
Graph Convolutional Networks with Kalman Filtering
for Traffic Prediction

Fanglan Chen
Virginia Tech CS Dept.

fanglanc@vt.edu

Zhiqian Chen
Mississippi State University CSE Dept.

zchen@cse.msstate.edu

Subhodip Biswas
Virginia Tech CS Dept.
subhodip@cs.vt.edu

Shuo Lei
Virginia Tech CS Dept.

slei@vt.edu

Naren Ramakrishnan
Virginia Tech CS Dept.

naren@cs.vt.edu

Chang-Tien Lu
Virginia Tech CS Dept.

ctlu@vt.edu

ABSTRACT
Traffic prediction is a challenging task due to the time-varying
nature of traffic patterns and the complex spatial dependency of
road networks. Adding to the challenge, there are a number of er-
rors introduced in traffic sensor reporting, including bias and noise.
However, most of the previous works treat the sensor observations
as exact measures ignoring the effect of unknown noise. To model
the spatial and temporal dependencies, existing studies combine
graph neural networks (GNNs) with other deep learning techniques
but their equal weighting of different dependencies limits the mod-
els’ ability to capture the real dynamics in the traffic network. To
deal with the above issues, we propose a novel deep learning frame-
work called Deep Kalman Filtering Network (DKFN) to forecast
the network-wide traffic state by modeling the self and neighbor
dependencies as two streams, and their predictions are fused under
the statistical theory and optimized through the Kalman filtering
network. First, the reliability of each stream is evaluated using
variances. Then, the Kalman filter is leveraged to properly fuse
noisy observations in terms of their reliability. Experimental results
reflect the superiority of the proposed method over baseline models
on two real-world traffic datasets in the speed prediction task.

CCS CONCEPTS
• Information systems → Data mining; • Applied computing
→ Transportation.

KEYWORDS
Graph Neural Networks, Kalman Filtering, Traffic Forecasting

ACM Reference Format:
Fanglan Chen, Zhiqian Chen, Subhodip Biswas, Shuo Lei, Naren Ramakr-
ishnan, and Chang-Tien Lu. 2020. Graph Convolutional Networks with
Kalman Filtering for Traffic Prediction . In 28th International Conference
on Advances in Geographic Information Systems (SIGSPATIAL ’20), Novem-
ber 3–6, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3397536.3422257

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8019-5/20/11.
https://doi.org/10.1145/3397536.3422257

1 INTRODUCTION
Accurate traffic prediction is crucial to the development of Intelli-
gent Traffic System (ITS), which nowadays plays an essential role
in smart city planning, road safety management, and traffic con-
trol. Traffic prediction aims to forecast future states, including flow,
speed, density, and trends, in the traffic network with historical
observations of traffic states in a road network. Reliable traffic pre-
diction not only provides scientific support to traffic operators for
early detection of traffic congestion and manage detour in advance
but also provides road users with recommendations of optimal
travel routes to improve their travel experience [7].

Traffic prediction is considered a challenging task for a variety of
factors. (1) Traffic patterns vary greatly with time, and the topology
of road networks is complex. Temporally, the traffic state changes
dynamically with time and presents periodical patterns; spatially,
the topological structure of the urban road network has a large
impact on the traffic state. The intertwining of spatial and temporal
dependencies adds to the difficulty of accurate traffic state modeling.
(2) Bias and noise widely exist in real-world traffic reporting. A
large number of existing traffic data collection techniques, such as
Bluetooth sensor and remote traffic microwave sensor, rely on data
collected from sensors. The real-time traffic state on highway loops
is usually recorded by loop detectors, but sometimes their reporting
is not reliable due to noisy observations or reporting failures caused
by the malfunction of the sensor, accidental manual system closure,
signal transmission errors, etc.

The modeling of spatial and temporal dependencies is a funda-
mental issue in the transportation domain. Many traditional traffic
prediction methods mainly focus on temporal dependency, tak-
ing full advantage of their strengths in dealing with time series.
Examples include the Autoregressive Integrated Moving Average
(ARIMA) [3], Support Vector Regression (SVR) [11], and deep learn-
ing models like Recurrent Neural Networks (RNNs) [2, 5]. However,
these models do not consider spatial dependency, thereby limit-
ing their ability to capture the traffic state governed by the road
network structure.

Recent research works [3, 12] have extended the convolution
operator to graph-structured data, and the concept of convolution
can be naturally applied to model the spatial dependencies within
a traffic network. These models successfully apply convolution to
graph-structured data, but they do not fully capture the unique
properties of graphs, such as road networks. Specifically, the chal-
lenges include (1) Traffic sensor reporting inevitably has bias and
noise, but previous works ignore the unknown bias and noise by

https://doi.org/10.1145/3397536.3422257
https://doi.org/10.1145/3397536.3422257
https://doi.org/10.1145/3397536.3422257


SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Chen et al.

treating the sensor observations as exact measures [3, 12]. Due
to this assumption, errors are introduced into the model from the
beginning and later gets further amplified. (2) The equal weighting
of different dependencies is not guaranteed in the real world, limit-
ing the model’s ability to capture the real dynamics in the traffic
network and their different levels of reliability are not considered.

To deal with these issues, we propose a novel deep learning
framework called DKFN to forecast the network-wide traffic state
via two streams, one for self dependency modeling, and the other
for neighbor dependency modeling. The main idea is to capture
the reliability of predictions from the historical observations of
the sensor itself and those of the neighboring sensors separately
over time. The predictions based on self and neighbor dependencies
are fused and optimized through the proposed framework. The
contributions of this paper include:

• Develop a framework tomodel the complex self and neighbor
dependencies in the traffic network.

• Propose a novel Deep Kalman Filtering Network to capture
the bias and noise in sensor reporting on traffic data.

• Conduct extensive experiments on existing benchmarks.

2 DKFN MODEL
In this section, we introduce our proposed model and describe how
it works for the traffic speed prediction task.

2.1 Overview of Model Architecture
The state data collected in many traffic-related tasks are time-series.
Thus, RNNs are commonly used in the traffic literature to capture
the temporal dependency. In this work, we utilize the same strategy
to model temporal dependency but with a different cutting point.
In modeling the traffic network as a graph, we treat the influence
from one node based on the historical observations from itself and
its neighbors as two different dependencies.

As shown in Figure 1, our proposed model consists of three
modules: self dependency modeling network, neighbor dependency
modeling network, and Kalman filtering network.

Self Dependency

Neighbor Dependency 

LSTM

GC-LSTM

Kalman Filtering

GC

x

x

Ht-1
n

Ht-1
s

t-1

t-1

Kalman Filtering

GC

x

x

H t
n

H t
s

t

t

Ht-1
s Ct-1

s
，

Ht-1
n Ct-1

n
， H t

n C t
n

，

Ht-1

λ t-1

Ht-2

λ t-2

H t
s C t

s
，

LSTM

GC-LSTM

Figure 1: DKFN Model Architecture

2.2 Self Dependency Modeling Network
The self dependency modeling network targets at learning a func-
tion to estimate the current state based on the historical obser-
vations of each node itself. For modeling self dependency, or the

influence of historical observations to the future state of each sensor
in our case, we use the LSTM with three gates and memory cells
similar to the vanilla LSTM. The LSTM estimates the traffic state
at time 𝑡 by iteratively taking the hidden states at previous time
steps and the current traffic features as inputs. For simplicity, the
self dependency modeling process is defined as follows:

H𝑠
𝑡 ,𝐶

𝑠
𝑡 = LSTM

(
𝑋𝑡−𝑝 , . . . , 𝑋𝑡−2, 𝑋𝑡−1

)
, (1)

where 𝑝 is the length of historical time steps of the reported traffic
state. At the final time step 𝑡 , the hidden state H𝑠

𝑡 is the output of
the self dependency modeling network, i.e., the predicted value 𝑦𝑠 .

2.3 Neighbor Dependency Modeling Network
The neighbor dependency modeling network aims to learn a func-
tion to estimate the current state based on historical observations
from spatially proximal nodes. Graph is used to acquire the spatial
dependency from the nodes adjacent to each other, with the recur-
rent neural network to obtain the neighbor dependency at each
time step in the traffic network.

Since we intend to model neighbor dependency apart from self
dependency, we adopt the graph constructed without self-loop,
which disentangles the self and neighbor dependencies and pro-
vide our proposed model with flexibility to determine the weight
of the dependencies towards more accurate predictive results. As
discussed by Wang et al. [9], no single normalization strategy is
optimal for all graphs under different scenarios. Since we consider
the extension of the neighbors of every node in the traffic network,
we chose row normalization as our strategy and the normalized
adjacency matrix is computed as

�̃� = 𝐷−1𝐴. (2)

The main idea of a convolution layer is to extract localized fea-
tures from inputs in a 2D or 3D matrices structure [6]. The localized
area of the input space which has an impact on the convolution
operation results, can be seen as the receptive field. Similarly, the
operation of a graph convolution layer is to extract localized fea-
tures from graph structured inputs. Thus, the product of the input
and the normalized adjacency matrix and a trainable weight matrix
is considered as a graph convolution operation that extracts fea-
tures from each node’s localized region [6]. The graph convolution
generated at the time step 𝑡 is defined as follows:

GC𝑡 =

(
𝑊𝑔𝑐 ⊙ �̃�

)
𝑥𝑡 , (3)

where ⊙ is the Hadamard product, and 𝑥𝑡 ∈ R𝑁 denotes the vector
of traffic state (speed in our case) of all nodes (traffic sensors) at
time 𝑡 .𝑊𝑔𝑐 ∈ R𝑁×𝑁 is a trainable weight matrix for the graph con-
volution and theGC𝑡 ∈ R𝑁 represents the extracted traffic features.
Moreover, the trainable weight𝑊𝑔𝑐 has the ability to capture the
interactive impact between traffic sensors in the network.

Along with the graph convolution layer, neighbor dependency
modeling network also utlizes LSTM, in which the gate structure
and the hidden states are unchanged from its vanilla version [5], but
inputs are substituted by the extracted graph convolution features,
which are reshaped into a vector GC𝑡 ∈ R𝑁 . The input gate 𝑖𝑡 ,
output gate 𝑜𝑡 , forget gate 𝑓𝑡 , and the memory cell state 𝐶𝑡 at the



Graph Convolutional Networks with Kalman Filtering for Traffic Prediction SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

time step 𝑡 are calculated as follows:

𝑖𝑡 = 𝝈 (𝑊𝑖 · [H𝑡−1,GC𝑡 ] + 𝑏𝑖 ) , (4)
𝑜𝑡 = 𝝈 (𝑊𝑜 · [H𝑡−1,GC𝑡 ] + 𝑏𝑜 ) , (5)

𝑓𝑡 = 𝝈
(
𝑊𝑓 · [H𝑡−1,GC𝑡 ] + 𝑏 𝑓

)
, (6)

C̃𝑡 = tanh (𝑊𝑐 · [H𝑡−1,GC𝑡 ] + 𝑏𝑐 ) , (7)

where · denotes the matrix multiplication operator,𝑊𝑖 ,𝑊𝑜 ,𝑊𝑓 , and
𝑊𝑐 are the weight matrices. 𝑏𝑖 , 𝑏𝑜 , 𝑏 𝑓 , and 𝑏𝑐 are bias vectors. 𝝈 is
the sigmoid function, and 𝑡𝑎𝑛ℎ is the hyperbolic tangent function.

Since the traffic state at each sensor location would be influenced
by the previously reported traffic states at the same location and
neighboring stations, the LSTM cell state of each node should also
be affected by neighboring cell states in the graph. Hence, a cell
state gate is defined and added to the original LSTM cell. The cell
state at the last time step 𝑡 − 1 is defined as follows:

C∗
𝑡−1 =

(
𝑊𝑁 ⊙ �̃�

)
·𝐶𝑡−1, (8)

where𝑊𝑁 is a weight matrix to measure the influence each node
received from its neighboring nodes. Then, the final cell state and
the hidden state are calculated as follows:

C𝑛
𝑡 = 𝑓𝑡 ⊙ C∗

𝑡−1 + 𝑖𝑡 ⊙ C̃𝑡 , (9)

H𝑛
𝑡 = 𝑜𝑡 ⊙ tanh

(
C𝑛
𝑡

)
. (10)

At the final time step 𝑡 , the hidden state H𝑛
𝑡 is the output of the

neighbor dependency modeling network, which is equivalent to the
predicted value 𝑦𝑛 . The predicted values, 𝑦𝑠 and 𝑦𝑛 , of the above
two networks, are the inputs to our Kalman Filtering network.

2.4 Kalman Filtering Network
Different from most of the existing works, our work treats the
self dependency and neighbor dependency observations as noisy
measurements rather than exact ground truth. Therefore, each
observation is not completely reliable to predict the future traffic
state. To alleviate the impact of noise and robust the modeling
of traffic state, the Kalman filter is leveraged to properly fuse the
dependencies.

Assume that these self dependency and neighbor dependency
observations are subject to Gaussian distributions:

𝑦𝑠 (𝑥 ; 𝜇𝑠 , 𝜎𝑠 ) ≜
𝑒
− (𝑥−𝜇𝑠 )2

2𝜎2
𝑠√

2𝜋𝜎2
𝑠

, 𝑦𝑛 (𝑥 ; 𝜇𝑛, 𝜎𝑛) ≜
𝑒
− (𝑥−𝜇𝑛 )2

2𝜎2
𝑛√

2𝜋𝜎2
𝑛

, (11)

where subscript 𝑠 and 𝑛 denote self dependency and neighbor depen-
dency, respectively.

To handle the noise, we employ the Kalman filter to derive ac-
curate information from multiple observations. Specifically, their
probability distribution function can be fused by multiplication:

𝑦fused (𝑥 ; 𝜇𝑠 , 𝜎𝑠 , 𝜇𝑛, 𝜎𝑛) =
𝑒
− (𝑥−𝜇𝑠 )2

2𝜎2
𝑠√

2𝜋𝜎2
𝑠

× 𝑒
− (𝑥−𝜇𝑛 )2

2𝜎2
𝑛√

2𝜋𝜎2
𝑛

(12)

=
1

2𝜋
√
𝜎2
𝑠 𝜎

2
𝑛

𝑒
−
(
(𝑥−𝜇𝑠 )2

2𝜎2
𝑠

+ (𝑥−𝜇𝑛 )2

2𝜎2
𝑛

)
. (13)

By reorganizing and transforming, it can be rewritten as:

𝑦fused (𝑥 ; 𝜇fused, 𝜎fused ) =
1√

2𝜋𝜎2
fused

𝑒
− (𝑥−𝜇fused )2

2𝜎2
fused , (14)

where,

𝜇fused =
𝜇𝑠𝜎

2
𝑛 + 𝜇𝑛𝜎

2
𝑠

𝜎2
𝑠 + 𝜎2

𝑛

and 𝜎2
fused =

𝜎2
𝑠 𝜎

2
𝑛

𝜎2
𝑠 + 𝜎2

𝑛

. (15)

This means that different observations can be fused using weighted
sum, and theweight is the variance of the opposite one. The physical
meaning of variance is the degree of reliability (lower is the bet-
ter). However, calculating the variance of one observation requires
the complete data, which is computationally expensive to obtain.
Therefore, we estimate the variance by computing the variance
distribution of each training samples:

E[𝜎2
{𝑠,𝑛}] =

1
𝑁𝑇

∑
𝑖

(𝑇𝑖 −𝑇 )2

𝑁
, (16)

where 𝑁 is the length of each sample sequence, and 𝑁𝑇 is the
number of samples. Further to improve the fusion, we add a weight
variable to re-balance different observations:

𝑦fused =
𝑦𝑠 (𝛾 · 𝜎2

𝑛) + 𝑦𝑛𝜎2
𝑠

𝜎2
𝑠 + 𝛾 · 𝜎2

𝑛

, (17)

where 𝛾 is the weight variable. To feed it into neural networks, we
can remove the constant denominator since the self and neighbor
dependency modeling networks are aware of scalability:

𝑦 = 𝛾 · 𝜎2
𝑛𝑦𝑠 + 𝜎2

𝑠𝑦𝑛, (18)

where 𝑦 is the prediction. Note that our method can reduce compu-
tational overhead by assuming two Gaussian distributions and only
calculating the estimated variances. The original Kalman filter is an
iterative algorithm, but it involves too many matrix multiplications
[4], which makes it not suitable for practical implementation.

The pseudo-code of the proposed framework DKFN is provided
in Algorithm 1.

Algorithm 1: DKFN model
Input: 𝑋𝑇 = [𝑥1, . . . , 𝑥𝑇 ] , 𝐴

1 Parameters:𝑊𝑔𝑐 ,𝑊 ,𝑈 , 𝑏,𝑊𝑁 , and 𝛾
2 Initialize: �̃� = 𝐷−1𝐴,H𝑠

0,H
𝑛
0 = 0 ∈ R𝑁 ,𝐶𝑠

0 ,𝐶
𝑛
0 = 0 ∈ R𝑁

3 for 𝑡 = 1 to𝑇 do
4 H𝑠

𝑡 ,𝐶
𝑠
𝑡 = LSTM

(
𝑋𝑡−𝑝 , . . . , 𝑋𝑡−2, 𝑋𝑡−1

)
⊲ Eq. 1

5 GC𝑡 =

(
𝑊𝑔𝑐 ⊙ �̃�

)
𝑥𝑡 ⊲ Eq. 3

6 H𝑛
𝑡 ,𝐶

𝑛
𝑡 = GC-LSTM

(
𝑥𝑡 ,𝑮𝑪𝑡 , ℎ𝑡−1,𝐶

𝑛
𝑡−1

)
⊲ Eq. 9 and 10

7 𝜎𝑠 = var
(
𝑋𝑡−𝑝 , . . . , 𝑋𝑡−2, 𝑋𝑡−1

)
⊲ self dependency

8 𝜎𝑛 = var
(
GC𝑡−𝑝 , . . . ,GC𝑡−2,GC𝑡−1

)
⊲ neighbor dependency

9 H𝑡 = DKFN
(
H𝑠
𝑡 ,H

𝑛
𝑡 , 𝜎𝑠 , 𝜎𝑛

)
⊲ Eq. 18

10 return H𝑡

3 EXPERIMENTATION
In this section, we evaluate the predictive performance of our model
on two real-world traffic datasets. Our DKFN implementation is
available at https://github.com/Fanglanc/DKFN.

https://github.com/Fanglanc/DKFN


SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Chen et al.

3.1 Experimental Setting
Dataset Description. Seattle-Loop is collected by 323 inductive

loop detectors installed on the roadway surface [10]. We used the
traffic speed data from June 1 to August 31 in 2015 with time step
interval as 5 minutes. METR-LA is collected by 207 traffic sensors
on the highways of Los Angeles County. We aggregated the traffic
speed data during May 1 and May 31 in 2012 by 5 minutes. The
missing rate is 2.6% and linear interpolation is applied.

Model Implementation. The dimensions of the hidden states of
the proposed model are set as the number of traffic sensors in each
of the datasets. We trained our model using Adam optimizer with
an initial learning rate of 10−4. 70% of the data are used for training,
10% for validation, and the remaining 20% for testing. We evaluated
themodel performance via four metrics: mean absolute error (MAE),
mean absolute percentage error (MAPE), root mean squared error
(RMSE), and coefficient of determination (𝑅2).

Baseline Models. We compared our framework with existing clas-
sical and deep learning models including HA [7], SVR [8], ARIMA
[1], RNN [2], LSTM [5], TGC-LSTM [3], and T-GCN [12].

3.2 Results

Table 1: Predictive results of the proposed DKFN and other
baseline methods on Seattle-Loop and METR-LA datasets

Seattle-Loop METR-LA
MAE MAPE RMSE 𝑅2 MAE MAPE RMSE 𝑅2

HA 3.456 6.935% 6.427 0.793 3.207 8.527% 5.639 0.784
SVR 3.140 9.388% 5.839 0.856 3. 039 8.169% 4.698 0.821

ARIMA 9.659 31.529% 12.064 * 7.167 19.874% 9.410 *
RNN 2.914 6.917% 4.152 0.885 2.794 6.217% 4.196 0.873
LSTM 2.723 6.566% 4.033 0.892 2.592 5.974% 4.239 0.872

TGC-LSTM 2.797 6.870% 4.529 0.864 2.857 6.451% 4.623 0.791
T-GCN 3.043 7.649% 4.449 0.868 2.930 6.680% 4.563 0.852

GC-LSTM 2.699 6.433% 3.999 0.894 2.601 6.026% 4.304 0.867
DKFN 2.635 6.267% 3.960 0.896 2.510 5.870% 4.069 0.881

Table 1 presents the performance of the proposed framework and
other baseline methods on Seattle-loop and Metr-LA datasets. By
looking at the results, we can conclude: (1) Generally, deep learning
models obtain better predictive precision than non-deep learning
baselines. HA achieves moderate results in regards to MAE, but it
cannot capture the trend which can explain its poor performance
on 𝑅2. As a mature time series forecasting method, ARIMA’s pre-
dictive precision is relatively lower than that of the HA, which
highlights ARIMA’s disadvantage in dealing with long-term and
non-stationary data. Compared to other deep learning baselines,
our proposed model achieves the best performance across all the
metrics. (2) Overall, RNNs achieved good results, which empha-
sized the importance of the temporal features in traffic prediction
task. On both of the datasets, LSTM achieves better predictive re-
sults compared to vanilla RNN. Especially on the METR-LA dataset,
LSTM-based models, including LSTM, TGC-LSTM, and our neigh-
bor dependency modeling network GC-LSTM, outperform other
baseline models on both of the datasets. Compared with the per-
formance of vanilla RNN model on the Seattle-Loop dataset, the
RMSEs of the GC-LSTM and our proposed model are reduced by

7.4% and 9.6%. (3) Performance enhancement cannot be guaranteed
by introducing the spatial dependency via graph convolution layers.
We can observe that on the METR-LA dataset, the gain of introduc-
ing additional spatial information to temporal dependency is not
that significant, and the RNN models perform better than the base-
line TGC-LSTM and T-GCN models. It could be due to the distance
from node to node is long in the METR-LA traffic network, thus
the information received by neighbors is not that reliable due to
the sparsity of the network. Our designed GC-LSTM obtains good
initialization through using the normalized adjacency matrix to
generate graph convolution, and achieves good performance. The
proposed DKFN takes advantage of adjusting the ratio of predic-
tions from the self historical observations and those of its neighbors.
The reliability of both stream modelings as self dependency and
neighbor dependency can be automatically learned by the model
and obtained more accurate results compared to the single source.

4 CONCLUSION
In this work, we propose a novel deep learning framework DKFN ,
which takes advantage of modeling self and neighbor dependencies
separately for traffic speed prediction and fuse the two streams
under the statistical theory and optimized through the Kalman
filtering network.When evaluated on two real-world traffic datasets,
our proposed model achieves the best predictive results.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
via grant #DGE-1545362, UrbComp: Data Science for Modeling,
Understanding, and Advancing Urban Populations.

REFERENCES
[1] Mohammed S Ahmed and Allen R Cook. 1979. Analysis of freeway traffic time-

series data by using Box-Jenkins techniques. Number 722.
[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[3] Z. Cui, K. Henrickson, R. Ke, and Y. Wang. 2019. Traffic Graph Convolutional
Recurrent Neural Network: A Deep Learning Framework for Network-Scale
Traffic Learning and Forecasting. IEEE Transactions on Intelligent Transportation
Systems (2019), 1–12.

[4] Ramsey Faragher. 2012. Understanding the basis of the kalman filter via a simple
and intuitive derivation [lecture notes]. IEEE Signal processing magazine 29, 5
(2012), 128–132.

[5] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[6] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[7] Jing Liu and Wei Guan. 2004. A summary of traffic flow forecasting methods [J].
J. of Highway and Transportation Research and Development 3 (2004), 82–85.

[8] Alex J Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regres-
sion. Statistics and computing 14, 3 (2004), 199–222.

[9] Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun. 2020. Demystifying Graph
Neural Network Via Graph Filter Assessment. https://openreview.net/forum?
id=r1erNxBtwr

[10] Yinhai Wang, Weibin Zhang, Kristian Henrickson, Ruimin Ke, Zhiyong Cui, et al.
2016. Digital roadway interactive visualization and evaluation network applications
to WSDOT operational data usage. Technical Report. Washington (State). Dept.
of Transportation.

[11] Zhi-sheng Yao, Chun-fu Shao, and Yong-liang Gao. 2006. Research on methods
of short-term traffic forecasting based on support vector regression [J]. Journal
of Beijing Jiaotong University 30, 3 (2006), 19–22.

[12] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li. 2020.
T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE
Transactions on Intelligent Transportation Systems 21, 9 (2020), 3848–3858.

https://openreview.net/forum?id=r1erNxBtwr
https://openreview.net/forum?id=r1erNxBtwr

	Abstract
	1 Introduction
	2 DKFN Model
	2.1 Overview of Model Architecture
	2.2 Self Dependency Modeling Network
	2.3 Neighbor Dependency Modeling Network
	2.4 Kalman Filtering Network

	3 Experimentation
	3.1 Experimental Setting
	3.2 Results

	4 Conclusion
	Acknowledgments
	References

