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Abstract—Linking topics to specific experts in technical documents and finding connections between experts are crucial for detecting the evolution of
emerging topics and the relationships between their influencers in state-of-the-art research. Current techniques that make such connections are
limited to similarity measures. Methods based on weights such as TF-IDF and frequency to identify important topics and self joins between topics and
experts are generally utilized to identify connections between experts. However, such approaches are inadequate for identifying emerging keywords
and experts since the most useful terms in technical documents tend to be infrequent and concentrated in just a few documents. This makes
connecting experts through joins on large dense graphs challenging. In this paper, we present DIGDUG, a framework that identifies emerging topics
by applying graph operations to technical terms. The framework identifies connections between authors of patents and journal papers by performing
joins on connected topics and topics associated with the authors at scale. The problem of scaling the graph operations for topics and experts is solved
through dense graph pruning and graph joins categorized under their own scalable separable dense graph class. Experiments were performed on
technical domains to validate the utility of the connections between interests and experts. Comparing our graph join and pruning technique against
multiple graph and join methods in MapReduce revealed a significant improvement in performance using our approach.
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1 INTRODUCTION

Monitoring emerging topics [Joung and Kim, 2017] and con-
necting emerging topics to experts is crucial for determining trends
in diverse domains such as insurance, investment and research
[Furukawa et al., 2015]. This involves deep parsing of highly
technical journals [Newman et al., 2014], patents [Zhang et al.,
2015], and white papers to connect keywords and authors from
them. Connecting experts through common and linked topics
is of great value in scientific disciplines [Young et al., 2019].
Due to the large number of terms in each publication, tracking
all terms and their connections rapidly devolves into a big data
graph problem [Bordes and Gabrilovich, 2014]. Not only do the
connections between key terms need to be maintained due to their
co-occurrence in a document, the frequently connected terms must
be eliminated in order to leave technical terms of high value that
have direct or indirect connections through common terms. The re-
sulting network of high-value technical and related keywords then
represent emerging topics. These keywords, defined as interests,
are then used to connect authors, or users, to each other.

Interest-to-interest as well as user-to-interest connections are
modeled as graphs; Figure 1 shows a simple example. The left
side graph depicts a typical interest-to-interest graph with a large
number of nodes (only a few are shown) and edges, whose
frequent nodes have been pruned. The right hand side shows
the corresponding user-to-interest graph, which can also have a
large number of interests for each user within a large corpus of
technical documents. In the example shown, the term ‘amylin’
was pruned from the graph as it had a large number of edges
to other terms with high connection strength that exceeded a
set threshold, while the term ‘sulfonylurea’ was kept as it had
fewer links with low weights to other infrequent terms. Terms
that are connected to pruned terms without connections to each
other, are connected with derived edges. The two graphs must
be joined to find the highly connected users for key terms. The
number of combinations of users that must be evaluated is often
extremely high. In this case, the term ‘sulfonylurea’ and ’sorbitol’

Fig. 1: DIGDUG example.

are considered more important in connecting two users due to their
connection in the pruned interest graph than common interests
between two users such as ’glocagon’. The scale of the data and
connections contained in the graph and the number of operations
that must be performed on them are key to solving this problem.

To represent the network of interests based on their co-
occurrence in a document, a distributed graph approach has been
applied here. Performing operations on the graphs introduces a
classification based on the scalable graph class (SGC ) of problems
[Qin et al., 2014]. However this class does not address how a
self join should be performed for keys of a graph utilizing a
second graph that contains relationships between value elements.
Although SGC is efficient at handling iterative graph operations,
this type of approach needs to be improved upon for iterative op-
erations on dense graphs where in graph G(V,E),‖E‖= O(‖V‖2)
and for joining across two graphs. SGC is not able to create user
tuples for exploration to find similar user pairs based on their
shared interests. Hence a new class of graph operations is needed
to efficiently prune dense graphs and explore tuples of user pairs
that are strongly connected based on shared interests.

Graph pruning is an efficient way to eliminate nodes with the
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highest number of connections to other nodes as these represent
frequent terms. Once the graph has been pruned and only key
interests remain, the users and their associated interests can now
be joined with other interests as well as with their connected
interests graph. This join has to be performed at scale, where
a user’s interest has to be replaced with the other connected
interests and aggregated before that user can be added to the join
output. Since this approach uses key-value pairs as its main data
structure, it can result in an extremely large number of keys and
values being emitted, making the aggregation of values for a key
untenable and the streaming of keys and its sub-values detrimental
to performance. A new class of dense graph operations and joins
must therefore be designed to enable these techniques to be run
consistently on large numbers of terminology-heavy academic and
technical documents. Several challenges need to be overcome
to perform this task: 1) Scaling the creation of graphs with a
large number of edges and nodes. With documents consisting
primarily of infrequent technical terms, it is difficult to scale graph
construction for large numbers of nodes and edges. Graphs that
are built with users and terms based on their co-occurrence in
a document can become very large. 2) Similarity measures for
large numbers of infrequent terms. Similarity measures such as
cosine similarity based on IDF or TF-IDF weights are not well-
suited for this type of problem as large numbers of important
terms are concentrated in just a few documents, which may not
even occur frequently in these documents. Similarly, ranking
documents against a set of query terms through an algorithm
like PageRank does not show the true strength of the connection
between the term and its related documents. The results merely
identify documents that use the term more frequently. 3) Graph
operations on nodes with a large number of edges. Existing graph
methods in MapReduce do not take into account graph density
[Karloff et al., 2010]. Where a very large number of interests
are associated with other interests, this makes operations on the
resulting dense interest-to-interest graphs extremely difficult to
scale. Performing pruning operations in MapReduce at scale in
these cases is not trivial, even by increasing cluster and node
sizes. 4) Scaling joins between graphs. Joins in big data are well-
studied, including similarity joins and self joins. However, joins in
graphs to connect users by evaluating user pairs necessitates the
exploration of cross product of users and their associated interests
and greatly increases complexity of operations required in a big
data environment.

To address these challenges, this paper proposes DIGDUG
(Distributed Interest Graph Distributed User Graph), a framework
that is specifically designed to build interest-to-interest and user-
to-interest graphs at scale. The proposed system allows horizontal
scaling to perform deep mining of increasing corpus sizes of
journal articles and patents in a distributed paradigm by simply
adding more nodes to the cluster [Hu et al., 2014a]. The graph
of interests is iteratively pruned to eliminate highly-connected
interests with the higest number of edges to other interests. All
the edges that contain the pruned node can then be removed,
after which the interests with the strongest connections to other
infrequent interests are used to connect users with other users
through the user-to-interests graph. The framework utilizes key-
value pairs to build and update graphs with large numbers of
technical terms. The resulting graphs connect users to interests
and interests to other interests based on co-occurrence in the
documents. The user-to-user mappings are generated by joining
the user-to-interest graph with the associated pruned interests-to-

interest graph. A join then connects users with the largest number
of common and closely-connected infrequent interests. The key
contributions of this paper are:

1) Novel distributed framework to scale identification of key
topics and experts: Our proposed technique generates
graphs where the nodes represent either users or interests.
Links connect user to interests or interest to interests. A
novel Scalable Separable Dense Graph Class (SSDGC )
is defined to perform operations on the graphs.

2) Innovative dense graph operations to discover key tech-
nical topics as interests: Identifies terms that have strong
connections to related terms. The operations remove
widely connected interests and their connections to other
interests in a dense interest graph and retains those that
are infrequent and not connected to numerous other
terms.

3) Distributed graph joins on separable graphs to connect
experts: The join operations for connecting experts as
users based on the strength of connections between inter-
ests associated with them are performed in a granular key-
value pair paradigm. The joins do not in any operation
aggregate all the interests for a pair of users, allowing
horizontal scalability.

4) Extensive experiments to validate the efficacy and per-
formance of graph operations and joins: Patents and
academic journals in a scientific domain from several
sources are used to demonstrate the high performance
of our approach in finding connections between experts
and critical topics. Analysts found topics and experts
identified by DIGDUG were more relevant than those
identified through document similarity.

The rest of the paper is organized as follows. Section 2 discusses
existing work on user and interest graphs and joins in large scale
data. Section 3 formulates the problem that the proposed system
addresses. Section 4 provides details of the approach used in
DIGDUG and the user and interest graph modeling and joins.
Section 5 presents an overview of DIGDUG architecture and key-
value pair based distribution algorithms for joins. Experiments and
case studies are described in Section 6, and the overall conclusions
are presented in Section 7.

2 RELATED WORKS

When it comes to finding experts, topics and connections between
experts from social media and technical publications, three distinct
domains are represented in the literature. Experts and emerging
topics are often explored via social data. In some cases, graphs are
built with experts and their topics and with terms extracted from
social media. These graphs grow rapidly in both size and density
so operations on them need scaling. This is most critical for joins
across two graphs, as these tend to be the most computationally
and memory intensive. Pruning is utilized to remove noise from
graphs. For this work, we looked at the state of the art in
identifying experts and emerging topics from social media and
in scaling graph operations and joins.
Finding experts and evolving topics from social media: Identi-
fying experts from social media within a large global organization
has been studied [Guy et al., 2013] and a hypergraph learning
approach has been applied to learn topic-based influencers from
photo sharing sites [Fang et al., 2014]. A topic modeling based
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approach to find interests of users in Mendeley has also been
explored [Rossetti et al., 2017]. Social media mining has been
a rich source of information on brands [Gundecha and Liu,
2012] and the use of social media for knowledge acquisition
and validation is well known [Kondreddi et al., 2014]. Social
media mining however focuses on identifying emerging topics and
influencers and is not suited for finding connected researchers and
topics from academic journals and patents that primarily contain
domain specific terminology.

Linking new articles to generate evolving new stories is a
popular approach [Tang et al., 2015]. The interactions of storylines
in news has been explored [Hu et al., 2014b], as has building
storylines of text, pictorial and structured data [Dingding Wang,
2014]. Storylines have been used to determine evolving events
[Santos et al., 2016] and to exhaustively connect the dots in social
media with MapReduce [Shukla et al., 2017b]. They have also
been utilized to track brand perceptions [Shukla et al., 2016b]
that could then be mapped back to postings that cause perception
swings utilizing in-memory distribution techniques [Shukla et al.,
2017c]. Storylines have been used to categorize events in terms
of their theme, location and time [Shukla et al., 2016a] making
it possible to identify key prospects as people and organizations
[Shukla et al., 2017a]. However, none of these techniques can
identify the surrounding topics and related users for a given
topic when dealing with large sources of data. Unlike DIGDUG,
these existing techniques do not combine users and interests from
multiple data elements and multiple sources to create a set of
connected users and interests.
Distribution of Graph Operations: A model for efficient algo-
rithms in MapReduce paradigm has been proposed [Karloff et al.,
2010], along with algorithms for massive, unordered, distributed
computations that are equivalent in power to symmetric streaming
algorithms [Feldman et al., 2010]. Graph operations in MapRe-
duce that apply filtering to reduce the size of input in a distributed
fashion to process on a single node have also been proposed
[Lattanzi et al., 2011]. A scalable graph processing class and
two types of join operators in MapReduce have been suggested
[Qin et al., 2014] and a relational-graph data model with query
based graph operations described [Gao et al., 2014]. MapReduce
based algorithms have been applied for managing big Resource
Description Framework (RDF) graphs [Cuzzocrea et al., 2017]
and MapReduce has been used to enumerate maximal bipartite
cliques [Mukherjee and Tirthapura, 2017] in large graphs. Finding
connected components in large graphs in MapReduce has also
been explored [Kiveris et al., 2014].
Distributed Joins: Self joins in MapReduce have been the focus
of a great deal of research. For example, a 3-way approach
to end-to-end set-similarity joins [Vernica et al., 2010], an effi-
cient MapReduce based graph similarity join algorithm utilizing
filtering-verification framework and bloom filters [Chen et al.,
2014], and a partitioning strategy able to overcome memory
bottlenecks in similarity self-joins [Baraglia et al., 2010] have all
been proposed. Other researchers have developed a simple ran-
domized algorithm for arbitrary theta-joins in a single MapReduce
job [Okcan and Riedewald, 2011], a self-join approach to deal
with high-dimensional vector data [Fries et al., 2014], mapping
multi-way theta joins to a sequence of MapReduce joins [Zhang
et al., 2012], and similarity joins using different metric distance
functions [Das Sarma et al., 2014].
Graph Pruning: Mining graph data is a complex and varied field
[Cook and Holder, 2006]. Pruning has been used extensively in

trawling web communities [Kumar et al., 1999]. It includes itera-
tive pruning and inclusion-exclusion pruning. Pruning is employed
in frequent pattern mining in graphs including FSG for frequent
subgraph mining [Borgelt and Berthold, 2002] [Huan et al., 2004].
Pruning is also utilized in graph matching to winnow the search
space [Moy, 2005] in social network analysis. None of the pruning
methods use a combination of node degree and edge weights to
perform the pruning in a distributed manner.
All of these graph techniques, some MapReduce based, either
solve specific graph problems efficiently or propose general
techniques for graph operations and joins. DIGDUG builds on
previous research by incorporating graph pruning and joins with
nodes and edges as key-value pairs, which is not only more
efficient than general techniques, but the resulting interest and
user connections are more meaningful than those achieved using
other techniques.

3 PRELIMINARIES

This section presents the information needed to conduct an in-
depth investigation of distributed solutions to the problem of
finding emerging interests and connections between the users
associated with them. Section 3.1 formulates the problem to
be solved and Section 3.2 presents the distributed computation
framework needed to solve the problem.

3.1 Problem Formulation

First find interests that are not too common in a document and are
not found in a significant number of other documents in the corpus.
Second find highly connected interests based on their common and
connected interests.
Identify non-frequent interests based on their connections: The
first desired outcome is to find the infrequent terms (i.e., interests)
connected to other infrequent terms, which can be done in two
ways: (1) through their co-occurrence in the same document, or
(2) through their connection with other infrequent terms across
documents. To accomplish this, we remove the interests that are
most frequently connected to other interests across all documents,
leaving a smaller set that can better differentiate between docu-
ments.

Documents Di,D j,Dk, ... ∈ corpus D
∀ Di ∈D

extract Interests {Im, In, Io, Ip, Iq, Ir, ...}
∀ interest Im ∈ Di connect each interest Im → {In, Io, Ip, Iq, Ir, ...}

into interest graph I (V,E)
while graph contains nodes with high connectivity

∀ I j ∈ I
i f connectivity(I j) is high

delete I j f rom V and all edges with I j f rom E

remaining pruned graph Ipruned(V,E)

This identifies strongly connected non-frequent interests across
documents.
Find connected users based on the interests’ strength: The
second desired outcome is to find the most highly connected users
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based on shared interests. Having a graph of users connected to
their interests and the interest graph left with infrequent interests:

Documents Di,D j,Dk, ... ∈ corpus D
Interests {Im, In, Io, , ...} and Users {U j,Uk, ...} in Di

∀ Di in D
Connect users U j,Uk ∈ Di with interests {Im, In, Io, ...} o f Di

as user to interest graph U(V,E)

Create and explore user tuples (U j,Uk) and their interests

Find user pairs (U1,U2), ...with strongest connection strength

based on common and in f requent connected interests

where connected interests (I1, I2) ∈ E o f Ipruned(V,E)

The output is the set of connected users. The users that have
the highest connection strength based on common and connected
terms can be identified in the output.

3.2 MapReduce Framework

The DIGDUG architecture is based on the MapReduce Frame-
work [Dean and Ghemawat, 2008]. The MapReduce programming
model allows users to develop scalable, fault tolerant applications
by providing a key-value pair based paradigm. Applications writ-
ten in the paradigm run in a parallelized way on a cluster in
a shared nothing environment. Each MapReduce job consists of
three phases: Map, Shuffle and Reduce. The input data is stored in
a distributed file system. The three phases transform as follows:

1) Map: This stage reads the input as key-value pairs
<k1,v1> and transforms them into another set of key-
value pairs <k2,v2> that are handed to the shuffle on
each node.

2) Shuffle: The key-value pairs <k2,v2> are taken from
the map phase and distributed across all machines. This
stage guarantees sorting on keys and all values for a
key combined together before handing them over to the
Reduce stage.

3) Reduce: This phase receives each key and all its values
grouped together as <k2,<v2,v′2,v

′′
2 , ...>> from all the

mappers across all the machines and allows the user
to emit another set of key-value pairs <k3,v3> to be
processed in the next job.

The user can implement application specific operations in the Map
and Reduce stages.

4 DIGDUG USER AND INTEREST GRAPHS, PRUNING

AND USER CONNECTIONS

This section presents the creation of user and interest graphs
from patents and academic articles. Section 4.1 and Section 4.2
describe the new dense graph class of problems and interest graph
pruning, respectively. Section 4.3 discusses the connected users
calculations, along with the user-to-interest and pruned interest
graph joins. Section 4.4 describes the steps in the DIGDUG flow.

4.1 Scalable Separable Dense Graph Class

The density and separability of the user-to-interest and interest-to-
interest graphs requires the definition of an additional SSDGC ,
or scalable separable dense graph class of problems. The SGC

class possesses the properties of Scalability, Stability and Robust-
ness which accelerates the process as more machines are added,
allowing the process to finish in bounded rounds and complete
irrespective of the amount of memory in any of the cluster nodes.
We extend these properties by adding the following:

1) Separability Exploitation: Graph algorithms exploit the
separability and differences in cardinality of the number
of nodes by type.

2) Node Edge Operation Combinations: Node and edge
operations are combined in the same step.

Node edge combinations are useful in pruning where the interest-
to-interest nodes and edges are operated upon such that the keys
can represent both the graph nodes and the metadata about them,
as well as the edges that represent the connections between nodes.
Each iteration combines the keys for nodes and edges to determine
which node to prune and then emit or drop edges that contain a
pruned node.

Join operations in the SSDGC class maintain the separation
between the interest-to-interest pruned graph and the user-to-
interest graph. It exploits this separability to calculate the con-
nection strength between users based on the combined strength
of their common and connected interests. For user-to-interest and
pruned interest-to-interest graph joins, in order to compute user
connections, a very large number of user pairs and their interests
must be explored. SGC -based techniques with the EN and N E
joins and their combination for finding user connections are
less efficient than exploiting the separability of the graph. This
exploitation of differences in cardinality of join nodes by node
type as in SSDGC enhances the efficiency of joins and can be
useful in additional graph operations. This necessitates a new class
of graph MapReduce operations.

4.1.1 Indirect join operator in SSDGC
This operator allows nodes to be joined that do not have an edge
between them. An indirect join accepts as input a set of nodes
of type u and i in graph G(V,E) where no nodes of type u have
edges between them and ((ui, i j),(uk, il), ...) ∈ E, outputting nodes
as pairs (ui,uk) such that f (i j, il , ...) satisfies function h.
Indirect Join in MapReduce: This is done by collecting the
nodes to be connected in the value of the key-value pair emitted
in the mapper, and streaming through all the nodes in the reducer
to be connected and emitting each of the pairs separately. Hence
for graph G(V,E) where there is need to perform indirect joins
between u ∈ V for two types of nodes {u, i} ∈ V, in order to
create pairs of users u1,u2 we must emit i1,u1 and i1,u2 from the
mapper. In the reducer, the values <u1,u2, ...> are then processed
in a streaming manner and pairs created. The final emission in
reducer takes the format <u1;u2, i1>.

4.1.2 Mixed join operator in SSDGC
This operator enables nodes to be joined through a combination
of node and edge operations in a key-value paradigm. In graph
G(V,E) where i∈V and (i1, i2)∈ E, the operator allows operations
to be propagated along the edges to be consolidated in a node
and then emits a mix of node and edge propagated operations
into a single set of nodes in same operation. This means that
i1,(i2, f (i1, i2)) and i1,h(i1) are emitted in the same operation that
calculates h(i1), where f (i1, i2) is a function that represents the
edge properties between i1 and i2 and h(i1) is a function that
represents the properties of node i1.
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Mixed Join in MapReduce: In graph G(V,E) with nodes i ∈
V and edges (i1,v2) ∈ E, we perform operations such that both
types <i1,h(i1)> and <i1 : i2, f (i1, i2)>, representing node and
edge tuples, are emitted from the mapper and reducer as key-value
pairs. The format of keys and values allows the two sets of keys
and values to be processed differently. This allows both edge and
node propagations to happen in the same MapReduce.

4.2 Graph Pruning

Pruning the interest-to-interest graph is an iterative process that
removes nodes that are highly connected to large numbers of other
nodes with high connection strength. The graph pruning operation
algebra can be defined as follows, with G(V,E) representing the
interest-to-interest graph that is being pruned:

while change in average edge weight and

std dev edge weight > θ

Vi←∏pruning status(V ) = pruned

V ←V −Vi

E← E−Ei where Ei ∈ {v1,v2 where v1 or v2 ∈ Vi}
E← E +E j where E j ∈ {v3,v4 where (v1,v3) or (v2,v4) ∈ Ei}

recalculate average edge weight and std dev edge weight

The resulting pruned graph is then used to find connected users
in the next step. Restoration of links between nodes connected
through pruned node assures links between terms that are con-
nected through common terms across documents are kept. Vi is
the set of nodes that have pruning condition evaluated as true.
Here pruning condition is true if:

degree>average degree o f graph nodes OR (1)

average edge weight>average edge weight(graph) OR (2)

std dev edge weight>std dev edge weight(graph) (3)

The pruning operation removes nodes with high degree, high
average connection strength to other nodes and high variability
in their connection strengths to other nodes. The first criterion
eliminates terms that have high number of connections to other
terms which would occur for terms that are in large number of
documents with a lot of terms in them. The second criterion will
eliminate terms that either occur frequently in one or more docu-
ments or have connections to many frequently appearing terms in
one or more documents. The third criterion prunes terms that have
high variability in the connection strengths to other terms that will
be above the average threshold due to some terms having high
connection strengths and other terms having very low connection
strengths. The variability is an indication that the term is connected
to a lot of terms that occur frequently in documents and also to
some terms that occur very infrequently in documents which in
combination with high mean of their edge weights and high degree
is an indicator of their lesser relevance in connecting users in
subsequent steps. The graph changes after each iteration with some
nodes and edges removed and derived edges added which changes
the degree and edge weights of remaining nodes and edges. Hence
the average edge weight and std dev edge weight of the graph
needs to be recalculated after each iteration. The iterations stop
when changes in average edge weight and std dev edge weight
are lower than threshold θ. In SSDGC pruning is done using a
combination of a mixed join and an EN join, which accumulates
information along the edges into the nodes. It works by iterating

over the graph without accumulating the values for the key as
nodes or edges of graphs. The aggregate characteristics of a node
are kept separate from the edge entities during each iteration.
Based on those characteristics, the edges are either kept or deleted
and derived edges through the pruned nodes for terms across
documents are created.

The MapReduce implementation of pruning operates solely on
interest nodes and interest-to-interest edges in the graph G(V,E).
Here, edge and graph nodes’ transmissions are combined to
determine whether an interest node’s connectivity to other interests
is above the average connectivity of all graph nodes, which
indicates that the node must be pruned. The primary sort in keys
in MapReduce is used to first determine if a node has been pruned
and if so, all the subsequent edges with that node in it are also
pruned in the same MapReduce job, which is why pruning is
SSDGC operation.

4.3 User Connections

Users are connected from user-to-interest graph based on common
interests and connected interests. Connected interests are defined
in the pruned interest graph. This operation is performed as a
combination of indirect and mixed joins in SSDGC . The algebra
for operation performed to connect users can be defined as follows,
where G(V,E) is the user-to-interest graph and G’(V’,E’) is the
pruned interest-to-interest graph:

V 3 {useri,userk, interestm, interestn, ...} and

E 3 {(useri, interestm),(user j, interestn), ...}
V ′ 3 {interesti, interest j, ...} and

E ′ 3 {(interesti, interestk),(interesti, interestl), ...}
‖interest‖>> ‖user‖
G on G′→ G′′(V ′′,E ′′)where

V ′′←∏useri : user j where ‖interestsuseri ∩ interestsuser j‖ ∪
‖(interestk, interestl) ∈ E ′‖> δ

where (useri, interestk) and (user j, interestl) ∈ E

The join operation assumes that the node type being joined has
lower cardinality than the node type used to joined them. That
difference in cardinality is used to build the sets of user pairs
for the common and connected interests; the combined strength is
used by DIGDUG to determine if the joined user pair is relevant
or not. Relevance is determined by the combined strength of com-
mon and connected interests, referred to as DIGDUG similarity
measure being higher than threshold δ. The final similarity score
between users is simply a weighted sum of the strengths of their
common and connected interests. The MapReduce jobs create user
pairs with shared and common interests by collecting them based
on the interest keys in values and building the pairs by combining
keys as nodes representing interests and edges as interest pairs,
making the operation a part of SSDGC .

4.4 DIGDUG Flow

DIGDUG constructs User and Interest graphs, prunes interest-
to-interest graph to find infrequently connected interests, and
identifies users who are connected to other users through their
highly connected infrequent interests. The first pass through a
set of documents involves two steps: first find the connections
between interests based on their co-occurrence in a document,
and then find associations among users and interests as shown in
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Figure 2. Subsequent operations are performed on the interest-to-
interest graph and user-to-interest graphs. The interest-to-interest
graph pruning operation requires iteration to ensure that all the
nodes that have above a certain number of connections to other
nodes are pruned.

The join between the user-to-interest graph and the pruned
interest-to-interest graph connects users on the basis of shared or
related interests. The join exploits asymmetry in the cardinality
of node types in two graphs. The user-to-interest graph has far
fewer user nodes than interest nodes, making it possible to perform
the join by spreading the nodes evenly among cluster machines
through a reverse value join as an indirect join. This type of join
does not aggregate any values for a key, and utilizes secondary
sorts and aggregations to scale performance to the number of
machines in the cluster.

5 DIGDUG SYSTEM

This section presents the architecture of the DIGDUG framework
and provides details of the distributed algorithms. Section 5.1
describes the architecture of the system and Section 5.2 gives the
algorithms used.

5.1 Architecture

The DIGDUG framework is composed of a sequence of MapRe-
duce jobs that run on AWS (Amazon Web Services) EC2 (Elastic
Compute Cloud) clusters utilizing S3 distributed file store. The
choice to preform the operations in MapReduce rather than Spark
[Zaharia et al., 2012] was due to the regularly scheduled batch
nature of the jobs and the need to repeat the runs consistently
on commodity low cost machine clusters. MapReduce was also
preferred over other similar distributed systems such as Apache
Flink and Apache Storm as these are better suited for streaming
data and over MPI(Message Passing Interface) with CUDA on
HPC(High Performance Computing) grids due to the easier pro-
gramming interface and more efficient distribution paradigm. The
system is designed to easily scale to large amounts of data from
multiple sources that must be combined and cross referenced for
people and topics such that the topics can be connected to each
other and users can be connected to other users through large
graph joins. The modules are divided into 3 groups:
User and Interest Graph Construction The first module in
the architecture flow reads raw data and generates a list of
authors as users and their interests from each document. It then
associates interests to other interests in the document and com-
bines these across documents. It also associates users to interests
within individual documents and aggregates users’ interests across
documents. These serve as the starting interest-to-interest graph
and user-to-interest graph for the corpus. A Natural Language
Processing (NLP) Parts of Speech tagger [Baldwin and Dayanidhi,
2014] is utilized to extract meaningful entities as interests and
remove stopwords. An interest must also appear in at least two
documents for it to be kept in user-to-interest and interest-to-
interest graphs.
Pruning interest graphs The second module prunes the interest
graph by removing interests with a large number of edges to
other interests, high weights on edges and high variability in
edges weights and removing the edges to the pruned nodes from
all other connected nodes. Derived edges are optionally created
between nodes connected to the pruned nodes if they are from
different documents with no common documents. The weights of

the connections is a fraction of the combined weight of the edges
of the two nodes to the pruned node.
User connections by joining the user-to-interest and interest
graphs The third module joins user and interest graphs. Starting
with the user-to-interest graph, it connects users that have shared
interests. In each connected interest pair, one interest is associated
with one user and the other with the other user based on common
interests between users and connected interests from pruned graph.
The result is a series of user pairs with sets of common and
connected interests where the strength of the connection between
users is based on the number and strength of their connected and
common interests.

5.2 Distributed Algorithms

The algorithms used in DIGDUG are described in this section.
Their purpose is to build user and interest graphs, prune interest
graphs and find user connections. The MapReduce architecture is
shown in Figure 3. A detailed key-value pair based description of
pruning and join algorithms is provided in Appendix.

5.2.1 Build graphs

The tasks involved in generating the graphs prevent the construc-
tion of a single set of combined interests for a user because
including all their interests (and all the interests connected to other
interests) could easily make objects too large even for a node and
its edges. Each user node is connected to all the interests not
only in that document but across all the documents in the corpus.
Each interest node is therefore connected to every other interest
node on the document, but only directional links are made i.e. the
terms that appear earlier in the document have outgoing links to
subsequent terms. Links in the reverse direction are not made.

User graph is built in MapReduce by first creating user1 :
interest1 keys and their connection strength as value for a doc-
ument and then combining across documents. For interest graph
the keys interest1 : interest2 and values connection strength are
used to aggregate interest pairs and their connection strength
across documents. The connection strength between user and
interest represents the number of times that interest appears in the
document where user is the author or inventor. Connection strength
between interests is a product of the number of times the two
terms appear in the document, so for document1, the connection
strength between interest1 that appears a times in the document
and interest2 that appears b times is a*b. These first 2 MapReduce
jobs for building the graphs are considered simple and omitted
from detailed description.

5.2.2 Prune interests graph

This section describes pruning the interest graph to remove the
high edge weight nodes and their associated connections. The
pruning is applied to the entire set of nodes in a single pass,
calculating the number of edges. After each iteration, the count
is updated and the nodes with the highest number of connections,
highest weights on edges and highest variability on edge weights
are removed. The connections between nodes that are terms
from different documents are created as derived connection after
their edges to pruned terms are deleted. This process is repeated
until the average degree of nodes, average weight on edges and
variability in edge weights converges or does not reduce more
than a threshold. The process of counting the edge connections
for each node is performed with a mixed join that combines
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Fig. 2: DIGDUG design and flow.

Fig. 3: DIGDUG user and interest graphs, interest pruning and user connections.

counting the number of connections for each interest node with
emitting all the edges in the same MapReduce operation. The
nodes whose connectivity exceeds average connectivity of graph
are marked for removal and their edges are simply not emitted in
the reduce step. The connection counts for the interests are then
updated accordingly. The MapReduce steps for pruning are shown
in Algorithm 1.

DIGDUG performs the pruning operations by combining the
nodes and edges modeled in the keys and using streaming with
partitioners to prevent the aggregation of values for a key in a
reducer. It starts by modeling the interest-to-interest graph with
the interest and document-id in the key, along with the other
connected interests it has edges to, in the value for that document.
It then generates the total weight of all edges for the interest using
streaming with a partitioner in the reducer and also emits the node
keys with edges to other interests. In the next MapReduce step,
the nodes whose weights exceeds the threshold in Mapper are
removed. It then goes on to eliminate all edges with the same
starting node in the key in the reducer by not emitting them while
saving the top k of them that are then connected with each other
and emitted as derived edges if there are no common documents
between them. The documents with an interest pair are stored as
bitmaps to limit size of value of the key. It then reverses the edge
in the next MapReduce job and removes the edges that have the
end node of the edge as the pruned interest. Next, the average
connection strength of all the nodes are recalculated and iterated
until no node falls above threshold. MapReduce 4 and MapReduce
5 represent the mixed join operation. The use of streaming with
partitioners prevents the aggregation of values for a key in order

to determine removal of a node or an edge with the interest as
the node during each iteration step as in SGC , which significantly
improves the performance.

5.2.3 Connect users

Connections between users are calculated by joining the user-to-
interest graph with the pruned interest-to-interest graph. Algorithm
2 describes the join between users in a user-to-interest graph and
the associated interest-to-interest mappings. This join emits all
users that are connected through shared or strongly connected
interests, with the interest strength above a previously determined
criterion used to keep user connections that would otherwise be
discarded. The join for the user-to-interest and interest-to-interest
graph post pruning is performed by using interest as the key
in MapReduce. However, the join key is the user. This reverse
emission allows the aggregation of users and their grouping as
pairs of users using the key sort in shuffle rather than aggregating
them together as a value in the reducer. MapReduce 8 and
MapReduce 9 utilize an indirect join operation to generate user
pairs that are then tested for connection strength. This allows
the operation to complete with a large number of users and an
extremely high number of interests associated with those users
without ever needing to aggregate them in memory.

The inversion of user pairs from value to key allows more
voluminous interests to be included without the need to aggregate
in the reducer, which could cause memory errors. The interest keys
are suffixed so as to allow the sort order of the the keys to indicate
when the interest as key switches from the user pair to some other
connected interest as the value. Partitioners allow the same interest
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Algorithm 1 Interest Graph Pruning
1: while σ >threshold do
2: {Loop on the drop in average degree, average edge weight and average standard

deviation in edge weight for all interests in graph σ from previous iteration not
falling below a threshold}

3: MapReduce3
4: Read interest pairs, their strength and docs in mapper
5: Stream through counts for interesti across all connected interests in reducer
6: Update mean and std dev of interest strengths
7: MapReduce4
8: Read interest pairs, their connection strength and shared docs in mapper
9: Read interest total edge count, mean edge weight, std-dev edge weight

10: if mean edge weight >graph mean edge weight OR std-dev edge weights
>graph std-dev edge weights then

11: mark interest for removal
12: end if
13: Route all interests to same reducer in partitioner
14: Drop interests marked as removed in reducer and keep top k connected interests

in reducer
15: Output connected interest with its connected interest and strength in reducer
16: Output indirectly connected interests as derived interests
17: MapReduce5
18: Read interest pair and strengths in mapper
19: Reverse the interests so as to remove the edges with pruned interest in value of

previous job
20: Read interest total count, mean strength and std-dev in mapper
21: if degree >graph avg degree OR mean edge strength

>graph average mean edge strength OR edge strength std-dev
>graph average edge strength std-dev then

22: Output interest with suffix ’remove’
23: else
24: Output interest, count,mean strength,std-dev
25: end if
26: Route all interests to same reducer in partitioner
27: if <value>has ’remove’ and key continuing in reducer then
28: create list of top k derived connections nodes
29: else
30: Output interest pair, strength and document list
31: Emit interest with its connected interest and strength
32: Emit derived interest pairs if lists not null
33: Output derived interest pairs
34: null lists
35: end if
36: Combine all counts for all interests and count remaining interest and calculate

average connections per interest
37: Calculate difference between previous average connectivity for graph and current

average as σ

38: end while

with different suffixes in the keys to be routed to the same reducer.
The join operation generates the user pairs in a fully distributed
manner without having to aggregate the interests for a user in
the value. It first emits the user as the key, with the interests and
the connection strength as the value. It then collects the different
users that share an interest by routing them to the same reducer
via the partitioner and generates pairs for all users with edges to
that interest. The join on connected users is performed by emitting
a user to interest edge with the interest as the key and the user as
the value. The pruned interest-to-interest graph is emitted with the
interest as the key but emitting each edge with both nodes as keys
one at a time and then applying the suffix ’direct’ and ’reverse’
to the key. These suffixes allow the keys to be sorted which then
allows the interests and users for a given key to be aggregated and
used to build user pairs. The pairs associate the first interest with
the first user and the second with the second user, where the user
pair is on the edge of the pruned interest graph. The common and
connected interests are then combined to generate the final join
results.

6 EXPERIMENTS

This section presents a series of experiments that were performed
to test the effectiveness and scalability of the proposed DIGDUG
user and interest discovery framework. They were implemented

Algorithm 2 Connected Users with User-to-Interest and Interest-
to-Interest Graph Joins
1: MapReduce7
2: Read in all the users interest and their strengths in mapper
3: Output interest:user combos with their connection strength
4: Collect all users for the interest using streaming key values in reducer
5: create user pair combos
6: attribute interest strength to the user pair
7: Output user pairs along with the interests and strengths in reducer
8: MapReduce8
9: Read in and output all the users pairs common interest and their strengths in mapper

10: Collect all user pairs interests and strength using streaming key values in reducer
11: Output user pairs along with the combined strength of all the common interests
12: MapReduce9
13: Read in and output all the user pairs and interests with counts in first mapper
14: Read in all the connected interest pairs in pruned graph and their strengths in second

mapper
15: Output interest and strengths with ’direct’ and ’reverse’ with counts
16: All interests land in same reducer through partitioner
17: if interest suffix is ’direct’ then
18: add in direct list in reducer
19: else
20: if interest suffix is ’reverse’ then
21: add inverse list in reducrer
22: else
23: if interest suffix is ’user’ then
24: for each interesti in ’direct’ do
25: Output interestk : interesti :′ direct ′,useri:score
26: end for
27: for each interest j in ’reverse’ do
28: Output interest j : interestk :′ reverse′,useri:score from reducer
29: end for
30: end if
31: end if
32: end if
33: MapReduce10
34: Read and output interestk : interesti :’direct’,useri:score and interest j :

interestk :’reverse’,useri:score in mapper
35: Send same interest pairs to same reducer in partitioner
36: Combine reverse and direct interest pairs users in reducer
{direct has user for first interest in value reverse has user for second interest in pair
in value}

37: Output user pairs along with the interest pairs and strengths
38: MapReduce11
39: Read in and output all the user pairs and common interests strength in first mapper
40: Read in all the connected interest pairs with the user pairs in second mapper
41: Combine and output connected interests and common interests and their strengths

in reducer

in Apache Hadoop MapReduce in Java and run on AWS clusters.
Section 6.1 provides details of the datasets used and the domains
evaluated. Sections 6.2 and Section 6.3 detail the qualitative and
quantitative performance, respectively, of the system in summa-
rizing the content of a large number of documents and Section
6.4 describes the results and subsequent analysis for the various
domains tested. Section 6.5 examines the use cases and the
performance results.

6.1 Experiment Design

The experiments compared DIGDUG with comparable techniques
for performing both pruning and user connection operations. The
experiment design flow presented in Figure 4 shows how raw data,
users and interests are extracted from initial set of documents.
Users are then mapped to interests from individual documents and
interests to users. The two mappings are then joined to generate
the set of users connected to other users based on their shared
interests and the links between their interests and other interests
based on the most high frequency interests.

6.1.1 Test Datasets

Experiments were performed on three distinct datasets consisting
of the full text of patents and papers from academic journals
and conferences. These sources capture emerging interests in the
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Fig. 4: DIGDUG experiment design.

scientific literature and seek to identify cutting edge, commercially
viable findings of technical research. Over 2300 patents and
journal papers were collected on topics related to diabetes. Our
proposed techniques were applied to conduct a full extraction of
all the keywords from the entire text of the papers and patents,
along with the authors. The number of nodes in the user-to-interest
graph was 243,519 and number of edges was 1,505,424. In the
interest-to-interest graph, however, although the number of nodes
was 241,596, the number of edges rose to 1,056,528,125 resulting
in a dense graph.

6.1.2 Methods

For pruning, we compared the DIGDUG graph pruning approach
with MapReduce filtering based pruning and SGC based pruning.
Filtering-based pruning curtails the interests for users from patents
and journal papers to the least frequent k interests. SGC based
approach uses a combination of N E and N E joins to model
pruning of most frequent nodes.
SGC pruning: The first technique utilized SGC EN and N E
based MapReduce method to prune the interest-to-interest graph
by transforming graph G(V,E) to G’(V’,E’), where V’ and E’ are
subsets of V and E, interests are nodes in V, and the interest to
interest connections are edges in E. SGC based pruning combines
EN and N E joins to create the interest-to-interest graph, EN
joins emit nodes that capture the edge strength of each node and
N E joins output or emit the edges during pruning. That involves
incorporating all the connected interests in the value and, if above
a certain threshold, inserting a ’removed’ value in the emission
from the mapper. In the reducer, if a ’removed’ flag is found
the entire <key,value> emission for the interest is dropped and
additional values are emitted for the derived edges. An EN join
adds the derived edges in the set of edges for the nodes.
Filtering pruning: The second technique was a filtering based
method on M R C [Lattanzi et al., 2011] in MapReduce. This
technique applies filtering to distribute a key and its associated
values on a particular node. Here, in order to perform a graph
traversal an iteration was performed over all the keys representing
an interest-to-interest graph node and all its connected nodes to
determine how many other nodes it is connected to. After finding
the strength of its connections and determining if the node needs
pruning, the next MapReduce removes all the pruned nodes and

from the value of every node to which it has an incoming or
outgoing connection. Derived edges were made between nodes
connected to pruned node but not connected to each other in
following MapReduce.

The user connection operation in DIGDUG was compared
against the task of finding user connections with SGC and
Filtering based techniques as follows:
SGC user connections: The first technique utilized here was the
SGC algorithm, which is used to perform graph based operations
on large datasets. Here, the EN and N E join operations
propagate information from nodes onto edges and edges onto
nodes. They are modeled as keys consisting of nodes and edges
of a graph G(V,E), where edges connect pruned interests with
users and interests, and values are characteristics of the node.
In this method keys in MapReduce are both users and interests.
The values are related interests and edge characteristics such as
connection strengths. The joins of user pairs occur by streaming
users with the same prefix to the same reducer in MapReduce,
where user pairs are created and then joined based on their shared
and connected interests.
Filtering user connections: The second technique which is
based on Filtering in MapReduce, belongs to M R C . It performs
graph based operation on large datasets where the join edges are
modeled as keys and the characteristics of the edge are modeled
in the values. The user pairs are calculated and modeled as nodes
in Graph G(V,E), with edges between the user-to-interest and
interest-to-interest connections, along with the characteristics of
edges, treated as values. The user1:user2 node keys are suffixed by
interest and routed to the same reducer with the interest1:interest2
edges. They are then combined to create user pairs connected
by common and connected interests to perform connected user
discovery operations.

6.2 Qualitative Effectiveness

The qualitative effectiveness of pruning and user connections
was measured. To validate the accuracy of the user-to-user and
interest-to-interest connections, different metrics were adopted:
the True Positive Ratio (TPR) designates the percentage of con-
nection designations that successfully matched the connections
specified by an analyst as being relevant, while the False Positive
Ratio (FPR) denotes the percentage of connection designations
that were not actually relevant subsequent to pruning. An ROC
curve was also utilized to evaluate the pruning and user connection
performance as the discrimination threshold was varied. Multiple
combinations of pruning parameters for interest graph were eval-
uated along with accuracy of pruning with and without derived
edges and unpruned interest graph. The user connections from
DIGDUG were compared with other techniques that can be used
to connect users. We also evaluated the qualitative effectiveness
of the join based on tuning of common and connected interest
weights between two users and compared with equal importance
of the two weights.

6.2.1 Pruning

The pruning criteria were evaluated by performing sensitivity anal-
ysis on the effectiveness of all combinations of standard deviation
of edge weights of nodes, average edge weights of nodes and the
degree of nodes in pruning interest graphs. The ROC curves for
the combinations are shown in Figure 5. The results clearly show
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Fig. 5: Qualitative performance achieved by the different combi-
nations of pruning parameters.

Fig. 6: Qualitative performance of DIGDUG pruned compared to
DIGDUG pruned with derived edges and unpruned.

that with constraints on average edge weights, standard deviation
of edge weights and degree the pruning becomes strong and the
accuracy decreases. If only one of degree, average weight on edges
or standard deviation of edge weights is used the pruning is weak
and accuracy drops significantly. Degree of nodes by itself is a
particularly poor predictor of accuracy. A better predictor is a
combination of the average edge weights and standard deviation of
edge weights. The combination is a good predictor of the interest
not being useful in connecting users and hence a good candidate
for pruning.

Pruning without connecting derived edges performed signifi-
cantly better in predicting user connections compared to pruning
with derived edges and DIGDUG without pruning as shown in
Figure 6. The criteria average weight and standard deviation of
weights for connecting users were utilized in pruning with or
without derived edges. The creation of interests graph and using it
to determine connected interests of users is still useful but pruning
increases accuracy significantly. This illustrates the importance of
pruning in removing frequently occurring terms and subsequently
determining more relevant user connections.

6.2.2 User Connections

We evaluate the qualitative effectiveness of DIGDUG in gener-
ating user connections by comparing it with the Euclidean and
Cosine distance based document similarity techniques. We also
compared DIGDUG with a locally supervised metric learning
(LSML) similarity measure [Ng et al., 2015] used to determine
similarity in patients from medical records. An ROC curve was
utilized to evaluate the user connection performance as its dis-
crimination threshold for each connection was varied. The ROC

Fig. 7: Qualitative performance achieved by the DIGDUG joins
compared to the other document similarity techniques tested.

curves for the usefulness of the results obtained by an analyst
with DIGDUG against document similarity measures is shown in
Figure 7. We compared DIGDUG’s interest graph pruning based
user connections and widely used document similarity measures
such as Cosine Similarity and Euclidean distance based similarity
by examining the terms for each user across all the patents and
papers authored by the user. In order to asses the weight of
each term, we calculated the term frequency, inverse document
frequency and tf-idf. LSML uses a distance measure which relies
on a learnt transformation matrix from training data to calculate
distance between two patients feature vectors. The training data
is generated by labeling users and their interests into classes
that is used to calculate the covariance matrix used to learn the
distance matrix [Wang et al., 2009]. DIGDUG performed better
than any of the other measures in terms of finding more true
positive connections and fewer false positives, as determined by
the expert on diabetes research. DIGDUG also performed better
against LSML that is comparable in complexity.

The user connection accuracy is impacted by the relative
importance given to connected and common interests weights
between two users. Figure 8 shows the sensitivity analysis with
the tuned weights determined by linear curve fitting of the com-
mon and connected interest weights to achieve maximum area
under ROC curve [Jin and Lu, 2009] compared to weighing
them equally. The tuned weight of common interests was 0.0016
and connected interests 0.008 in the ROC curve in figure when
derived edges are not created. When derived edges are created
the connected interests tuned weight is lower than that of com-
mon interests. These tuned weights clearly demonstrate that even
though in increasingly strongly connected user pairs both the
common and connected interests weights increase, the importance
of connected interests weight is significantly higher than common
interests weight. Hence connected interests are better indicators of
connection between users than common interests. Tuned weights
in user connections were used for DIGDUG sensitivity analysis in
all experiments.

6.2.3 Cosine and Euclidean distance based user similarity, LSML
and DIGDUG similarity

Cosine similarity is often employed by search engines that link
terms through TF-IDF. TF-IDF weighs terms higher that have
high frequency in a document and low count in the number of
documents in which they occur in the corpus. This means that
Cosine Similarity between documents is skewed heavily towards

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 24,2021 at 19:55:03 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.2983650, IEEE
Transactions on Big Data

IEEE TRANSACTIONS IN BIG DATA 11

Fig. 8: Qualitative performance of different combinations of com-
mon and connected weights in connecting users.

terms that are frequent in a user’s profile but not frequent in other
user profiles. Unfortunately this does not help identify connections
between users based on their similar or connected interests. The
same problem occurs with term frequency and inverse document
frequency weight based cosine and euclidean similarity measures.

The example in Table 1 illustrates how DIGDUG scores vary
dramatically for two user pairs that have close cosine similarity
scores. Two author pairs with similar Cosine scores but drastically
different DIGDUG scores are Bruce Neal and Lawrence A. Leiter,
who have a DIGDUG score of 672 and cosine similarity score
of 0.6831 and Carl R. Illig and Zhihua Sui with DIGDUG score
of 96879 and cosine similarity score of 0.6519. Examining the
terms that connect them, the cosine similarity yields common term
interests that are not unique, such as:

• Change
• Study

• Week
• Pfizer

• Inadequate con-
trols

Table 1 shows how cosine similarity equally weighs connec-
tions that DIGDUG finds to be materially different in strength.
The first column of DIGDUG direct interests are similar to the
interests identified by cosine similarity in that they both consist
of generic terms. However, where DIGDUG differentiates itself
as a technique is in the second column of interests, the connected
interests. This column enumerates the most useful, non-generic
terms linking the two users. In the example of users with a high
DIGDUG score, the connection is strong because of the connected
interests and their relationship to the research topic of interest,
namely diabetes. In the second row, where DIGDUG found a
weaker connection but cosine similarity found an equal strength
connection, the difference again lies with the connected interests.
In this case, the connected interests are again more significant
than the common interests. However, there are fewer interests,
and therefore the connection is weaker. Upon expert interrogation,
it was found that the overlap in topics of interest between the two
users was indeed smaller than the two users in the first row.

At an initial glance, the connected interests in both rows of Ta-
ble 1, although more specific than the common interests or cosine
similarity terms, can still appear moderately generic. Validation
based upon manual interrogation of the relationship between the
two cited users in each row of Table 1 yielded a significant
difference in the strength of the two sets of connections. The first
two users with a high DIGDUG connection score, Carl R. Illig and
Zhihua Sui, shared common places of employment, common co-
inventors on patents, and common coauthors on papers. However,
they have not jointly published or invented anything together.

In the second example, with a low DIGDUG connection score,
the two users (Bruce Neal and Lawrence A. Leiter) both share
common research interests, namely cardiovascular disease and
diabetes. However, they share no common places of employment,
co-inventors on patents, or common coauthors on papers. As per
the examples in Table 1, a higher DIGDUG score corresponds
to a more meaningful connection between users in an area of
study than a lower DIGDUG score. For the same pairs of users,
DIGDUG selects more meaningful connections that describe the
actual relationship between the research conducted by the two
pairs. The terms shown in Table 1 are all largely related to
the realm of diabetes research, and are specifically related to
individual subsegments of research, in this case clinical studies
examining the hemodynamics and metabolic consequences of
cerebrovascular activity. Similarly LSML also performs poorly
compared to DIGDUG, primarily due to its sensitivity to the
training data labels used to generate the learning matrix.

6.3 Quantitative Effectiveness

The computational performance of the techniques used in cre-
ating user and interest maps and performing pruning and join
operations on them at different levels of distribution is evaluated in
this subsection. The results for running the techniques on various
sized clusters and dataset sizes are also presented. The cluster
experiments utilized Amazon EC2 instances of type m4.4xlarge
with 16 vCPUs and 64GB RAM as the master and slaves nodes.

6.3.1 Pruning performance comparisons

One of the crucial elements of these experiments is how many
interests were chosen from a document. Only DIGDUG was able
to extract and process all the relevant terms from a document;
the other comparative techniques all suffered from errors when
working on such large graphs. In some of the competing tech-
niques, pruning the number of edges that an interest or user node
could be connected to is in one value in the key-value pair and
hence is is limited by the memory of the node. Consequently,
experiments were performed either with the maximum number
of connected interests extracted for an interest before pruning or
with max interest progressively increasing from 200 to 500 to
1000. For the case of a higher number of maximum interests
connected to an interest, some graph algorithms did not com-
plete on smaller clusters and processes ran out of memory. The
density of the graph and number of nodes in the graph increases
dramatically as the maximum number of interests extracted from
a document increases. When the maximum number of interests
increase from 500 to 1000, the number of nodes increases from
96201 to 185055 for the entire set of 2300 documents and the
number of edges rises from 88,793,762 to 186,776,725. During
the experiments, the pruning iterations were stopped for average
degree change, average edge weight change and average standard
deviation of edge weight change for the graph at 10% threshold
which happened after 7 iterations with the number of remaining
nodes in the pruned graph at 7149. The distribution of these 3
attributes for the graph nodes also stabilized at that point. This
strongly indicates that similar thresholds will work for any other
technical corpus but were still made configurable for tuning to
other corpuses. After pruning about 30% of the nodes dropped
into the final pruned list due to the edges to other nodes pruned
away causing the final user join results to be significantly better
than other methods with connections from pruned interests.
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Users DIGDUG
connection
strength

Common interests
(interest,weight)

Connected interests
(interest1::interest2,weight)

Cosine
Similar-
ity

Cosine Similarity
terms (term,weight)

1 Carl R.
Illig ::
Zhihua
Sui

96921 solution,21; group,19; mixture,17;
compound,17; disorder,15;
water,13; treatment,12; product;12;
disease,12; receptor,12; residue,12;
methods,11; enantiomer,11;
substituents,11; compositions,11;
art,10; solvent,10; condition,10;
temperature,10; solid,10;
reaction,9; concentration,9; term,8;
study animals,8; cells,8

patient conventional
procedures::pharmaceutically acceptable
excipient,24; sterile water::pharmaceutically
acceptable diluent,24; free base
compounds::composition injectable
suspensions,12; carbodiimide esi electrospray
ionization etoac::free base compounds,12;
mesylation::target both
liver,12;...triethanolamine::insulin
resistance(derived),12;
triphenylphosphine::powders (derived),10

0.6519 trifluoromethyl,0.1134;
ethyl,0.0657;
example,0.0431;
dimethylphenyl,0.0385;
difluo-
rophenyl,0.0222;
solution,0.0218; the
procedure,0.0211;
chlorophenyl,0.0198;
methyl,0.0197...

2 Bruce
Neal ::
Lawrence
A. Leiter

681 change,6; study,6; week,5;
effects;5; treatment,4; analysis,4;
sodium,4; european association,4;
double;4; conduct,4; efficacy,4;
sulphonylurea,2; other
antihyperglycemic agents,2;
fung;2; devineni d,2;
consciousness,2;...

rapid hypertonic glucose infusion::rohwedder
k,1; world diabetes congress::june 5’th annual
meeting,1; plough::oslo university hospital,1;
other baseline characteristics::stable
thereafter,1; rapid hypertonic glucose
infusion::urine
output,1;...hypoglycemia::clinicaltrials
(derived),8; rosiglitazone::data (derived),5...

0.6831 canagliflozin,0.4968;
weeks,0.0224;
patients,0.0214;
safety,0.0097;
canagliflozin
mg,0.0071;
baseline,0.0061;
glimepiride,0.0051

TABLE 1: Examples of connected users and their interests identified by DIGDUG and Cosine Similarity with tf-idf weights.

Pruning for different cluster sizes: An example of the calculation
of interest to interest mappings by removing highly connected
nodes from interest graphs through pruning when a maximum
of 200 interests is extracted from each document is shown in
Figure 9a for pruning various sized interest graphs on a 2 data
node cluster; Figures 9b and 9c show the same operation on 4
and 8 data node clusters, respectively. The results indicate that
for small data sizes, SGC based pruning by performing all graph
operations as a mix of EN and N E joins performs similarly or
even slightly better than DIGDUG. The performance for interest
graph pruning when a maximum of 500 interests are extracted
from each document are shown in Figures 10a, 10b and 10c for
pruning various sized interest graphs on 2, 4 and 8 data node
clusters, respectively. The results show that as the size of graph
increases, the performance of DIGDUG improves significantly
compared to filtering or SGC based pruning. A similar set of
pruning performances for graphs when 1000 maximum interests
are extracted from each document is shown in Figures 11a, 11b
and 11c.
Scaling issues: Some experiments on small clusters did not com-
plete due to the large number of value elements associated with
some of the keys, which led to memory errors. The results clearly
show that not only do filtering based pruning approaches limit
the accuracy of the results by limiting the number of connected
interests to an interest being evaluated, but also may not finish
at all due to the large number of value elements associated with
an interest key in reducer. The only reasonable way to perform
pruning with an SGC method is to use an EN join, which
limits performance significantly. Given this limitation, DIGDUG
is extremely capable compared to other techniques. The key reason
DIGDUG performs better than either SGC operator based pruning
or Filtering pruning is because it combines operations along the
edges into nodes when counting the total connection strengths of
the nodes at each pruning step. It conducts edge operations along
the nodes by deleting all edges with either node a pruned node
in a single MapReduce job using streaming, sub-key identification
and the primary sort available within the MapReduce framework.
This, along with avoiding the need to aggregate the edges for each
key as an interest in the value, prevents memory errors for any key

and allows horizontal scaling.

6.3.2 User connections performance comparisons

The calculation of user connections via user-to-interest and pruned
interest-to-interest graph joins is extremely efficient in DIGDUG
and scales well with an increasing number of interests and users;
Figures 12a, 12b and 12c show the efficient nature of DIGDUG’s
join calculation on a 2, 4 and 8 slave node clusters, respectively,
compared to those achieved by either of the SGC or Filtering
techniques for a maximum of 200 interests. The SGC EN and
N E joins based technique scales in the beginning but its inability
to utilize the sort mechanism available in MapReduce and hence
its need to use the smaller number of users related to an interest
in the value degrades its performance in the user join step. The
performance improvement achieved by DIGDUG becomes even
more apparent on larger datasets, when the density of the graph
increases due to the association of interests to users from a larger
number of documents. This further highlights the performance
difference between SGC and DIGDUG in SSDGC .
Scaling on increasing interests extracted from each document: The
filtering based approach fails for larger number of interests; even
its user pair calculation is performed outside of the technique as
it does not scale to all users in single or split keys in MapReduce.
When max interest increases to 500 and 1000, the interest-to-
interest graph increases significantly in size and density even
after pruning. Joining the user-to-interest graph with the pruned
interest graph thus becomes significantly more computationally
and memory intensive. The impact of this on join performance
is shown in Figures 13a, 13c and 13c for a maximum of 500
interests. When max interest rises to 1000, the impact on the
join performance is shown in Figures 14a, 14b and 14c. The key
reason the DIGDUG join operation performs better than SGC
is the separability of the two graphs, which allows two pairs of
edges and nodes to be processed at the same time. By combining
the user pair creation propagated on the nodes along the edges
with the attributes of the edge creation into a single step, the
resulting combination of both connected and common interests
boosts performance.
Order of joins between SGC and SSDGC : MapReduce Graph
Join techniques primarily function by joining attributes across
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(a) 2 nodes (b) 4 nodes (c) 8 nodes

Fig. 9: Graphs for the pruning performance of DIGDUG, filtering pruning and SGC pruning for 2,4 and 8 data node clusters for
max interest 200 from a document.

(a) 2 nodes (b) 4 nodes (c) 8 nodes

Fig. 10: Graphs for the pruning performance of DIGDUG, filtering pruning and SGC pruning for 2,4 and 8 data node clusters for
max interest 500 from a document.

(a) 2 nodes (b) 4 nodes (c) 8 nodes

Fig. 11: Graphs for the pruning performance of DIGDUG, filtering pruning and SGC pruning for 2,4 and 8 data node clusters for
max interest 1000 from a document.

(a) 2 nodes (b) 4 nodes (c) 8 nodes

Fig. 12: Comparison of the performance of DIGDUG and other techniques for user connections with user-to-interest and pruned
interest-to-interest graphs for 2,4 and 8 data node clusters for max interest 200
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(a) 2 nodes (b) 4 nodes (c) 8 nodes

Fig. 13: Comparison of the performance of DIGDUG and other techniques for user connections with user-to-interest and pruned
interest-to-interest graphs for 2,4 and 8 data node clusters for max interest 500

(a) 2 nodes (b) 4 nodes (c) 8 nodes

Fig. 14: Comparison of the performance of DIGDUG and other techniques for user connections with user-to-interest and pruned
interest-to-interest graphs for 2,4 and 8 data node clusters for max interest 1000

relations. However, for topics and influencer connections the join
requires pairs of influences that are connected to each other
through shared common and connected interests to be identified.
We assume that n = |U |+ |I| where |U | >> |I|, U is the user
graph and I is the interest graph, m is the number of nodes in the
pruned interest-to-interest graph, p is the number of edges in the
user-to-interest graph and q is the number of edges in the pruned
interest-to-interest graph. For this notation we use r = |U | and
s = |I|. Due to the need to evaluate the interest pairs for each
set of users to match connected interests, the exercise order of
r2 for the SGC technique will not fit within the value of a key-
value pair. However, as the join on interests is driven by users for
an interest in the value and using key-value streaming for user
pairs that actually do have common and connected interests can
be measured as r’, SSDGC minimizes the memory footprint of
each reducer and also pays lower costs in communication to those
incurred by SGC . The assumption here is that r’<<r. This also
decreases the number of interests from s to s’, where s’ is the
number of interests of r’, s’ <<s. This inversion of value for the
key and the use of sorting in streaming allows joins in these graphs
to finish even when a smaller node cluster is used. A MapReduce
operation to join influencers based on topics in SSDGC therefore
has the following constraints:

• Disk: The disk usage explodes to O(r2+rs+m+p+q) for the
number of influencer pairs that must be examined in SGC
which is curtailed to O(r′+r’s’+m+p+q) in SSDGC .

• Memory: Each machine needs to process influencer pairs
and their interests and connected interests, represented as
O( r2+m+rs

t ) which is reduced to O( r′+m+r′s′
t ) in SSDGC .

• Communication: In each Shuffle round, the machines
transmit O(r2+rs+m) key-value pairs data for SGC while

Property SGC SSDGC
Disk/machine O( r2+rs+m+p+q

t ) O( r′+r′s′+m+p+q
t )

Disk/total O(r2 + s+m+ p+q) O(r′+ s′+m+ p+q)
Memory/machine O( r2+rs+m

t ) O( r′+r′s′+m
t )

Memory/total O(r2 + rs+m) O(r′+ r′s′+m)

Communication/machine O( r2+rs+m+p+q
t ) O( r′+r′s′+m

t )
Communication/total O(r2 + rs+m) O(r′+ r′s′+m)

CPU/machine O( r2

t ) O( r′
t )

CPU/total O(r2) O(r′)
Number of rounds O(1) O(1)

TABLE 2: Scalable Graph Algorithm classes in MapReduce

it transmits O(r′+ r′s′+m) for SSDGC .
• CPU: In each round, this represents CPU consumption on

each machine, which is of the order of O(r2) in SGC and
O(r’) in SSDGC .

• Number of rounds: The number of rounds needed to finish
the pruning and subsequent joins.

The differences between SGC and SSDGC for each these criteria
are defined in Table 2. These differences consolidate the differ-
ences in joining the two graphs for the two classes.

6.3.3 Scaling efficiency

The algorithms scale well with larger datasets. The scaling of both
pruning and joins is efficient and we further validate that with
strong and weak scaling [Moreland and Oldfield, 2015] results
as shown in Figures 15 for pruning algorithm and Figure 16 for
SSDGC join. In strong scaling the problem size stays the same
while we measure run time by gradually increasing the number of
nodes. In weak scaling we keep the workload on each processor
the same while gradually increasing the size of problem along with
number of processors. The scaling charts show that with increasing
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Fig. 15: Strong and weak scaling of interest graph pruning.

Fig. 16: Strong and weak scaling of SSDGC join.

number of processors the performance keeps improving, and stays
stable for same amount of data per node for increasing data sizes.
Value of max interest was set to 1000 for experiments. The scaling
charts demonstrate that the algorithms can be scaled indefinitely
with increasing number of documents, interests and authors in a
horizontal manner by simply adding nodes to the cluster. During
the execution of pruning and join MapReduce jobs the memory
of the nodes increases rapidly as more mappers and reducers in
MapReduce are started. It stabilizes after a while and processes
proceed to release it upon completion.

6.4 Case Study

The user to user maps and interest mappings for the Diabetes
use case once the user and interest mappings and interest graph
creation and pruning had been performed revealed some interest-
ing results. For this case study, we looked at a wide range of
data sources, including medical and academic journals, patents
and additional technical sources.

6.4.1 Interest Connections

The top three emerging interests and a sample of their related
interests are shown in Table 3.
Connection between butyllithium and other infrequent interests:
Interests found through DIGDUG are relevant because although
they are non-obvious and uncommon, they are meaningful for
the exploration of emerging topics in medical research. One such
interest pair surfaced through the aforementioned methodology
is the linkage between butyllithium and almorexant. While they
initially appear to be loosely related to each other but completely
unrelated to the topic of diabetes, further inspection uncovers a
very clear relationship between the two terms as well as a direct
impact on emerging treatment methods for diabetes. For example,
exploring the linkage between butyllithium and almorexant, and

their impact on the treatment of diabetes reveals that butyllithium
is commonly used in organic chemistry as a lithiating and reducing
reagent that has been used to improve the pharmacokinects of
GPR40 full agonists.

GPR40 is an important component in the fatty acid augmenta-
tion of insulin secretion, which has made it a therapeutic target
for the treatment of Type II Diabetes. GPR40, which is also
known as free fatty acid receptor 1 (FFA1), is a cellular membrane
protein that helps maintain energy homeostasis in the body by
binding free fatty acids, thus indicating the presence of nutrients.
GPR40 activation triggers increased insulin secretion, boosting
the increased absorption of glucose at the cellular level and thus
serving as a key management strategy for glucose regulation in
diabetic patients. In addition to its effects on GPR40, butyllithium
is used in the synthesis of cyclopropane derivatives that are used in
pharmaceutical compounds as orexin receptor inhibitors. Orexin
receptor inhibitors are used to prevent or treat sleep disorders.
One such drug, almorexant is currently being codeveloped by two
pharmaceutical companies Actelion and GSK, who are seeking to
take advantage of its primary function as a dual orexin receptor
antagonist. A common side effect is a decrease in appetite,
which results in decreased blood glucose levels. Orexin receptor
inhibitors are currently being investigated as potential therapeutic
treatments for the control of diabetes.

The connection between butyllithium and almorexant is non-
obvious to all but the most highly involved diabetes research
specialists. In addition to linking butyllithium to almorexant, the
algorithm revealed supporting linked terms such as:

• Impaired insulin
secretion

• Hyperinsular
obesity

• Insulin analog

• Diet therapy
• Cyclopropane
• Diabetes mellitis
• Adult obesity

patient

• hyperinsulinar
obesity

• hypothyroid
obesity

These connected terms support the story explaining the rele-
vance of butyllithium in the treatment of diabetes through appetite
regulation and the modulation of insulin secretion by highlighting
different applications for the treatment of diabetes. We tested
the hypothesis that pruning interests that connect interests across
documents may lead to the loss of meaningful information. In
dropping the pruned interests and maintaining the derived con-
nection between two interests across documents resulted only
in spurious connections. Table 3 shows examples of derived
connections for butyllithium. Every sample of connected indirect
interests that were connected by pruned interests resulted from a
generic linkage related to organic synthesis that is not unique to the
topic of interest, diabetes. Instead, the generic organic synthesis
terms are linked across all fields of study that include organic
synthesis, and do not represent any meaningful information for the
study of diabetes. We did find one example of a pruned term that
may have been significant. This term was ‘sildenafil’, which is a
vasodilator that can be used in treating symptoms related to disease
progression in diabetes. However, this term was recovered through
synonyms elsewhere in the analysis, leading to no meaningful loss
of information through interest pruning. Acknowledging that this
may be a positive outcome for this particular case study, but not
desirable in all instances, we decided to include a switch to provide
ability for the user to decide whether to connect interests of pruned
terms as derived links or drop them.
Connection between Methyl Bromide and other infrequent terms.
Butyllithium Methyl Bromide is a common soil fumigant that
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can cause neuropathy in humans (it is a poison), which appears
to be the connection to diabetes, which also causes neuropathy.
Due to the shared neuropathic results, methyl bromide poisoning
can be misdiagnosed as diabetes. The connection here is through
Cafestol, a molecule found in coffee beans and is thought to be
responsible for the biological effects. It has been patented for
the treatment, prevention, and amelioration of Type 2 diabetes.
Dibenzylethylenediamine, an amine used in the pharmaceutical
version of cafestol, is also used in the treatment of diabetes,
syndrome x, and several other conditions listed in connection to
methyl bromide. The other terms found relate to either chemical
compounds, their synthesis, or conditions associated with diabetes.
For example sodium glucose cotransporter is an SGLT2 inhibitor,
a new class of diabetes medication. The interests associated with
this refer to the way it operates and the effect it has on various
functions that impact diabetes. This shows the effectiveness of
DIGDUG pruning, which highlights infrequent terms in technical
documents and their connections with other infrequent terms.

6.4.2 User Connections

Table 4 displays the top connected users, some of their common
and connected interests and their connections strengths. In addi-
tion to the top common terms found in the documents of both
the authors, it also displays the top related term combinations the
first interest of which comes from the first author, the second from
the second author; the two interests are found to be connected
to each other after the interest-to-interest graph has been pruned.
These results demonstrate the effectiveness of our approach in
identifying key emerging terms from the medical research litera-
ture and patents in the diabetes domain, as well as the connected
community of researchers based on their interests.
Connection between Andrew J Karter and Caroline Gaudy: In the
example in Table 4, Andrew J Karter and Caroline Gaudy have
been identified by the algorithm as being connected. With a net
connection score of 237, their common interests show a list of
largely generic terms such as study, work, prevalent, accuracy,
etc. However, all of the terms in the common interests are
common not just to these two users but also to medical literature
in general. This shows that scoring connectedness using only
common interests produces many spurious connections. Similarly,
filtering user connections using only generic terms would have
filtered out this user connection, when in reality they share many
meaningful connections. These meaningful connected interests
surface through the algorithm’s layer of abstracted graph mining.
These users have linked interests related to their experience in
clinical research and their shared focus on oncological effects and
epidemiological studies using surveillance data.
Connection between Shizuo and Zenichi Ikeda: Shizuo and Zenichi
Ikeda are connected with high connection strength, as shown in
Table 4, as both are listed as inventors for various compounds
used in the treatment of diabetes that are patented by the same
pharmaceutical company (Takeda Pharmaceutical). However, their
connected interests are more indicative of the terms used to
describe the actual compounds patented and their research rather
than their common interests which are all fairly generic. Both have
worked with Tohru Yamashita and 3 others and appear on patents
with them, but neither appear on the same patent. All worked
at the same pharmaceutical company. Similarly Sanath Meegalla
and Zhihua Sui both worked with Nalin Subasinghe and 2 other
inventors at different pharmaceutical companies but never appear
on the same patents. Zhihua Sui works for Janssen Pharmaceu-

tical developing compounds for the treatment of diabetes (listed
on patents) while Sanath Meegalla worked for 3-Dimensional
Pharmaceuticals on compounds for chronic disorders mediated by
certain pathways.

6.5 Analysis of Results

The cases described above show how useful it is to be able to
identify relationships between users and interests for a highly
technical domain. DIGDUG unearths both connected interests
and shared interests. Connected interests are those interests ex-
plicitly shared by two people (user1→interest1→user2), while
shared interests employ a level of abstraction to find interests
that connect users. Shared interests build on a user’s list of
interests by connecting them to other interests and then identifying
which other users are connected to that second layer of interests
(user1→interest1→interest2→user2). This makes it possible to
identify users who are connected deeply through their research
interests by examining the common interests that appear in their
respective technical publications while also linking connected
interests with the connections between interests being determined
by frequently cooccurring terms across the corpus.

These results demonstrate that a combination of connected
and common interests offer a better way to find relationships
between users. The relationship strength can then be further
refined by weighting common terms lower than connected terms.
The exploration of the differences between our proposed new
approach, DIGDUG, and cosine similarity method for the top 3000
strongly connected user pairs showed that the scoring functions for
each of the common user pairs differed significantly (correlation
score R=0.18). This is illustrated in the example in Table 1. In
addition to the 66% higher find rate, DIGDUG was able to create
a more meaningful classification of user connections than cosine
similarity.

7 CONCLUSIONS

Combining users and interests across documents is key to finding
relationships between top influencers and topics in a technical
domain. In highly technical documents, it is crucial to remove
common terms and instead emphasize specific terms in order to
identify emerging topics and their associated influencers in a new
and innovative domain. Combining influencers through common
terms and infrequent terms connected across documents is critical
for finding meaningful connections between experts. DIGDUG
greatly extends scalable graph processing by introducing opera-
tions that boost the performance of distributed processing in dense
separable graphs. The case studies presented here demonstrate
the usefulness of the techniques in DIGDUG and their ability
to identify key topics and connections between influencers more
effectively than existing document similarity based methods in the
highly technical domain of diabetes research. They also confirm
the excellent performance of the distributed algorithms employed
in identifying them.
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Interest Connected interests and Weights
1 butyllithium acrylate mixture,1; al somatostatin regulates glp secretion,1; azepanine,1; cyclobutane,1; dihydrobenzimidazole,1;

dihydrothiopyran,1; disintegrant,1; hyperplasmic obesity,1; invention diabetes mellitus,1; arrhythmia,1; dihydropyridine,1;
gastrointestinal tract,1; hepatitis,1; impaired insulin secretion,1; hypoplasmic obesity,1; alimentary obesity,1; hypophyseal
adiposity,1; hypothyroid obesity,1; adult obesity patient,1; cyclopentene,1; diacetic acid,1; dihydrobenzofuran,1;...; ethyl
bromoacetate,3; ethylbutyl,3; fragment ion peak,3; hydroflumethiazide,3; ikk inhibitors,3... crude title compound(derived),2;
carboxylate(derived),3,...

2 methylbromide dibenzylethylenediamine,1; dioxaborolane,1; ethyl phenyl,1; glycogen phosphorylase,1; detection reagents,1; tetrahydrofuranyl,1;
normal levels,1; cell lines,1; glucosamine,1; rotary evaporation,1; carboxylic acid ethyl,1; density lipoprotein cholesterol,1;
dyslipidemias,1; amphetamine,1; metabolic disorders,1; suitable binders lubricants,3; dimethoxybiphenyl,3; dosage level,3; chain
alkyl groups,3; drops,3; inert pharmaceutical excipients,3; name,3; other reaction parameters,3; otherwise,3; pharmaceutically
acceptable salts thereof present invention,3; reaction temperatures,3; sterile suspensions,3; isobutoxy,3; metabolic syndrome x
more preferably,3; chloroaniline,3; foam,3; genetic testing,3; pharmaceutical excipients,3;
polyvinyl,3;...alogliptin(derived),4;insulin detemir(derived),2...

3 sodium
glucose
cotransporter

blind study medication,1; hdl cholesterol level,1; hepatic insulin action,1; regional adipose tissue distribution,1;
gluconeogenesis,1; metaanalysis,1; streptozotocin,1; selective sglt inhibitor,1; symptomatic hypoglycemic events,1; urosepsis,1;
renal glucose reabsorption,1; systolic hypertension,1; al empagliflozin,3; inhibitor characterisation,3; other sglt inhibitors
diabetes,3; al empagliflozin,3; other sglt inhibitors diabetes,3,...pancreatic cancer(derived),2; normal range(derived),1;...

TABLE 3: Interests and connected interests.

Users Connection
strength

Common interests and weights Connected interests and weights

1 Shizuo Ka-
sai::Zenichi
Ikeda

5633 heterocyclic group,16; compound,14;
hydrocarbon group,14, c alkyl
group,10;...; antithrombotic agent,5

c alkylthio group:hydrocarbon group,750; hydrocarbon group:fragment
ion peak,450; triphenylphosphine::phosphoric acid(derived),7;
insulin::hydroxy group(derived),4...

2 Sanath Mee-
galla::Zhihua
Sui

4422 group,19; compound,18; mixture,17;
disorder,15; treatment,12;
enantiomer,11...

configuration:exacerbation,432; ointment:exacerbation,432;
configuration:carrier,300; mesylate:configuration,294;... glucose::succinic
acid(derived),4; insulin resistance::ethanesulfonic acid(derived),2;...

3 Matthias Eck-
hardt:Stephanie
Venn-Watson

2731 compounds,9; group,9; acetonitrile,5;
pharmaceutical compositions,4; fatty
acids,4;inhibition,3...

haemoglobin:step,128; mammals:contact,81; location:step,81;
carrier:mammals,72; resistance:leptin,64; tautomers:advantage,48;
dibenzylethylenediamine:hydrazine,36;... insulin::incretins(derived),4; ...

4 John J.
Acton::Olga
BABICH

1279 compound,8; subject,7; treatment,6;
reduction,6; ethyl acetate,5; room
temperature,5; inhibition,4; methyl,4;
vacuo,4; dichloromethane,4

schemes:wide variety,50; imidazolidinyl:benzoxazolyl,49;
dichloro:benzoxazolyl,49; benzotriazolyl:imidazolidinyl,49;
indolyl:imidazolidinyl,49; dichloro:indazolyl,49;
bezafibrate:dibenzylethylenediamine,49;...
;concentration::glucose(derived),2;...

5 Andrew J.
Karter::Caroline
Gaudy

248 study,4; work,4; american diabetes
association readers,2; full access,2;
manuscript,2; profit,2; integrity,2; all
data,2; article,2; type diabetes,2;
absence,2; accuracy,2; diabetes,2,..

causes:confusion,9; diabetic complications:indications,4;
refractory:causes,4; japanese patients:fujimoto wy,1; ketones:rapidly,1;
aware:surveillance data,1; departments:socioeconomic
status,1;substantive differences:polydipsia,1; ketoacidosis:modest
differences,1; ketones:causes,1,...type diabetes::accuracy(derived),1;...
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