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Probabilistic topic models, which can discover hidden patterns in documents, have been extensively studied.

However, rather than learning from a single document collection, numerous real-world applications demand a

comprehensive understanding of the relationships among various document sets. To address such needs, this

article proposes a new model that can identify the common and discriminative aspects of multiple datasets.

Specifically, our proposed method is a Bayesian approach that represents each document as a combination

of common topics (shared across all document sets) and distinctive topics (distributions over words that are

exclusive to a particular dataset). Through extensive experiments, we demonstrate the effectiveness of our

method compared with state-of-the-art models. The proposed model can be useful for “comparative thinking”

analysis in real-world document collections.
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1 INTRODUCTION

Several domain experts suggest that “comparative thinking” is the most effective way to improve
learning [49] and serves as a basis of various applications such as event summarization [45, 47],
evolution analysis [13, 32], decision-making [20, 21], and interactive learning [26, 55]. Novel tech-
niques capable of comparative thinking are therefore highly desirable in various real-world appli-
cations. The key to comparative thinking is the ability to distinguish the common and distinctive
aspects between two objects [4]. In the field of data mining, topic modeling has been widely used to
identify the hidden topics underlying the content [2]. In this work, we will investigate the possibil-
ity to utilize such techniques to facilitate “comparative thinking.” In other words, we would like to
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answer the following question: How can we simultaneously identify the common and distinctive
content using topic models?

First, to achieve this goal, we will study the kinds of capabilities that are required by a desirable
model. Theoretically, a model capable of “comparative thinking” should perform well in the fol-
lowing aspects. (1) Clearly revealing common and distinctive topics. Traditional topic mod-
eling methods such as latent Dirichlet allocation (LDA) [2] and non-negative matrix factorization
(NMF) [25] are unable to achieve good performance in discriminative learning, although running
standard topic modeling methods separately on different datasets is one possible solution. How-
ever, it will generate non-comparable topics with different distributions, thus requiring additional
post-processing techniques such as topic pair mapping, to further determine the common and
distinctive topics. The performance of these models is unlikely to be adequate, due to the lack of
clearly defined structures that can reveal common and distinctive topics. (2) Focusing on distinc-
tive learning for content understanding. Instead of distinctive learning, most of the previous
studies focused mainly on label prediction through learning class content features [23, 38–40, 43,
44]. There remains a gap in models that can identify the common and distinctive contents across
datasets. (3) Learning on the entire collection level. Although there has been a vast amount of
literature on mining the global and local aspects of a document corpus [7, 11, 18, 35, 52], most stud-
ies have been limited to working within one document set. The problem described here requires
learning across different datasets, a far more difficult task. (4) Supporting multiple datasets.
Kim et al. [19] proposed an NMF-based approach for distinctive learning named discNMF, which
can handle two datasets, but it cannot easily deal with applications involving multiple datasets.
As real-world tasks generally require the analysis on more than two datasets simultaneously, a
general model that can be applied to arbitrary number of datasets is clearly needed.

In this article, we propose a novel approach for common and distinctive topic modeling (CDTM)
on multiple datasets. CDTM is a hierarchical Bayesian model that is designed to simultaneously
learn common and distinctive topics from document collections. In CDTM, several topics are global
mixtures and word distributions shared by all document sets, while other topics are locally owned
by each respective dataset. By word-level topic assignments, the global structures (common topics)
as well as local distributions (distinctive topics) are learned within a unified framework. Through
these structures, CDTM is able to discover topics characterizing a particular corpus, as well as
maximally exploit the shared information across multiple corpora. This type of discriminative
learning is the basis for various important applications that require “similar content comparison”
and “content evolution.”

Similar content comparison. “Similar content” refers to the data belonging to the same do-
main (common topics), but with different emphasis or features (distinctive topics). For example,
authors with different educational or cultural backgrounds are likely to have slightly different
opinions on a particular subject. Figure 1 shows an example of the results obtained by applying
the proposed CDTM model on news datasets published in the period of 2016 U.S. presidential elec-
tion. The news articles contain word “Clinton” or “Trump” in their headlines. Figure 1(a) shows
Clinton’s distinctive topics, suggesting that the most significant words from her distinctive topics
are related to investigations, such as “email,” “FBI,” and “security.” On the other hand, most words
from Trump’s distinctive topics represent issues, such as “immigration,” “border,” and “abortion.”
However, as can be seen from Figure 1(b), despite facing different difficulties, the two presidential
candidates share common interests such as “election,” “president,” and “voters.”

Content evolution study. The main goal of the evolution study is to understand how the over-
laps and changes between old and new documents take place. More precisely, “changes” refer to
fading or emerging topics (distinctive topics), and “overlaps” denote consistently discussed topics
across time (common topics). Figure 2 is an illustrative example for a content evolution study. It

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 24. Publication date: March 2020.



Probabilistic Topic Modeling for Comparative Analysis of Document Collections 24:3

Fig. 1. Topic summaries of news articles published related to the U.S. presidential election in October 2016.

Fig. 2. Topic summaries of NIPS papers from 1987 to 2016.

shows how the research areas have evolved by analyzing Neural Information Processing Systems pa-
pers published from year 1987 to 2016. “Neural Networks” was the most popular term in the 1990s,
followed by “SVM” and “boosting” as active research topics. “Bayesian” models such as LDA are on
the rise in the later years, while “deep learning” research gains more and more attention recently.
The above mentioned terms reflect the distinctive features in different time stamps. Meanwhile,
several terms such as “NLP,” “converge,” and “optimization” are consistently popular over time,
which belongs to the common topics of datasets across all time periods. The main contributions
of this article can be summarized as follows:

—Propose a novel Bayesian model to simultaneously identify common and distinct
topics among different datasets. The proposed CDTM model is the first graphical model
to focus on identifying common and distinctive topics among multiple datasets, emerging
from a wide range of applications.

—Explore the possibilities of discriminative learning with the variations of CDTM.
Theoretically, there could be different LDA-like graphical models that can achieve discrim-
inative learning. We explore the possibilities by designing and evaluating variations of
CDTM with different structures.

—Provide guideline of usage scenarios for different models through extensive exper-
iments. The performance of the proposed CDTM model is compared to existing state-of-
the-art algorithms on real-world datasets. Our extensive quantitative and qualitative results
show “when to use what method” and demonstrate the effectiveness of the proposed CDTM
model.

The rest of the article is organized as follows. Section 2 reviews related work. Section 3 intro-
duces the CDTM model and its inference process. Section 4 presents our experimental results.
Section 5 concludes the article.
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2 RELATED WORK

This section reviews the existing literature related to the problem studied in this article. Generally
speaking, there are three main branches of research related to this work, traditional topic mod-
eling techniques [10, 17, 25, 50], topic-class modeling [23, 38–40, 44], and methods mining global
and local aspects of documents [7, 11, 18, 24, 35, 52]. Traditional topic models have been widely
studied to identify the latent topics from documents. Based on these models, variations of tradi-
tional topic modeling with focus on discriminative learning can be categorized into the following
two directions: topic-class modeling and global-local aspects mining. In addition to extracting top-
ics, the topic-class modeling methods also include the concept of class, which will learn the topic
distribution for different categories. On the other hand, the global–local aspect mining learns the
shared and distinctive components for documents. Although these two groups of works are related
to CDTM model, neither of them can handle the comparison between different datasets.

2.1 Traditional Topic Models

In general, topic models can be classified into two categories, depending on whether the ap-
proaches are based on (i) matrix decomposition such as singular value decomposition (SVD) or
(ii) generative models. Probabilistic latent semantic analysis (PLSA) [10, 17] is the earliest such
attempt which represents the documents as a mixture of topics and learned latent topics by per-
forming matrix decomposition on the term-document matrix. Similarly, NMF also learned topics
through matrix decomposition, applying the constraint that the decomposed matrices only in-
cluded non-negative values [25]. The generative probabilistic model, LDA took a different ap-
proach by assuming a Dirichlet prior for the latent topics [2]. Theoretically, LDA-based topic
modeling techniques will be able to learn coherent topics compared to matrix decomposition ap-
proaches, as they allow topic mixtures to vary in different documents [29, 50]. Many of these ap-
proaches can be used to implement the task mentioned in this article with special settings, such as
LDA [2, 15] and its non-parametric variation Hierarchical Dirichlet Process [34, 51]. However, our
extensive experiments conducted in this study (which are presented in Section 4) demonstrate that
these approaches are unable to match the performance of CDTM, since they are not specifically
designed for comparative analysis of document collections.

2.2 Topic-class Modeling

Several topic-class modeling methods have been proposed to solve the classification problem.
Rosen-Zvi et al. [44] proposed the Author-Topic model, which aimed to find different topic dis-
tributions over multiple authors, where each author has a corresponding topic mixture. Based on
the Author-Topic model, Lacoste-Julien et al. [23] designed discLDA to study latent topics in or-
der to predict class labels. The main goal of the Author-Topic model is to model the interests of
authors, while discLDA is to model the class properties based on content, which is also a special
case of the Author-Topic model when each individual document only has one author. To bring
more supervised characteristics to traditional LDA, Ramage et al. [39] proposed a variation named
labeledLDA to study the mapping between latent topics and given labels. They then went on to
explore the latent relationship between topics and labels with the cost of higher complexity [40].
Besides the general approaches introduced above, there are also some previous works applying the
topic-class modeling to specific domains. For example, Lin et al. treated sentiment label as a special
type of class: topics were dependent on sentiment distributions, while words are conditioned on
the sentiment-topic pairs [27]. Rasiwasia et al. [41] studied the image classification problem by
modeling each image as a word histogram and image classes as topics, and building a one-to-one
mapping between topics and class labels. In summary, all of these previous works studied latent
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topics through class labels, and utilized the learned topical representations for label prediction.
Unlike these approaches, the method we propose in this work aims to discover both the common
and the different aspects of document sets.

2.3 Global-local Aspect Mining

Another branch of related works learn the structures within a single document/collection.
Chemudugunta et al. [7] identified background topics and document specific topics using a variant
of LDA method. Similarly, Huang et al. [18] recognized local and global aspects of documents and
organized these components into a storyline via optimization. Ren et al. [42] proposed an itera-
tive algorithm to learn phrase semantic relevance between different documents. Wang et al. [52]
studied the same problem of local/global topic discovery through iterative decomposition towards
events. Paul et al. [35] added an aspect variable to the LDA model so that a word may depend
on a topic, an aspect, both, or neither. Ge et al. [11] proposed a method to summarize documents
into chronicles according to the mapping of their underlying topics. Aspect extraction is the most
widely used application of topic model based global-local aspect mining, which aims to identify
descriptions for certain aspects of documents (usually product reviews). Mukherjee et al. [33] used
seed words provided by users to extract aspect categories and assumed each aspect is associated
with distributions over non-seed words and seed terms. Le et al. [24] proposed a supervised topic
model to compare and visualize documents from multiple collections. Moghaddam et al. [31] pro-
posed a model named Factorized LDA (FLDA), which is trained at category level to learn latent
factors underlying the reviews of a category. FLDA assumes each aspect of a review should be
conditioned on both the item and the reviewer. They also provided another LDA-based approach
named ILDA [30], which simultaneously models aspects and their rating in order to capture the
dependency between aspects and rating sentiments. However, each of these models study the pat-
terns within one document collection, whereas our model seeks to learn the relationships among
different document collections. In addition, these existing approaches work only in particular ap-
plications designed for a specific problem such as chronicles/storyline generation, rather than a
general solution for document analysis.

3 PROPOSED METHOD

In this section, we introduce CDTM, a probabilistic model that aims to identify the common topics
shared by multiple datasets and distinctive topics representing the unique characteristics of each
dataset.

3.1 Problem Statement

CDTM is a generative probabilistic model for analyzing multiple datasets. The basic assumption
in this article is that documents are represented as random mixtures over latent topics, where each
topic is a distribution over words; some topics are shared by all datasets, while some other topics
only belong to a specific dataset. The high-level global topics across multiple datasets are called
common topics, and local distinctive topics belonging to one dataset are called specific topics. The
goal of this article is to simultaneously learn both common topics and specific/distinctive topics.

Let us assume a collection of l datasets, denoted by C = {S1,S2, . . . ,Sl }. In this collection, each
dataset is a set of documents denoted by S = {D1,D2, . . . ,DMS

}, where MS is the number of
documents within the dataset S. Each document is a sequence of ND words denoted by D =
{w1,w2, . . . ,wND

}. The vocabularyV of a collection C contains terms from all the datasets, and a
word w is therefore represented as a |V |-dimensional one-hot vector. A common topic is denoted
by a Kc -dimensional Dirichlet variable θc , and a specific topics is represented as a Kd -dimensional
Dirichlet variable θd , where Kc is the number of common topics shared by all the l datasets, and
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Table 1. Notations Used in the Article

Notation Description
C a collection of multiple datasets
l number of datasets in collection C
S a dataset of multiple documents
MS number of documents in a dataset S
D a documents of multiple words
ND number of words in document D
V vocabulary for collection C
θc common topic mixture proportion
θd specific topic mixture proportion
ϕc mixture component of common topic
ϕd mixture component of specific topic
Kc number of common topics
Kd number of specific topics
x indicator of common or specific topic choice
z indicator of topic choice
s indicator of dataset choice
m indicator of document choice
n indicator of word choice
w term indicator for a specific word

β0/β1 hyperparameters for word probability matrices ϕc /ϕd

α0/α1 hyperparameters for topic mixtures θc /θd

μ hyperparameter for indicator s
λ hyperparameter for indicator x

Kd is the number of specific topics for each dataset. The notations and variables used in this article
are listed in Table 1.

Using these definitions, the task of learning common and specific topics is modeled as the esti-
mation for posterior distributions of Dirichlet variables θc and θd . Our proposed CDTM model is
a Bayesian graphical model designed for efficiently computing these values.

3.2 The Proposed CDTM Model

A Bayesian graphical model is a type of a structured probabilistic model that utilizes a directed
acyclic graph to represent the joint probability of random variables. The graphical model of CDTM
model is shown in Figure 3. The circles denote latent variables; the gray ones are observable and the
white ones are unobserved. The black squares represent priors, which are pre-defined parameters.
The arrows indicate conditional dependencies between the variables and parameters. The plates
denote the repetition of variables, which can be used to represent documents, datasets, and topics.
For example, a documentD contains ND words, which can be viewed as ND repetitions of a word
variablew . Therefore, a documentD is denoted by the plate outside of the word variablew marked
with ND . Similarly, a dataset S with MS documents can be denoted by the plate marked with MS ,
which is placed outside of the “document plate.”

The formal generative process of the CDTM model corresponding to the graphical model shown
in Figure 3 is described in Algorithm 1. The collection-level and dataset-level variables are first
generated, followed by document-level variables, and finally word-level variables are generated
under the constraint of upper-level variables.
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Fig. 3. Overview of the proposed CDTM model.

ALGORITHM 1: Generation Process of CDTM model

1 Draw ϕc ∼ Dir (β0) for Kc times;

2 Draw ϕd ∼ Dir (β1) for l × Kd times;

3 for each doc in the dataset do

4 Draw s ∼ Mul (μ );

5 Draw θc ∼ Dir (α0);

6 Draw θd ∼ Dir (α1);

7 Draw λ ∼ Dir (γ ) ;

8 for each word in the document do

9 Draw x ∼ Mult (λ);

10 if x=0, draw z ∼ Mult (θc );

11 choose w ∼ Mult (ϕcz );

12 if x=1, draw z ∼ Mult (θd );

13 choose w ∼ Mult (ϕdz );

14 end

15 end

Generation of collection-level and dataset-level variables. Instead of a single mixture component
used in the traditional LDA, word probabilities in CDTM are parameterized by the following two
kinds of topic mixture components:ϕc (common topic) andϕd (specific topic). Specifically,ϕc and
ϕd are multinomial distributions over terms that correspond to one of the common and specific
topics, respectively. These are implemented as a |V |-dimensional vector including values for all
terms in vocabularyV of collection C.

(1) Common topic mixture componentϕc . There areKc common topic parametersϕc shared by
all l datasets. Therefore, in line 1 of Algorithm 1, ϕc is sampled Kc times from a Dirichlet
distribution with prior α0.

(2) Specific topic mixture component ϕd . Unlike common topic matrix ϕc , each dataset has Kd

different specific topics, and the entire collection has l × Kd different collection-dependent
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parameters ϕd in total. Therefore, as shown in Figure 3, there are l × Kd plates outside
node ϕd . Similarly, in line 2 of Algorithm 1, ϕd is drawn l × Kd times from a Dirichlet
distribution with prior α1.

The entire collection C consisting of l datasets can be modeled through l ∗ Kd + Kc topics.
Through the settings of topic mixture components, our proposed CDTM can model multiple
datasets within a single unified framework, and simultaneously identify the common and dis-
tinctive aspects for each individual dataset.

Generation of document-level variables. In addition to collection-level mixture ϕc and dataset-
level mixture ϕd , we also design document-level mixtures to capture the variance for each docu-
ment. Specifically, in the CDTM model, two document-level topic mixtures θc and θd are governed
by a per-document variable λ that switches the choice between common and distinctive topics.

(1) Preference mixture λ. This variable is a per-document beta distribution that controls the
value for per-word preference binary variable x (will be introduced in the following para-
graph).

(2) Common topic mixture θc . Each document has a common topic mixture θc , which is only
effective when a word’s preference variable x = 0.1

(3) Distinctive topic mixture θd . Similarly, the document-level variable distinctive topic mix-
ture θd only applies when a word’s preference variable x = 1.

Generation of word-level variables. A word w can either be sampled from a mixture of a spe-
cific topic mixture θd , or a common topic mixture θc depending on a binary variable x sampled
from a binomial distribution λ. The generative process for words in the documents involves three
stages. First, through the choice of variable x , the CDTM model will decide whether the topic
generating current word w is a specific topic or a common topic. Afterwards, a topic indicator z
is sampled according to the document-specific mixture proportion. Finally, a word is drawn from
the corresponding topic-specific term distribution.

(1) Choose variable x . Per-word variable x is chosen from a per-document multinomial dis-
tribution with prior λ. x = 0 indicates that the corresponding word is more likely to be
generated from common topics, while x = 1 implies the corresponding word is from a
specific topic.

(2) Choose topic z. After choosingx , topic z for each wordw is drawn from one ofKc common
topics if x = 1 or from one of Kd specific topics if x = 0.

(3) Choose term w . Depending on the choices made for x and z, word w is generated either
from a common topic-term distribution ϕc or sampled from specific topic-term distribu-
tion ϕd .

3.3 Inference

Although the exact inference of posterior distributions for hidden variables is generally intractable,
the solution can be estimated through approximate inference algorithms, such as mean-field varia-
tional expectation [2, 15, 16], Gibbs sampling [6, 12, 36], maximum likelihood estimation [3, 9], and
numerical optimization [37, 54]. Gibbs sampling is used for the inference of the proposed CDTM
model, as this approach yields more accurate estimations than variational inference in LDA-like
graphical models.

1The value of a multinomial (binary) variable can be denoted by the index of its only non-zero element. x = 0 denotes

the zero-th element in vector x is non-zero. In the rest of this article, the values of all multinomial (binary) variables are

represented in this manner.
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3.3.1 Joint Distribution. When the dataset label s of the document is observed, its labeling prior
μ is d-separated from the rest of the model. When s is invisible, the CDTM model can be used
to predict the collection label for documents. Based on Algorithm 1 and the graphical model in
Figure 3, the joint distribution of the CDTM model can be represented as follows:

p (w,z,x |α0,α1,γ , β0, β1) =
p (α0)p (α1)p (β0)p (β1)

M∏
m=1

N∏
n=1

p (wmn |ϕc ,ϕd ,zmn ,xmn )

M∏
m=1

N∏
n=1

X∏
x=1

p (zmn |θcm ,θdm ,xmn = x )
M∏

m=1

N∏
n=1

p (xmn |λm )

M∏
m=1

p (λm |γ )p (γ )
M∏

m=1

p (θdm |α1)
M∏

m=1

p (θcm |α0).

(1)

3.3.2 Hidden Variables. The key to this inference problem is to estimate the posterior distribu-
tions of the following hidden variables: (1) the topic assignment indicator zmn for words; (2) the
common/distinctive preference indicator xmn for words; and (3) the topic mixture proportion θc ,
θd and preference mixture proportion λ for documents. As a special case of a Markov chain Monte
Carlo, Gibbs sampling iteratively samples one instance at a time, conditional on the values of the re-
maining given variables. We only present the result here; the detailed derivation process is omitted
in order to keep the overall dicussion more clear. According to Bayes’ rule, the conditional proba-
bility of zmn can be computed by dividing the joint distribution in Equation (1) by all the variables
except zmn . Since zmn is dependent on the value of xmn , the sampling of zmn is discussed sepa-
rately for two situations: x = 0 or 1. When xmn = 0, which indicates that the topic zmn is chosen
from a common topic, the conditional probability of zmn is as follows:

p (zmn = k |w,z¬mn ,xmn = 0) ∝
nv

cz + β0∑V
v=1 (nv

cz + β0)

nz
cm + α0∑Kc

z=1 (nz
cm + α0)

, (2)

where nv
cz is the number of terms v choosing common topic z in the whole corpus, and nz

cm is
the number of words in document m choosing common topic z. Similarly, when xmn = 1, the
conditional probability of zmn is as shown in Equation (3), where nv

dz
is the number of terms v

choosing distinctive topic z in the current dataset, and nz
dm

is the number of words in current
documentm choosing distinctive topic z:

p (zmn = k |w,z¬mn ,xmn = 1) ∝
nv

dz
+ β1∑V

v=1 (nv
dz
+ β1)

nz
dm
+ α1∑Kd

z=1 (nz
dm
+ α1)

. (3)

Similar to the inference of z, the derivation for the posterior of x is discussed for two cases:
xmn = 0 or xmn = 1. Specifically, when xmn = 0, the inference is calculated as Equation (4), where
n0

m is the number of words choosing x = 0 in documentm:

p (xmn = 0|w,z,x¬mn ) ∝
nv

cz + β0∑V
v=1 (nv

cz + β0)

nz
cm + α0∑Kc

z=1 (nz
cm + α0)

n0
m + γ∑X

x=1 (nx
m + γ )

.
(4)
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In the case of xmn = 0, the inference is computed using Equation (5), where n1
m is the number of

words choosing x = 1 in documentm:

p (xmn = 1|w,z,x¬mn ) ∝
nv

dz
+ β1∑V

v=1 (nv
dz
+ β1)

nz
dm
+ α1∑Kd

z=1 (nz
dm
+ α1)

n1
m + γ∑X

x=1 (nx
m + γ )

. (5)

3.3.3 Multinomial Parameters. Variables ϕc , ϕd , θc , θd , and λ are multinomial distributions
with Dirichlet priors. According to Bayes rule and the definition of Dirichlet priors, these multi-
nomial parameters can be computed from the above posteriors. For example, the common topic
word distribution ϕcz for termv and the common topic mixture θcm for documentm are computed
as follows:

ϕv
cz =

nv
cz + β0∑V

v=1 (nv
cz + β0)

, (6)

θz
cm =

nz
cm + α0∑Kc

z=1 (nz
cm + α0)

. (7)

Variables ϕdz and θd can be calculated in a similar way:

ϕv
dz =

nv
dz
+ β1∑V

v=1 (nv
dz
+ β1)

, (8)

θz
dm =

nz
dm
+ α1∑Kd

z=1 (nz
dm
+ α1)

. (9)

Also, the posterior of λ is as follows, where x can be 1 or 0:

λx
m =

nx
m + γ∑X

x=1 (nx
m + γ )

. (10)

Since each document is a combination of common topics and distinctive topics, the average topic
mixture for documentm is therefore calculated on the basis of θcm , θdm , and λm :

θm = λ0
mθcm + λ

1
mθdm (11)

3.3.4 Gibbs Sampling Algorithm. The Gibbs sampling process for then CDTM model is shown
in Algorithm 2. The procedure has the following five count variables: nv

1sz and nv
0z are matrices

with dimension K ×V , nz
1sm has M rows and Kd columns, nx

m has dimension M × 2, and nz
0 is Kc

dimensional vector.
The Gibbs sampling algorithm has the following three stages: initialization, a burn-in period,

and a sampling period. The determination of the optimum burn-in period duration is essential
for Markov chain Monte Carlo (MCMC) approaches. In this article, we observe changes in the
perplexity to check whether the Markov chain has converged. There are several strategies for using
the results from Gibbs samplers. One is to read the results from one iteration (e.g., last iteration),
another is to use the average of multiple samples. To obtain independent Markov chain states,
here we use “sampling lag” to read results, which will leave an interval of I iterations between
subsequent chosen samplers.
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ALGORITHM 2: Gibbs sampling algorithm for CDTM model

1 Input: word vectors {w }, hyperparameters α0, α1, β0, β1, and number of topics Kc and Kd

2 Global data: count statistics {nx
m }, {nz

0m
}, {nv

0z }, {nz
1sm

}, {nv
1sz }

3 Output: topics {z }, indicators {x }; multinomial parameters ϕc , ϕd , Θc , Θd ; and hyperparameter estimations α0, α1,

β0, β1

4 %initialization; zero all count variables nx
m , nv

1sz , nz
1sm

, nv
0z , nz

0

5 for each dataset s do

6 for each doc m do

7 for each word n ∈ [1, Nm ] in document m (corresponding term of word n is v ) do

8 sample indicator x mn = x̃ ∼ Binomial (λm )

9 increment document-topic count: nx̃
m+ = 1

10 if x̃==0 then

11 sample topic index zm,n = k ∼ Mult (1/Kc )

12 increment common document-topic count: nk
0m
+ = 1

13 increment common topic-term count: nv
0k
+ = 1

14 end

15 if x̃==1 then

16 sample topic index zm,n = k ∼ Mult (1/Kd )

17 increment common document-topic count: nk
1sm
+ = 1

18 increment common topic-term count: nv
1sk
+ = 1

19 end

20 end

21 end

22 end

23 %Gibbs sampling burn-in period and sampling period;

24 for each dataset s do

25 for each doc m do

26 for each word n ∈ [1, Nm ] in document m (corresponding term of word n is v ) do

27 % for current assignment x and k to a term v for word wm,n ;

28 decrement count: nx̃
m− = 1

29 if x==0 then

30 decrement counts: nk
0m
− = 1, nv

0k
− = 1

31 sample new indicator x̃ via Equation (4)

32 end

33 if x==1 then

34 decrement counts: nk
1sm
− = 1, nv

1sk
− = 1

35 sample new indicator x̃ via Equation (5)

36 end

37 if x̃==0 then

38 sample new topic k̃ via Equation (2)

39 increment counts: nk̃
0m
+ = 1, nv

0k̃
+ = 1

40 end

41 if x̃==1 then

42 sample new topic k̃ via Equation (3)

43 increment counts: nk̃
1sm
+ = 1, nv

1sk̃
+ = 1

44 end

45 end

46 end

47 end
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Fig. 4. Framework of the proposed batch-CDTM model.

3.4 Batch CDTM Model

In this section, we will describe a batch processing variant of CDTM, called batch-CDTM model. As
shown in Figure 4, control variable λ is a dataset level parameter in the batch-CDTM model, rather
than the per-document parameter in CDTM model. Using notations and terminologies similar to
the ones described in Section 3.2, the joint distribution of words. topics and preference variables
can be represented into the following form:

p (w,z,x |α0,α1,γ , β0, β1) =
p (α0)p (α1)p (β0)p (β1)

M∏
m=1

N∏
n=1

p (wmn |ϕc ,ϕd ,zmn ,xmn )

M∏
m=1

N∏
n=1

X∏
x=1

p (zmn |θcm ,θdm ,xmn = x )
M∏

m=1

N∏
n=1

p (xmn |λm )

l∏
s=1

p (λm |γ )p (γ )
M∏

m=1

p (θdm |α1)
M∏

m=1

p (θcm |α0).

(12)

The Gibbs sampling for bath-CDTM can be performed in a similar way to that of CDTM. There-
fore, here we only give the full conditional posterior for preference variable x :

p (xmn = 0|w,z,x¬mn ) ∝
nv

cz + β0∑V
v=1 (nv

cz + β0)

nz
cm + α0∑Kc

z=1 (nz
cm + α0)

n0 + γ∑X
x=1 (nx + γ )

, (13)

p (xmn = 1|w,z,x¬mn ) ∝
nv

dz
+ β1∑V

v=1 (nv
dz
+ β1)

nz
dm
+ α1∑Kd

z=1 (nz
dm
+ α1)

n1 + γ∑X
x=1 (nx + γ )

. (14)

Different from CDTM, n0 is the number of words generated from common topics, while n1 is
the number of words generated from distinctive topics. Also, the posterior of λ is changed into
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following form in batch-CDTM:

λx =
nx + γ∑X

x=1 (nx + γ )
. (15)

4 EXPERIMENTS

In this section, the proposed CDTM model is evaluated with baselines using synthetic data as well
as real-world datasets. We first present comparison results on synthetic data to demonstrate the
superiority of the CDTM method over batch-CDTM and discNMF. And then our proposed CDTM
model is also validated using different real-world datasets with various baselines. In both of these
evaluations (using synthetic and real-world data), the datasets along with the comparison methods
are first described, then the evaluation metrics are introduced in the following subsections, and
finally the quantitative results among different approaches are presented in detail.

4.1 Evaluation on Synthetic Data

We will now describe the generation of various synthetic datasets, and then conduct analysis using
these datasets to compare the performance of our proposed models and other baselines.

4.1.1 Datasets and Experimental Settings. The generation strategy for the synthetic data are as
follows. Different ground truth input matrices Di for i = 1, 2, . . . , S can be considered as term-

document matrices based on common topic matricesWi,c = [w (1)
i,c , . . . ,w

(Kc )
i,c ] and distinctive topic

matricesWi,d = [w (1)
i,d
, . . . ,w (Kd )

i,d
]. The t-th element (w (k )

i,c )t and (w (k )
i,d

)t in the matrices can be com-

puted as follows, where inx (i,k ) = 100Kc + 100(i − 1)Kd + 100(k − 1):

(
w (k )

i,c

)
t
=

{
1, 100(k − 1) < t ≤ 100k

0, otherwise

(
w (k )

i,d

)
t
=

{
1, inx (i,k ) < t ≤ inx (i,k ) + 100
0, otherwise .

(16)

4.1.2 Evaluation Metrics.

—Label Error Rate. Label Error Rate (LER) here measures the relationship between the
predicted and the ground truth labels. A lower LER value corresponds to a better perfor-
mance. Given a documentm in datasetD, all the models in our experiments will produce a
document-level topic mixture, the topic with the largest probability value will be given the
final class label lm . Given the ground truth label km , the LER is computed as follows:

LER (D) =
η(lm ,km )

M
, (17)

where M is the total number of documents, η(x ,y) is equal to zero, if x = y, and equals to
one, otherwise. In other words, η(x ,y) is the number of documents incorrectly labeled by
the method.

—Similarity Score. Similarity score evaluates the similarity among the common topics of
different datasets. In this article, the similarity score, which indicates how close the common
topics Φc,i in dataset Di is with their corresponding topics Φc, j in the other dataset Dj , is
defined as follows:

f (Di ,Dj )s =
Kc∑
z=1

| |ϕz
c,i − ϕz

c, j | |2. (18)
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In an ideal scenario, the similarity score of common topics should be zero, since they are
shared by all the datasets. Generally, a smaller value of similarity score corresponds to a
better model performance.

—Reconstruction Score. Reconstruction score measures the closeness of the estimated pa-
rameters produced by the models to the ground truth words. More specifically, for each
document, the product of topic-term distribution and document-topic mixture will give an
estimation of word occurrence probability. Reconstruction score is computed as the differ-
ence between such estimated values in documentm and its true wordsWm :

f (m,D)r = | |Wm − ΦD · Θm | |2. (19)

Similar to similarity score and LER, a smaller value in reconstruction score means better
model performance.

4.1.3 CDTM Vs Batch-CDTM. In this part, we compared CDTM model and its variation batch-
CDTM model through illustration of result matrices and LER.

Figure 5(a) and (b) show the examples of the resulting topic-term distributions of batch-CDTM
and CDTM, respecitvely. As can be seen in these figures, the performance of batch-CDTM is better
than that of the CDTM. Batch-CDTM can successfully recognize all the topics and there are no
overlaps between any two topics. However, CDTM makes obvious mistakes that the first common
topic (topic #9) shares the same terms (terms #1,000 to #1,100) with the third distinctive topic (topic
#3). To justify this observation, we run each method 20 times with random initializations and set
identical initializations to both methods at each run.

In Figure 6(a) and (b), CDTM generally achieves lower error rate, compared to batch-CDTM
model. As shown in Figure 6(a), both methods gain better performance with the increase of dis-
tinctive topic number Kd . Batch-CDTM performs poorly at the beginning, with a small value Kd

(equal to one). And its performance appears to be linear with respect to the values of Kd . CDTM
model can yield relatively better performance even at the initial stage, where Kd is set to be one.
No obvious linear relationship between Kd and performance is observed for CDTM model. How-
ever, the general trend is still similar to that of batch-CDTM: larger distinctive topic number will
benefit the performance. Figure 6(b) shows the performance changes as the common topic num-
ber Kc increases. Unlike the impact of distinctive topic number Kd , when changing common topic
number Kc , there are no linear correlations that are observed for CDTM, nor for batch-CDTM.
Both the two methods will produce lower error rates with larger common topic settings, but the
curves are fluctuating.

In general, Figure 5 evaluates the model performance at the dataset-level by examining the
learned topics, while Figure 6 shows the results on document-level classification. As can be seen
from the above the experiments, although batch-CDTM occasionally provides better topics, it is
less robust than CDTM on document-level classification. Batch-CDTM can generally get better
topics, as the λ is the global parameter, and CDTM has more flexibility at the document level be-
cause its λ parameter is assigned locally. Based on these observations, in the following document-
level evaluation on real-world data, we will compare the performance of CDTM model to the other
state-of-the-arts methods.

4.1.4 CDTM Vs discNMF on Multiple Datasets. As mentioned above, CDTM can be used in the
analysis of multiple datasets, which is not supported by the baseline methods. In this part, we
compare the performance of CDTM model with its closest baselines discNMF using the metrics
of reconstruction error and similarity score on multiple synthetic datasets. Since discNMF does
not support multiple datasets, we repeatedly apply it to achieve the results comparable to those of
the CDTM model. However, it only works on the situation that includes 2i (i = 1, 2, . . .) datasets.
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Fig. 5. Matrices for topic-term distribution results of CDTM and batch-CDTM model. Green blocks are

distinctive topics, and yellow blocks are common topics. X-axis corresponds to topics, and Y-axis denotes the

terms. The settings here are Kd = 8 and Kc = 3.
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Fig. 6. Error rates of CDTM and batch-CDTM model, when changing common and distinctive topic number

settings.

The results studied for five datasets are presented in Table 2. Here discNMF is applied three times
to get the results on five datasets. In the first application of DiscNMF, we obtained the results as
combinations of dataset 1 and 2 and dataset 3 and 4. The second application of discNMF separated
dataset 1 and 2, and similarly the third run of discNMF distinguished dataset 3 and 4.

As can be seen from Table 2, CDTM model performs better than discNMF in both metrics,
similarity score and reconstruction error. Actually, because CDTM designs a global shared data
structure to model the common topics, its similarity score is zero for all datasets. DiscNMF gets a
score of 0.11 in the results on combination dataset 1 and 2 and dataset 3 and 4. Smaller scores are
achieved in the further separations, that discNMF gets similarity score 0.07 in topics from dataset
1 and 2, and 0.09 in the common topic similarity score for dataset 3 and 4.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 24. Publication date: March 2020.



Probabilistic Topic Modeling for Comparative Analysis of Document Collections 24:17

Table 2. Comparison of CDTM Model and discNMF on Multiple Datasets

Similarity Score Reconstruct Error
DiscNMF CDTM DiscNMF CDTM

Dataset 1
0.07

0.11
0

0

0.041 0.032
Dataset 2 0.053 0.047
Dataset 3

0.09 0
0.039 0.022

Dataset 4 0.061 0.056

Table 3. Various Datasets Along with Different Clusters of Topics

Common cluster Exclusive clusters in subset 1 Exclusive clusters in subset 2

Reuters sugar coffee trade
gnp gold ship
cpi crude cocoa

20 news Alt.atheism sci.space comp.graphics talk.politics.guns
comp.sys.ibm.pc.hardware talk.politics.mideast
comp.windows.x talk.politics.misc

4 area Data Mining Machine Learning Database
Information Retrieval

4.2 Evaluation on Real-world Data

4.2.1 Datasets and Experimental Settings. To evaluate our method and other baseline compar-
isons, three real-world document datasets are used in our experiments: 20 News group data (20
clusters, 18,828 documents, and 43,009 keywords), Reuters dataset (65 clusters, 8,293 documents,
and 18,933 keywords), and four area dataset (4 groups, 15,110 documents, 6,487 keywords). These
datasets have been selected for their public availability and wide usage in topic modeling eval-
uations [19, 23]. Three sub-datasets are formed with different clusters, as shown in Table 3. To
conduct an extensive comparison, various ratios of common and distinctive clusters are assigned
to the datasets. In the Reuters data, the number of topics contained in the common cluster is the
same as that in each of the exclusive clusters. while in the four area dataset, the number of common
topics is larger than the number of distinctive topics.

For the CDTM model, weak symmetric priors are used for all Dirichlet or Beta parameters:
α0 = α1 = 0.1, β0 = β1 = 0.001,γ = 0.5, μ = 0.1. It has been shown that a better performance can
be obtained when the values of topic number are set closer to the real-world cases [19]. The distinc-
tive topic number Kd and common topic number Kc for each dataset are therefore set as follows:
(1) Kd = 3 and Kc = 3 in the Reuters dataset; (2) Kd = 3 and Kc = 1 in the 20news dataset; (3)
Kd = 1 and Kc = 2 in the four area dataset. The Gibbs sampler is run for 400 iterations, with the
first 100 iterations as burnt-in period.

4.2.2 Comparison Methods. Although there are many well studied applications on topic-class
modeling [27, 41] or global-local aspect mining [7, 18], few general approaches are proposed for
the purpose of discriminative learning. Since the research focus of our article is discriminative
learning with topic models, the following five methods are chosen as our baseline methods, which
are the most relevant approaches for our problem. LDA and NMF are most widely used state-
of-the-art methods, and almost all other topic models are the variations of them. discLDA and
discNMF are such variations on discriminative learning, which are the works that are closest to
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our proposed CDTM model. Recently, deep-learning models such as recurrent neural networks
(RNN) are known to be good performers on sequence data such as text [28]. To better evaluate
performance of CDTM, we also add one RNN model as the benchmark comparison method on
text clustering task [46].

—LDA [2]: This is the standard topic modeling approach widely studied in the literature. We
ran the LDA method on different subsets separately. For the best results, we used weak
symmetric priors in our experiments: α = 0.1 and β = 0.001.

—NMF [25]: This is the most popular topic modeling method based on matrix decomposition.
As with the standard LDA, we applied the NMF method separately to each subset for topic
discovery.

—discLDA [23]: This is a variant of LDA that is capable of discriminative modeling. There are
three tunable hyperparameters α , β , and π in this approach, which here is set to 0.1, 0.001,
and 0.1, respectively.

—discNMF [19]: This is a discriminative topic modeling method based on NMF. To achieve
best the performance, we set parameter α to be 100, and β to be 10.

—LSTM [46]: Long short-term memory (LSTM) is a RNN architecture, which is widely used
in sequence data such as text and speech. To perform text clustering, our implementation
consists of one LSTM layer and one softmax layer, with a learning rate of 0.0001.

4.2.3 Evauation Metrics. The quality of the topic modeling results are evaluated in terms of
different measures described below.

—Perplexity. Perplexity is a standard metric used to evaluate topic modeling approaches [2,
14], and is typically defined as follows:

Perplexity (D) = exp
⎧⎪⎨
⎪
⎩

−∑M
m=1

∏N
n=1 loдP (wmn )∑M

m=1 Nm

⎫⎪⎬
⎪
⎭

(20)

whereM is the number of documents,wmn is the word vector for documentm and Nm is the
number of words in documentm. A lower perplexity indicates more accurate performance
of the model. Here the probability of the words wmn occurring in a document m, given its
parameters, can be calculated as follows:

P (wmn ) =
⎧⎪⎨
⎪
⎩

ϕwmn
czmn

θ (m)
czmn
, if xmn = 0

ϕwmn

dzmn
θ (m)

dzmn
, if xmn = 1

(21)

where ϕwmn
czmn

and ϕwmn

dzmn
can be computed through Equations (6) and (8), while θ (m)

czmn
and

θ (m)
dzmn

can be calculated through Equations (7) and (9).

—Accuracy. Clustering accuracy (ACC) quantitatively measures the mapping relationships
between resultant clusters and labeled classes [5]. A larger ACC value means better clus-
tering performance. Given a document m, result label rm , and ground truth label sm , the
cluster accuracy is computed as follows:

ACC =

∑M
m=1 δ (sm , rm )

M
, (22)

where M is the total number of documents, δ (x ,y) is a delta function that is equal to one, if
x = y, and equals to zero, otherwise. In our evaluation, the ACC metric is used to calculate
the quality of clusters, where M is the total number of documents within a cluster in the
ground-truth case and δ (x ,y) is the number of documents correctly labeled by the methods.
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—Normalized Mutual Information. Normalized Mutual Information (NMI) is used to mea-
sure the quality of clusters, and is typically defined as follows:

NMI =

∑c
i=1

∑c
j=1

ni, j

n
log

n ·ni, j

ni n̂j√
(
∑c

i=1 ni log ni

n
) (
∑c

i=1 n̂j log
n̂j

n
)

. (23)

In this article, NMI is used to evaluate clustering performance, where c is the number of
clusters, ni is the number of documents contained in the ground truth label Ci , n̂j is the
number of documents belonging to result label Li , and ni j is the number of documents that
are in the intersection between the result label Ci and the ground truth class Lj . Typically,
a larger NMI value indicates better clustering performance.

4.2.4 Parameter Sensitivity Analysis. The distinctive topic number Kd is an important param-
eter for the discriminative learning method discLDA, discNMF, and our proposed CDTM. When
keeping the total topic number K = Kc + Kd fixed, Figure 7 shows the perplexity of method dis-
cLDA, discNMF, and CDTM for varying topic numbers Kd . The correct number of common and
distinct topics here are both three. Two conclusions can be drawn from this figure.

—Minimum perplexity. Both discNMF and our proposed CDTM show minimal perplexity
when Kd is set to be 3, which is the correct number of discriminative topic pairs. However,
there is no obvious correspondence between minimum perplexity and correct discrimina-
tive topic for discLDA.

—Sensitivity. Our proposed CDTM consistently obtains low perplexity with changes in val-
ues of Kd . Interestingly, another graphical model, discLDA is the second best performer
in terms of variance, while matrix factorization method discNMF is very sensitive to the
setting of parameter Kd , which increases dramatically when Kd is set to be 5.

In summary, Figure 7 shows that CDTM model consistently provides results that are closer to
the ground truth, discLDA is also stable with comparatively small variance, although it is hard to
assign the right parameter value, while discNMF is a good performer in most cases except for the
extreme values.

4.2.5 Clustering Performance. The clustering performance evaluates the quality of the result-
ing clusters compared to the ground-truth cluster labels. First, the cluster index for each document
is computed as the most strongly associated topic index. For our proposed CDTM model, this step
identifies the maximal element θdz in vector θd , which can be computed similar to Equation (7).
The results of discLDA are computed by jointly considering the transformation matrices and
the topic mixture distribution. For the NMF and discNMF methods, this step is implemented by
finding the corresponding column vector for factor matrix H . For LSTM, the softmax layer will
generate the probability distribution of clusters, and we take the index of the maximum element
in the distribution as the predicted cluster. The obtained results are then re-mapped to ground
truth labels using the Hungarian algorithm [22]. Two widely adopted cluster quality measures
ACC and NMI are used to evaluate the performance; these are listed in Table 4.

As shown in Table 4, we mark the best values with bold, and the second best ones with under-
lines. Generally, LSTM and our proposed CDTM model are best performers that outperform other
existing methods (NMF, LDA, discNMF and discLDA) in all datasets for both measures ACC and
NMI.

—Comparisons among different datasets. In general, the values of measure ACC and NMI
for all methods will increase as the actual topic number of each cluster (6 topics for the
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Fig. 7. Performance comparison in terms of perplexity.
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Table 4. The Clustering Performance Achieved by Our Proposed CDTM Model along with Other

Baseline Methods Measured in Terms of Accuracy and NMI

Reuters ACC NMI 20 news ACC NMI 4 area ACC NMI

LDA 51.327 0.143 LDA 31.141 0.071 LDA 52.864 0.217
NMF 55.565 0.221 NMF 34.387 0.125 NMF 44.631 0.147
discLDA 55.148 0.236 discLDA 33.813 0.122 discLDA 46.789 0.234
discNMF 54.113 0.228 discNMF 35.747 0.116 discNMF 38.136 0.219
LSTM 58.125 0.228 LSTM 42.243 0.202 LSTM 54.845 0.388
CDTM 56.815 0.238 CDTM 40.813 0.222 CDTM 55.179 0.391

Higher values indicate better performance.

Reuters data, 4 topics for the 20 news dataset, and 3 topics for the four area dataset) de-
creases. In the Reuters dataset, where the number of common and distinctive topics is the
same, the five methods yield very similar results. In the 20 news dataset, as the common
topic number decreases, although all methods see an increase in performance, our pro-
posed CDTM model obtains the largest improvement. Also, in the four area dataset, where
the distinctive topic number is less than the common topic number, CDTM is still the best
performer, with much better ACC and NMI than other methods.

—Comparisons between CDTM and LSTM. Generally, LSTM and CDTM achieve compa-
rable performance, that LSTM achieves better values in ACC while CDTM is the winner in
terms of NMI. This is not surprising. As a deep neural network, LSTM works as a “black
box.” It performs good in prediction task, but lack of explanation and understanding for
output. As a result, LSTM is better in the metric of ACC, but is left behind CDTM in NMI,
the metric emphasizing the quality of the clusters.

—Comparisons between CDTM and other LDA-based approaches. LDA, discLDA, and
proposed CDTM model are all LDA-based approaches. CDTM is the best performer in all
three datasets. discLDA is less stable, beating LDA in the datasets from Reuters and 20 news,
but less well in the four area dataset. The main difference between CDTM and discLDA is
that CDTM is entirely inferred through Gibbs sampling, while parameters in discLDA are
estimated by a combination of Gibbs sampling and the EM algorithm. Such combination
processes may result in performance instability.

—Comparisons among NMF-based approaches. Both the NMF and discNMF algorithms
model topics through matrix factorization. The NMF method is slightly better than disc-
NMF for the datasets from Reuters and four area, while discNMF performs better for the 20
news dataset. This indicates that discNMF can perform well when there is some imbalance
between common and distinctive topics, but degenerates to standard NMF when common
and distinctive topics have similar values. It may also suffer from the instability problem
due to greater model complexity.

—Comparisons between CDTM and discNMF. In the 20 news dataset, NMF performs bet-
ter than LDA, and discNMF is better than discLDA. In the four area dataset, LDA is also
better than NMF, and discLDA is much better than discNMF. This indicates that LDA-based
approaches can obtain good performance when there are more common topics, while NMF-
based approaches can generate good results when there are more distinctive topics in the
dataset.

4.3 Topic Distributions

To examine the performance, we will show the top ranked words for each topic [1, 53]. In this ar-
ticle, to further analyze the differences between the NMF-based and LDA-based methods, Table 5
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Table 5. Word Distributions for Topics (10 Most Likely Words) Learned by the discNMF Model

and Proposed CDTM Model from the 4 Area Dataset

Distinctive Topics

Machine Learning DataBase

discNMF CDTM discNMF CDTM

learning 0.1206531 learning 0.019297 database 0.3846852 data 0.0280814

based 0.0459054 based 0.015685 xml 0.1141720 query 0.0188698

model 0.0386878 using 0.014255 processing 0.0252830 web 0.0171929

using 0.0337021 data 0.012807 management 0.0220824 sql 0.0143184

reinforcement 0.0178361 model 0.012477 querying 0.0157286 database 0.0121842

algorithm 0.0111599 algorithm 0.007233 keyword 0.0135791 mining 0.0114003

classification 0.0111518 search 0.007105 sql 0.0103898 using 0.0107687

approach 0.0104132 information 0.006738 design 0.0094311 xml 0.0099194

network 0.0103787 clustering 0.006738 caching 0.0089737 system 0.0094839

data 0.0088866 classification 0.006720 server 0.0088255 efficient 0.0088088

Common Topics

Information Retrieval Data Mining

discNMF CDTM discNMF CDTM

data 0.0001323 query 0.005830 model 0.0035363 web 0.0074333

based 0.0001215 xml 0.004480 game 0.0018993 data 0.0055904

query 0.0001214 web 0.004357 robot 0.0016786 mining 0.0042388

web 0.0001213 data 0.004112 planning 0.0016436 query 0.0042388

using 0.0001212 system 0.004112 agent 0.0015628 retrieval 0.0035017

mining 0.0001211 clustering 0.003744 logic 0.0015556 based 0.0033788

system 0.0001206 evaluation 0.003621 process 0.0009576 probabilistic 0.0023959

search 0.0001205 mining 0.002884 kernel 0.0009363 efficient 0.0023959

efficient 0.0001203 summary 0.002639 human 0.0008836 pattern 0.0023959

clustering 0.0001202 search 0.002394 markov 0.0008294 information 0.0022730

lists the top-10 ranked words in topics learned by the discNMF model and our CDTM model. In this
experiment, we utilized the four area dataset, because it is a difficult task to differentiate between
these four areas due to their high content similarity between any two sub-groups. First, these four
areas (data mining, information retrieval, machine learning, and database) are the closest research
areas to data science, a sub-discipline of computer science. Second, in general, both “Information
Retrieval” and “Data Mining” (the common topics) are on the basis on “Machine learning” (distinc-
tive topic 1) and “Database” (distinctive topic 2). Two important observations can be made based
on the results shown in Table 5.

—Distinctive Topic. Both discNMF and CDTM model perform well in identifying the dis-
tinctive topics “Machine learning” and “Database.” However, the results for CDTM are com-
puted through word groups, while discNMF is more dependent on one or two of the most
representative words. (1) Both methods identify the important words correctly. For
example, these algorithms were able to find the most representative words in “Database,”
such as “database,” “xml,” “query,” and “sql.” Also, most of the important topic words are
very similar in discNMF and CDTM. For example, 7 out of the 10 top-ranked words in
“Machine learning” are shared by the two methods. (2) The main difference between
discNMF and CDTM is that they assign word weights within each topic differently.
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Compared to the CDTM model, the discNMF model seems to be more “biased” toward the
most important words, with word weight dropping dramatically from the top to the bot-
tom. For instance, in discNMF, the weights of the top ranked words (“learning” for the topic
“Machine Learning” and “database” for the topic “Database”) are three times greater than
the weighting awarded to the words that came in second (“based” for the topic “Machine
Learning” and “xml” for the topic “Database”). This “bias” weakens the performance of dis-
cNMF as the outputs are in fact decided by a relatively small number of words, rather than
the word groups used by the CDTM model.

—Common Topic. Compared to the results of the distinctive topics, both discNMF and
CDTM produce less obvious results for common topics. Although this is such a difficult task
that even well-trained human analyzers find it hard to distinguish a data mining article from
an information Retrieval article, we can still find interesting differences in the behaviors of
the discNMF and CDTM models when dealing with such tasks. (1) DiscNMF degenerates
to “random guess,” while CDTM continues to give a comparatively stable perfor-
mance. For discNMF, the weights of the top-ranked words in common topics are far smaller
than those of distinctive topics. For instance, the weight of the top ranked word “data” for
the topic “Information Retrieval” is only 0.0001323, which is more than 1,000 times smaller
than that of the top-ranked word “learning” (0.1206531) for the distinctive topic “Machine
leaning” and top-1 word “database” (0.3846852) in distinctive topic “Database.” Since the
vocabulary size is 8,841, the weight given to the word “data,” 0.0001323, is slightly larger
than 0.0001131 (1/8, 841), which suggests a “random guess,” where the weights are evenly
assigned to all words. The CDTM model behaves more stably, i.e., the weights of the top
ranked words in the common topics being around 1/3 of those in distinctive words. (2) Once
more, discNMF method tends to find the most representative words while CDTM
considers the combined factors of the word group. DiscNMF still tries to find the most
significant words, such as word “robot,” “kernel,” and “markov” in the common topic “Data
Mining.” It is true that words such as “markov” are more frequently used in data mining
articles than information retrieval articles, but they are only contained in a relatively small
number of articles, which may therefore fail to indicate whether a article belongs to “Data
Mining” or “Information Retrieval” in most cases. Similar to the case of distinctive topics,
the common topics found by the CDTM model are also computed according to the combined
factors from a group of words. First, the words found by the CDTM model tend to be more
general than those from discNMF. For example, the topic “Data Mining” consists of exclu-
sive words “probabilistic” and“pattern,” which are much more widely utilized in data mining
articles than the words “markov” and “kernel.” Second, there are some overlaps among the
top ranked words (3 out of 10) in both “Data Mining” and “Information Retrieval,” and their
different weights appropriately reflect the real scenarios. For example, in the topic “Infor-
mation Retrieval,” the word “query” is the most important word. Although this word also
appears in the top ranked word list for “Data Mining,” it has a much smaller weight. This
phenomenon reflects the true case that both “Data Mining” and “Information Retrieval”
are at the intersection of “Machine Learning” and “Database,” with different emphasis on
similar content.

4.4 Topic Discovery on Multiple Collections

As mentioned earlier, the proposed CDTM model is capable of handling the case of multiple
datasets. This is another advantage of the CDTM model over NMF-based approaches (which can
only be extended from two datasets to multi-sets with major modifications and difficulty). In this
section, we discuss the interesting discoveries that can be made by applying the CDTM model

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 2, Article 24. Publication date: March 2020.



24:24 T. Hua et al.

Fig. 8. Case study of gun shooting in United States.

to “shooting” datasets consisting of multiple document collections. This case illustrates how the
CDTM model can be applied to conduct “comparative thinking” and discover interesting patterns
in real-world data.

The “shooting” datasets consist of three subsets corresponding to the following three recent
shooting events that occurred in the United States: “California teenager shooting,” “South Carolina
Church shooting,” and “Cincinnati shooting.” The goal here is to identify the distinctive topics
contained in each document set, and the common topics that are shared by all three document
sets. Besides these three events, we also include some documents from other “shooting” events to
generate some noise. For parameter setting, we set both common topic number Kc and distinctive
topic number Kd to be one here. The result topic distributions are illustrated as word clouds in
Figure 8.

—Distinctive Topics. As the word clouds show, the top-ranked words for each event clearly
reveal their characteristics. For example, in “California teenager shooting,” a teenager
named “Rodger” (the biggest word) killed several victims, most of whom are “women.” Lo-
cation terms are most obvious distinctive features for each of the different events, such as
“cameo” for “Cincinnati shooting” and “Charleston” for “South Carolina Church shooting.”
One interesting observation that can be made is that the top ranked word list includes a
word labeled “YesAllWomen,” which is a prominent hashtag in Twitter. Since all our docu-
ments are news articles, this phenomenon indicates the significant influence of new emerg-
ing social media for the traditional news media. A similar conclusion can be drawn from
the “South Carolina Church shooting” event, where the word “charlestonshooting” is also
a hashtag from Twitter data.

—Common Topics. The common topics shared by these three events (together with the other
noisy events we included) reflect the most frequently used words appearing in the “shoot-
ing” events. As can be seen from the central word cloud denoting the common topics, the
two largest words, “shooting” and “victims,” are the most representative terms for all three
shooting events. However, the other top ranked words also provided meaningful insights
into these events. For example, the words “black,” “sex,” “girls,” and “college” are among
the most important words in the list, which are consistent with the true factor that: many
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of the shootings are carried out by young college students, and often involving complex
discrimination in gender or racism.

5 CONCLUSIONS

In this article, we proposed a novel probabilistic model called CDTM for identifying the com-
mon and distinctive topics among multiple datasets. CDTM extends a latent variable probabilistic
model (e.g., LDA), by allowing the modeling of documents through choices between specific as-
pects of a single dataset and common aspects shared across all datasets in the collection. Extensive
experiments reveal that the proposed method is not only capable of clearly identifying common
and distinct topics for multiple datasets, but also capable of providing meaningful insights in the
given massive data collection. The comparison against existing state-of-the-art models indicates
that CDTM is more accurate than other LDA variants and more stable than the NMF-based ap-
proaches. For our future work, we plan to improve the efficiency of the proposed method, so that
it can be used for real-time streaming data. In addition, we plan to build a visual analytics system
[8] that can interactively visualize the common and distinctive topics. One can also naturally ex-
tend the proposed model extracting topics from short text documents by incorporating additional
information [48].
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