j-th word. The Zi is
fed to a sequence model f , such as CNN or RNN.
Finally, we get i-th text representation xi from the
penultimate layer of f with dropout, and predicted
semantic vector yi = [yi1, yi2, ..., yic] from the last
layer of f , where c is the number of classes and
yij is the probability that i-th text belongs to j-th
class. Finally, the f is trained by cross-entropy

loss between the predicted semantic vector yi and
one-hot label ŷi = [ŷi1, ŷi2, ..., ŷic] as follows,

LCE =
c∑
j=1

ŷijlog(yij). (1)

In the testing process, uncertainty score U is for-
mulated as follows,

U =
1

max(y∗i )
(2)

where y∗i is semantic vector of i-th testing sample
and max(y∗i ) is the winning score of y∗i . Then, U
conveys the uncertainty of model result.

3.2 Overview Of MSD
Fig. 1 illustrates the training process of our model.
In the first row, after prepossessing training text, we
calculate the text representations, which is output
of the penultimate layer with dropout. Then, we
mix these representations in the batch-level. These
mix-up-generated representations are fed into a
fully connected (FC) layer for final semantic vec-
tors. In the second row, we apply another model,
which implements self-ensembling, with indepen-
dent optimized parameters but the same structure
as the one in the first row.

In the testing process, besides computing the
reciprocals of winning scores with dropout mech-
anism, distinctiveness scores is also calculated by
the Mahalanobis distance between the testing sam-
ples and distributions of training samples. Finally,
the uncertainty score is calculated by adding the re-
ciprocal of winning score and distinctiveness score.

3.3 MSD Training: Mix-up
Since the overconfidence is caused by the train-
ing samples with same winning scores due to the
one-hot labels, and adding noise perturbation in
the training process is a way to mitigate aleatoric
uncertainty, we apply mix-up (Zhang et al., 2017;
Thulasidasan et al., 2019) to jointly address the two
issues. Mix-up generates new sample representa-
tions with various winning scores.

Concretely, we have i-th sample representation
xi from the penultimate layer of f with dropout. In
a batch, we randomly mix i-th and j-th samples’
representations (xi and xj) and one-hot labels (ŷi
and ŷj) to get a mix-up sample representation x̃
and ground truth label ỹ. We formulate mix-up as,

x̃ = αxi + (1− α)xj (3)



8365

Preprocessed 
Text Tokens

Labels

.

.

.

Embedding Dropout
.
.
.

Mix up.
.
.

Dropout
.
.
.

Embedding

y

y

Encoding

FC

FC

0

0
0
0

1
0

0

0

.8

.2

.9
0

.1
0

0

.7

0

.1

.1

.1

LKL

Self-ensembling

.

.

.

.

.

.

LSE

LKL2

Sequence Model (CNN, 
RNN or Transformer)

Sequence Model (CNN, 
RNN or Transformer)

Figure 1: Diagram of training process of MSD. Orange arrows, green arrows, and blue arrows represent data flow
of the first (default) model, second model, and labels respectively. Since self-ensembling is optional, it is illustrated
as dotted lines. The distinctiveness score is not shown in the diagram since it is applied in the testing process. The
numbers shown in y, ŷ and ỹ are probabilities of the semantic vectors.

ỹ = αŷi + (1− α)ŷj (4)

where α is a random number ranging from Ω to
1.00. The Ω is set above 0.5, so the i-th sample’s
semantics will be the main semantics of x̃, which
is regarded as class of x̃ in MSD. Since the dif-
ference among winning scores and negative cor-
relation between the winning scores and sample
uncertainty are essential to reduce the impact of
overconfidence, we analyze the two factors below.

Difference: Since 1 ≥ α ≥ Ω > 0.5, ỹ has
a winning score as α if xi and xj have different
classes, or as 1 if two samples have the same class.
Then, firstly, α or 1 is randomly chosen; secondly,
the specific value of α is randomly sampled. Thus,
different values of winning scores of training sam-
ples are achieved by the mix-up.

Negative correlation: Since x̃ includes i-th sam-
ple’s representation xi with ratio α > 0.5, xj can
be regarded as noise of x̃. In one scenario, when xi
and xj have different classes, xj has obvious effect
from noise on xi due to different distributions in
various semantics. In this case, when α is greater,
x̃ has less noise from different semantic distribu-
tions. Then, x̃ is less adulterated and has higher
confidence belonging to the class of xi. Since now
winning score equals to α and the transitivity in
math: the higher winning score is, the less adulter-
ated x̃ is, which means x̃ has less uncertainty. In
another scenario, where xi and xj belong to same
class, we assume that xj has no effect from noise
on xi, because xj belongs to same distributions
as xi due to same semantics. Thus, the x̃ is the
least uncertain in its class, and its winning score is

the highest as 1. Hence, the negative correlation is
boosted by mix-up.

After the mix-up, we feed x̃ rather than x to FC
layer for its predicted semantic vector y. However,
we do not use cross-entropy loss (Eq. 1) in MSD,
because it will learn the winning scores close to 1
due to no limit on the upper bound, which cannot
ensure the negative correlation. Instead, we use KL
divergence loss as one of our loss functions,

LKL =
c∑
j=1

ỹijlog(
ỹij
yij

) (5)

because ỹi approximates to provide both upper and
lower bound limitations by its non-zero element(s).
The ỹij is a random value in each batch and each
epoch. The overconfidence is reduced by mix-up
due to difference and negative correlation. Besides,
xj can be regarded as random noise perturbation.
Therefore, the aleatoric uncertainty is mitigated.

3.4 MSD Training: Self-ensembling
The parametric uncertainty comes from different
sets of weights achieving similar training losses.
Although the dropout can mitigate parametric un-
certainty, previous works ignore the effect of self-
ensembling (Laine and Aila, 2016; Park et al.,
2018), which can boost the model combination
and further decrease parametric uncertainty. We
assume the dropout reduces the parametric uncer-
tainty by loss generated within a model, while the
self-ensembling reduces it from loss generated be-
tween models. The loss generated between models
can help stabilize the model weights, because it



8366

can provide extra limitations besides the loss gen-
erated in a model, which reduce feasible weight
sets. Plus, the designed component should aim at
mitigating parametric uncertainty while have little
impact on the model performance. Consider that
the self-ensembling calculates the loss between the
same models, which has more effect on model ro-
bustness and less impact on model performance,
we apply the self-ensembling in addition to dropout
to further mitigate the parametric uncertainty.

We construct another model with the same frame-
work (e.g. layers, loss functions, dropout rate), and
apply a self-ensemble loss LSE to minimize the
difference between two outputs from two models
(the first model and the second model3) with the
same framework and inputs,

LSE = D[fθ1(x̃, φ1), fθ2(x̃, φ2)] (6)

where θa is parameter set of a-th model, φa repre-
sents randomly sampled dropout neurons in neural
network f , and D[y1,y2] is a metric between two
semantic vectors. D is Mean Square Error (MSE).

Although we already have the loss LSE , we add
KL divergence loss LKL2 in the second model for
the same setting. The LKL2 is same as Eq. 5, while
yij comes from the second model. We formulate
MSD loss function LMSD as follows,

LMSD = LKL + λ1LKL2 + λ2LSE (7)

where λ1 and λ2 equal to 1 and a positive value
respectively, when we apply self-ensembling, other-
wise they both equal to 0. Together, the parametric
uncertainty is further reduced.

3.5 MSD Testing: Distinctiveness Score
We also consider the epistemic uncertainty. Though
out-of-distribution testing samples are known as
the sources of epistemic uncertainty, they show
that the epistemic uncertainty is the distinctiveness
between the testing and training texts. However,
it is not easy to consider the distinctiveness in the
training process, because the training process is
not aware of distributions of the testing samples.
Therefore, we assume each class-level distribution
of the training data can be modeled as a multivari-
able Gaussian distribution. We consider distance
between a testing sample and each class-level Gaus-
sian distribution as one part of the distinctiveness

3The first model is our default model, and the second
model is only required when we apply self-ensembling. They
are shown in the first row and second row respectively in
Fig. 1.

score. Motivated by (Lee et al., 2018), we apply
Mahalanobis distance as follows,

mis = (x∗i − µs)TΣ−1(x∗i − µs) (8)

where x∗i is the representation of i-th testing sam-
ple in the first model without mix-up, and µs is
the mean of representations of all training samples
that belong to s-th class. Σ−1 is inverse of the
covariance of all training samples. We do not ap-
ply the covariance in class-level to avoid singular
matrices. After we obtain the Mahalanobis dis-
tance mi = [mi1,mi2, ...,mic] of i-th testing sam-
ple to each class-conditional Gaussian distribution,
we can also have a predicted class from this view,
which is the class with the smallest distance in mi.
In this way, we design penalty p as the other part in
the distinctiveness score, which is not considered
in (Lee et al., 2018), as below,

pi =

{
0 rm = ry
ξ rm 6= ry

(9)

where rm is a classified result by mi and ry is
the class with maximum probabilities in predicted
semantic vector y∗i . ξ is a constant and set as 10 in
our work. Our distinctiveness score di is,

di = log(β1 × pi + β2 ×min(mi)) (10)

where log is a logarithm to the base 10; β1 and
β2 are constants, both set as 1. Thus, the epis-
temic uncertainty is scaled in the uncertainty score
to improve its accuracy. And the component im-
proves CWS indirectly, because it remedies CWS
for missing the epistemic uncertainty in the training
process.

3.6 MSD Testing: Uncertainty Score
After we have trained our model by applying mix-
up and self-ensembling, the winning scores will
have higher confidence and accuracy due to reduc-
ing the overconfidence, aleatoric uncertainty, and
parametric uncertainty. Regardless of whether we
use self-ensembling or not, we only apply the first
model to calculate the mean of predicted semantic
vectors ȳ∗i with dropout mechanism. Concretely,
given a testing sample x∗i , we obtain k different pre-
dicted semantic vectors y∗i1,y

∗
i2, ...,y

∗
ik by k times

tryouts with the same dropout rate, from which, ȳ∗i
is the mean of k different y∗i . The maximum prob-
ability in ȳ∗i is our winning score. Besides training
for more confident winning scores, we also scale



8367

distinctiveness score di to measure the impact of
epistemic uncertainty. We calculate our final uncer-
tainty score U as,

U = γ1 ×
1

max(ȳ∗i )
+ γ2 × di (11)

where γ1 and γ2 are constants.

4 Experiments

Focusing on the text classification with human in-
volvement, we evaluate the performance of MSD
on four real-world datasets. Sec. 4.1 shows an
overview of our experiment settings. Sec. 4.2 com-
pares the performance between MSD and the state-
of-the-art methods, and analyzes results of ablation
experiments and parameter sensitivity analysis.

4.1 Experimental Setup
We apply Glove embedding (Pennington et al.,
2014), which is pretrained with dimension of 200,
as our word embedding by default. For CNN
model, we train MSD by setting a sequence model
as a 3-layer CNN by default, with batch size of 32,
momentum of 0.9, initial learning rate as 0.001 by
Adam (Kingma and Ba, 2014), kernel size of each
layer as 3, 4, 5, respectively, as well as dropout rate
of 0.3. For RNN model, Bidirectional Gated Recur-
rent Units (BiGRU) (Jabreel et al., 2018) is applied
as an example of RNN model with two hidden lay-
ers. For Transformer, we apply XLnet (Yang et al.,
2019) as an example4.

4.1.1 Datasets
The four real-world-based datasets used in our
experiments are as follow: (1) 20 Newsgroups
(20News) (Lang, 1995) includes 20 different news
categories with 20,000 documents in it. (2). Ama-
zon Reviews (Amazon) (McAuley and Leskovec,
2013) is a collection of reviews from Amazon from
May 1996 to July 2013. For better comparison,
we apply data from Sports and outdoors category,
which is same as (Zhang et al., 2019). This dataset
has 272,630 text samples with sentimental rating
labels from 1 to 5. (3) IMDb Reviews (IMDb)
has binary sentimental rating with 50,000 popular
movie reviews. (4). Yelp Reviews (Yelp) (Zhang
et al., 2015) is a collection with sentimental rating
labels from 1 to 5. It has two parts: the first part
has 130,000 samples for each rating; the second
part has 10,000 samples for each rating.

4More details and the experimental results on RNN and
Transformer are shown in the appendix.

For the first three datasets, we apply the same
split setting as (Zhang et al., 2019), where for each
dataset, 70% of samples form the training set, 10%
of samples form the validation set, and the rest
20% form the testing set. For the Yelp dataset, we
choose 9,000 samples randomly from the second
part for each label as training set and the rest 1,000
samples for each label as the validation set, while
all samples in the first part form the testing set.

4.1.2 Metrics
To evaluate the performance improvement of text
classification with human involvement, which
shows accuracy of uncertainty scores, we scale
classification accuracy in different eliminated ra-
tios. Concretely, for a testing set S with q samples
and eliminated ratio r, we remove the most uncer-
tain samples Sr from S based on uncertainty score
ranking, where Sr has r × q samples. The more
accurate uncertainty score we obtain, the more mis-
classified samples will be removed with the same
r. Thus, if a model generates more accurate uncer-
tainty scores, then the F1 scores for the rest testing
samples will be higher with the same r. Because
uncertainty score is more crucial for semantics with
less training samples (e.g. “patient data samples”
versus “the data for the healthy” in disease detec-
tion), we apply macro F1 score for the rest testing
samples in the different eliminated ratios.

4.1.3 Baselines and Ablation Setting
We compare MSD with a state-of-the-art method,
which achieves superior improvement of F1
scores in text classification with human involve-
ment (Zhang et al., 2019). It proposes two methods:
Dropout-Entropy (DE) is a dropout-entropy based
model, and DE+Metric is a DE model along with
metric learning. As for MSD, we divide MSD into
three sub-models for ablation study: MSD1 is a
sub-model with only mix-up component; MSD2-a
(abbreviate as MSD2) is one with two components,
we apply mix-up and self-ensembling components
by default; to show the flexibility of MSD, we de-
sign MSD2-b, which has two components as mix-
up and distinctiveness score; and MSD3 is one with
all three components.

4.2 Experimental Results

4.2.1 Results of CNN model
Table 1, 2, 3, 4 report the F1 score improvement
in the text classification with various eliminated ra-
tios (10%, 20%, 30%, 40%) for CNN model. The



8368

improved ratios of F1 scores compared with no un-
certainty elimination (0% column), are illustrated
after the F1 scores. The parameter setting of Ω, λ2,
γ1, γ2 are given after each MSD in order. Three
datasets (20 Newsgroups, Amazon, Yelp) are com-
pared in macro F1 scores, except IMDb, which
applies weighted F1 score for better comparison
with (Zhang et al., 2019). From the tables, we
conclude as below.

1) Better values of F1 scores: MSDs (MSD1,
MSD2, MSD3) improve F1 scores in values when
certain portions of the most uncertain samples are
eliminated. Especially for the Amazon dataset,
the DE and DE+Metric both have negative growth
when more uncertain samples are removed with
eliminated ratios increased. This shows the accu-
racy of uncertainty score scaled in the testing is low
for Amazon by DE and DE+Metric, while MSDs
achieve significant increase on F1 when the most
uncertain samples are eliminated, such as 26.64%
increase in 40% elimination. In the 20News, MSDs
achieve slightly lower F1 scores compared with
DE+Metric, although slightly higher in F1 scores
compared with DE. This is caused by obvious dif-
ference between texts with various semantics, so
the uncertainty influence weakens and MSD is not
very effective in the 20News.

2) Better improved ratios of F1 scores: If the
uncertainty scores are more accurate, higher im-
provement in the ratios of F1 scores would also be
achieved. In comparison to DE and DE+Metric,
MSDs always achieve better improved ratios of
F1. Thus, MSDs generate more accurate uncer-
tainty score. Especially, though MSD2 has lower
F1 score compared with DE+Metric in 0% elimina-
tion, it still gets higher F1 score in 40% elimination
in IMDb. Plus, though the F1 scores of MSDs are
not higher compared with DE+Metric in 20News,
higher improved ratios of F1 scores are achieved
by MSDs. Thus, MSD is also competitive in com-
parison with baselines in 20News.

3) Effectiveness for each component by abla-
tion setting: Our proposed three components can
be applied independently and further improve accu-
racy of uncertainty scores by combining them in the
most situations, which shows effect of comprehen-
sive consideration of uncertainty. In the 20News
and Yelp datasets, when one or two components
are added, we find consistent increase on F1 scores
from MSD1 to MSD2, and from MSD2 to MSD3.
Though the MSD3 does not achieve consistently

higher improvement in various ratio eliminations in
the IMDb and Amazon datasets, the performance
of MSD2 is consistently higher than MSD1. It
shows the effectiveness of self-ensembling in re-
ducing the influence of uncertainty. Besides, the
MSD3 achieves higher improvement of F1 scores
in some eliminated ratios compared with MSD2
in the IMDb and Amazon datasets. We explain
this as: the out-of-distribution testing texts do not
distribute evenly in various eliminated ratios.

4.2.2 Results of Transformer and RNN model
Table 5 and Table 6 report the F1 score improve-
ment in text classification with various eliminated
ratios (10%, 20%, 30%, 40%) for BiGRU and XL-
net respectively. Then, we conclude as below.

1) Higher performance in macro F1 by
MSD3: From Tables 5 and 6, MSD3 achieves
higher improved ratios of F1 scores in different
eliminated ratios. Though the MSD2-b has higher
F1 scores with eliminated ratios 10% and 20%, the
other F1 scores of MSD3 in the two tables are still
the highest in each eliminated ratio. The superior
improvement of both F1 scores and ratios of F1
scores shows the joint effect of three components.
Furthermore, the results of MSD2-b and MSD3
show the effect of distinctiveness scores for macro
F1 in Amazon, which has imbalanced data distribu-
tions. Besides, though MSD2-a performs poorly by
mix-up and self-ensembling, this performance is
reasonable. Because XLnet is a pretrained model,
we have parameters of only two FC layers to train,
which has much less feasible solutions of possible
parameters compared with the CNN and RNN mod-
els. Thus, further decrease of feasible solutions of
possible parameters brings negative effect in this
case.

2) Flexibility of MSD: From the Table 5 and
Table 6 for RNN and Transformer respectively, as
well as Tables 1, 2, 3, and 4 for CNN model, we
can observe the competitive performance of MSD
in text classification F1 scores compared with two
baselines. This verifies that MSD is effective to
assemble with other DNNs (CNN, RNN and Trans-
former). Besides, the ablation setting of MSD1,
MSD2-a, MSD2-b and MSD3 shows that the three
components in MSD can be assembled arbitrarily
based on the characteristics of datasets.

4.2.3 Parameter Sensitivity Analysis
The impact of different Ω for the mix-up, various
λ2 for the self-ensembling and γ1, γ2 for the dis-



8369

Table 1: Accuracy of uncertainty scores shown by improvement of macro F1 scores for the 20News (CNN model)

Methods (Ω, λ2, γ1, γ2)
Uncertainty Ratio (Macro F1, Improved Ratio)

0% 10% 20% 30% 40%
DE 0.752 0.796(5.96%) 0.835(11.05%) 0.872(16.04%) 0.900(19.70%)
DE+Metric 0.774 0.826(6.70%) 0.866(11.97%) 0.904(16.87%) 0.929(20.02%)
MSD1 (1, 0, 1, 0) 0.751 0.808(7.44%) 0.854(13.50%) 0.894(18.83%) 0.923(22.70%)
MSD2 (1, 0.1, 1, 0) 0.760 0.812(6.92%) 0.849(11.73%) 0.886(16.59%) 0.920(21.47%)
MSD3 (1, 0.1, 1, 0.01) 0.760 0.812(6.95%) 0.856(12.62%) 0.889(16.98%) 0.921(21.22%)

Table 2: Accuracy of uncertainty scores shown by improvement of weighted F1 scores for the IMDb (CNN model)

Methods (Ω, λ2, γ1, γ2)
Uncertainty Ratio (Weighted F1, Improved Ratio)

0% 10% 20% 30% 40%
DE 0.880 0.913(3.75%) 0.939(6.70%) 0.957(8.75%) 0.970(10.22%)
DE+Metric 0.884 0.918(3.85%) 0.944(6.79%) 0.961(8.71%) 0.974(10.18%)
MSD1 (1, 0, 1, 0) 0.874 0.907(3.87%) 0.933(6.79%) 0.952(8.95%) 0.967(10.75%)
MSD2 (1, 1, 1, 0) 0.883 0.918(3.92%) 0.944(6.82%) 0.961(8.85%) 0.976(10.46%)
MSD3 (1, 1, 1, 0.1) 0.882 0.918(4.04%) 0.943(6.88%) 0.962(9.08%) 0.974(10.49%)

Table 3: Accuracy of uncertainty scores shown by improvement of macro F1 scores for the Amazon (CNN model)

Methods (Ω, λ2, γ1, γ2)
Uncertainty Ratio (Macro F1, Improved Ratio)

0% 10% 20% 30% 40%
DE 0.438 0.447(2.07%) 0.439(3.15%) 0.438(1.39%) 0.428(-2.18%)
DE+Metric 0.432 0.443(2.56%) 0.439(1.60%) 0.431(-0.31%) 0.418(-3.27%)
MSD1 (1, 0, 1, 0) 0.434 0.458(5.40%) 0.463(6.52%) 0.464(6.76%) 0.472(8.73%)
MSD2 (1, 0.1, 1, 0) 0.453 0.480(5.83%) 0.502(10.67%) 0.505(11.38%) 0.530(17.01%)
MSD3 (1, 0.1, 1, 0.1) 0.435 0.467(7.44%) 0.490(12.82%) 0.520(19.57%) 0.550(26.64%)

Table 4: Accuracy of uncertainty scores shown by improvement of macro F1 scores for the Yelp (CNN model)

Methods (Ω, λ2, γ1, γ2)
Uncertainty Ratio (Macro F1, Improved Ratio)

0% 10% 20% 30% 40%
DE 0.562 0.583(3.61%) 0.598(6.44%) 0.614(9.16%) 0.629(11.84%)
DE+Metric 0.568 0.590(3.71%) 0.605(6.44%) 0.619(8.94%) 0.634(11.50%)
MSD1 (1, 0, 1, 0) 0.567 0.591(4.23%) 0.610(7.47%) 0.626(10.36%) 0.642(13.22%)
MSD2 (1, 0.1, 1, 0) 0.571 0.596(4.41%) 0.616(7.89%) 0.635(11.25%) 0.654(14.55%)
MSD3 (1, 0.1, 1, 0.01) 0.571 0.597(4.41%) 0.617(7.94%) 0.636(11.30%) 0.655(14.63%)

Table 5: Accuracy of uncertainty scores shown by improvement of macro F1 scores for the Amazon (BiGRU)

Methods (Ω, λ2, γ1, γ2)
Uncertainty Ratio (Macro F1, Improved Ratio)

0% 10% 20% 30% 40%
DE 0.477 0.486(1.75%) 0.478(0.18%) 0.478(0.23%) 0.478(0.23%)
DE+Metric 0.471 0.478(1.50%) 0.466(-0.94%) 0.467(-0.84%) 0.466(-0.96%)
MSD1 (1, 0, 1, 0) 0.456 0.462(1.28%) 0.462(1.4%) 0.469(2.92%) 0.481(5.64%)
MSD2 (1, 0.1, 1, 0) 0.457 0.460(0.58%) 0.460(0.59%) 0.470(2.81%) 0.484(5.80%)
MSD3 (1, 0.1, 1, 0.1) 0.456 0.497(8.88%) 0.524(14.95%) 0.531(16.39%) 0.508(11.36%)



8370

Table 6: Accuracy of uncertainty scores shown by improvement of macro F1 scores for the Amazon (XLnet)

Methods (Ω, λ2, γ1, γ2)
Uncertainty Ratio (Macro F1, Improved Ratio)

0% 10% 20% 30% 40%
DE 0.422 0.422(0.00%) 0.428(1.38%) 0.423(0.26%) 0.424(0.38%)
DE+Metric 0.438 0.444(1.29%) 0.447(1.96%) 0.448(2.35%) 0.447(2.04%)
MSD1 (1, 0, 1, 0) 0.426 0.442(3.85%) 0.446(4.80%) 0.452(6.14%) 0.439(3.22%)
MSD2-a (1, 0.01, 1, 0) 0.415 0.436(5.03%) 0.440(6.06%) 0.434(4.46%) 0.422(1.56%)
MSD2-b (1, 0, 1, 1) 0.424 0.451(6.22%) 0.470(10.87%) 0.486(14.89%) 0.501(17.99%)
MSD3 (1, 0.01, 1, 1) 0.417 0.447(7.16%) 0.467(11.96%) 0.487(16.81%) 0.509(21.95%)

0.0 0.1 0.2 0.3 0.4
Eliminated Ratio

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

M
ac

ro
 F

1 
Sc

or
es

Mix-up Parameter Analysis (20 Newsgroups)

: 0.5
: 0.675
: 0.75
: 0.875
: 0.999999

0.0 0.1 0.2 0.3 0.4
Eliminated Ratio

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
M

ac
ro

 F
1 

Sc
or

es

Self-ensembling Parameter Analysis (Amazon)

2 : 0.01
2 : 0.1
2 : 1
2 : 10
2 : 100

0.0 0.1 0.2 0.3 0.4
Eliminated Ratio

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
ac

ro
 F

1 
Sc

or
es

Distinctiveness Score Parameter Analysis (Amazon)

1 : 1, 2 : 0
1 : 1, 2 : 0.01
1 : 1, 2 : 0.1
1 : 1, 2 : 1
1 : 0.1, 2 : 1
1 : 0.01, 2 : 1
1 : 0, 2 : 1

Figure 2: Diagrams for parameter sensitive analysis. The left panel shows how mix-up parameter Ω affects F1
scores. Middle panel shows how the self-ensembling parameter λ2 affects F1 scores. Right panel shows how
changes in γ1 and γ2 for distinctiveness score affect F1 scores.

tinctiveness score is discussed as below.

1) Parameters for mix-up: The left panel in
Fig. 2 shows the effectiveness of different Ω. We
apply Ω = 0.999999 to approximate no mix-up.
From the subfigure, we find: (1) the F1 scores are
slightly sensitive to different Ω, while the improved
ratios of F1 scores are not sensitive to the change of
Ω. (2) For the 20News, when Ω = 0.75, the macro
F1 scores are the highest in different ratios, which
are higher than the F1 scores of Ω = 0.999999.
This shows the effectiveness of mix-up in improv-
ing the accuracy of uncertainty score.

2) Parameters for self-ensembling: The im-
pact of self-ensembling parameter λ2 is shown in
the middle panel in Fig. 2. This panel shows: (1)
the F1 scores and their improved ratios in various
eliminated ratios are significantly sensitive to λ2,
especially when λ2 is greater than 1. (2) For Ama-
zon dataset, macro F1 scores are the highest when
λ2 = 0.1 rather than λ2 = 0.01. This again verifies
the effectiveness of self-ensembling in improving
the accuracy of uncertainty score.

3) Parameters for distinctiveness score: The
right panel in Fig. 2 shows the impact of various γ1
and γ2 for distinctiveness score. We can see that:

(1) the F1 scores are slightly sensitive to different
γ1 and γ2. (2) The F1 scores of γ1 = 1, γ2 = 0.1
is around 2% higher compared with those of γ1 =
1, γ2 = 0, and nearly 1% higher compared with
those of γ1 = 0, γ2 = 1. This presents the effect of
distinctiveness score in generating more accurate
uncertainty score.

5 Conclusion

We aims at generating more accurate uncertainty
score to improve the performance of text classifi-
cation with human involvement. We propose MSD
with three independent components to improve the
CWS by mitigating the effect of overconfidence
and handling the impact of three categories of un-
certainty. MSD can be applied to various DNNs
(CNN, RNN and Transformer) and each component
in MSD can be arbitrarily assembled. Extensive ex-
periments on four real-world datasets demonstrate
that MSD obtains more accurate uncertainty scores,
and superiorly improved classification performance
when partial uncertain predictions are simulatively
assigned to the experts.



8371

References
Li Dong, Chris Quirk, and Mirella Lapata. 2018. Con-

fidence modeling for neural semantic parsing. arXiv
preprint arXiv:1805.04604.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
1321–1330. JMLR. org.

Dan Hendrycks and Kevin Gimpel. 2016. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint
arXiv:1610.02136.

Mohammed Jabreel, Fadi Hassan, and Antonio
Moreno. 2018. Target-dependent sentiment analysis
of tweets using bidirectional gated recurrent neural
networks. In Advances in Hybridization of Intelli-
gent Methods, pages 39–55. Springer.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer
vision? In Advances in neural information process-
ing systems, pages 5574–5584.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg,
and Frank Hutter. 2017. Learning curve prediction
with bayesian neural networks. International Con-
ference on Learning Representations.

Ananya Kumar, Percy S Liang, and Tengyu Ma. 2019.
Verified uncertainty calibration. In Advances in Neu-
ral Information Processing Systems, pages 3787–
3798.

Samuli Laine and Timo Aila. 2016. Temporal ensem-
bling for semi-supervised learning. arXiv preprint
arXiv:1610.02242.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In Machine Learning Proceedings 1995,
pages 331–339. Elsevier.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
2018. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In
Advances in Neural Information Processing Systems,
pages 7167–7177.

Jeremiah Liu, John Paisley, Marianthi-Anna
Kioumourtzoglou, and Brent Coull. 2019. Ac-
curate uncertainty estimation and decomposition
in ensemble learning. In Advances in Neural
Information Processing Systems, pages 8950–8961.

Christos Louizos and Max Welling. 2017. Multiplica-
tive normalizing flows for variational bayesian neu-
ral networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 2218–2227. JMLR. org.

Andrey Malinin and Mark Gales. 2019. Reverse kl-
divergence training of prior networks: Improved un-
certainty and adversarial robustness. In Advances
in Neural Information Processing Systems, pages
14520–14531.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th
ACM conference on Recommender systems, pages
165–172.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In Proceedings of the 22nd international con-
ference on Machine learning, pages 625–632.

Sungrae Park, JunKeon Park, Su-Jin Shin, and Il-Chul
Moon. 2018. Adversarial dropout for supervised
and semi-supervised learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal,
Szymon Sidor, Richard Y Chen, Xi Chen, Tamim
Asfour, Pieter Abbeel, and Marcin Andrychowicz.
2017. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905.

Carlos Riquelme, George Tucker, and Jasper Snoek.
2018. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep net-
works for thompson sampling. arXiv preprint
arXiv:1802.09127.

Raanan Yehezkel Rohekar, Yaniv Gurwicz, Shami Nisi-
mov, and Gal Novik. 2019. Modeling uncertainty by
learning a hierarchy of deep neural connections. In
Advances in Neural Information Processing Systems,
pages 4246–4256.

Aili Shen, Daniel Beck, Bahar Salehi, Jianzhong Qi,
and Timothy Baldwin. 2019. Modelling uncertainty
in collaborative document quality assessment. In



8372

Proceedings of the 5th Workshop on Noisy User-
generated Text (W-NUT 2019), pages 191–201.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018. Disan: Di-
rectional self-attention network for rnn/cnn-free lan-
guage understanding. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji
Lakshminarayanan, Sebastian Nowozin, D Sculley,
Joshua Dillon, Jie Ren, and Zachary Nado. 2019.
Can you trust your model’s uncertainty? evaluat-
ing predictive uncertainty under dataset shift. In
Advances in Neural Information Processing Systems,
pages 13969–13980.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A
Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
2019. On mixup training: Improved calibration and
predictive uncertainty for deep neural networks. In
Advances in Neural Information Processing Systems,
pages 13888–13899.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and
Maosong Sun. 2019. Improving back-translation
with uncertainty-based confidence estimation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 791–
802.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and
Roger Grosse. 2018. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches.
arXiv preprint arXiv:1803.04386.

Yijun Xiao and William Yang Wang. 2019. Quanti-
fying uncertainties in natural language processing
tasks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7322–7329.

Saining Xie, Alexander Kirillov, Ross Girshick, and
Kaiming He. 2019. Exploring randomly wired neu-
ral networks for image recognition. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 1284–1293.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin,
and David Lopez-Paz. 2017. mixup: Beyond
empirical risk minimization. arXiv preprint
arXiv:1710.09412.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Xuchao Zhang, Fanglan Chen, Chang-Tien Lu, and
Naren Ramakrishnan. 2019. Mitigating uncertainty
in document classification. In Proceedings of
NAACL-HLT, pages 3126–3136.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.


