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Abstract—Predicting the impact of traffic i ncidents b ased on
traffic s ensor d ata i s a n e ssential r esearch t opicin t he fi eld of
Intelligent Transportation Systems (ITS). Tackling the problem
of estimating the durations of incidents from their early stages
is a challenge due to the variable nature of such incidents
and the complex structure of modern road networks. Existing
studies on forecasting the incident duration from sensor data are
mostly incapable of modeling 1) the spatiotemporal correlations
of traffic s ensors a nd a rterial r oads a nd 2 ) t he hierarchical
topology of the traffic sensor and road networks. In this paper, we
propose the Hierarchical Attention-based Spatiotemporal Graph
Convolutional Network model (HastGCN) to solve the incident
duration forecasting problem by formulating the spatiotemporal
correlation and traffic p atterns o nb oth t he s ensor 1 evel and
the road level in their natural hierarchical manner. At the
sensor level, we propose a spatiotemporal attention mechanism
followed by graph convolutions to model the local correlations
and patterns between traffic s ensors on the s ame a rterial road.
At the road level, a connectivity-aware attention mechanism is
designed to learn the global spatial relatedness between each
arterial road. Traffic-condition a ware g raph c onvolutions are
then applied to understand the target incident representation
for the incident duration forecasting.
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I. INTRODUCTION

Early detection of non-recurring congestion caused by traf-
fic i ncidents h as b ecome a n i ncreasingly i mportant research
topic in the field of Intelligent Transportation S ystems (ITS).
Furthermore, estimation of the duration of such incidents is
the natural follow-on problem, especially due to the potential
for significants ocial a nd e conomicl oss c aused b y such
delays. Indeed, a one-minute reduction in incident duration
can produce a 65 USD gain per traffic i ncident [ 1]. D ue to
their natural variability, occurrences of traffic i ncidents are
hard to forecast. But despite this difficulty, the u sefulness of
such work keeps the problem of forecasting traffic incident
duration a primary focus for transportation researchers. To the
benefit of such research, over the past decade, there has been
a widespread deployment of traffic s peed s ensors a nd traffic
incident management systems(TIMS) which has made traffic
speed and traffic i ncident r ecords m ore w idely accessible.
Thanks to this abundance of traffic data sources, we are able to
develop efficient machine learning models to provide accurate
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estimations of traffic incident duration from the perspective of
the natural flow of a traffic incident’s lifespan.

The incident duration of a traffic incident is quantified
by the time elapsed from the incident occurrence until no
evidence of the incident remains at the incident scene [2]. A
large body of current work [3]-[6] regards the estimation of
incident duration as a feature-driven regression task, relying on
partial traffic sensor data but ignoring the topology of the road
networks. Often, these methods suffer from several drawbacks.

First, hierarchical structures between traffic sensors
and arterial roads are rarely considered. The topology
of modern road networks can be generalized as a connected
graph of arterial roads where each arterial road consists of a
distance-based correlation graph of traffic sensors deployed
along it. This hierarchical structure between traffic sensors
and road networks can be applied in designing a hierarchical
graph neural network which can improve the performance
of predicting the duration of traffic incidents. However, most
existing works [3], [7], [8] in the literature on traffic incident
duration prediction ignore the advantages of this hierarchy and
only consider single arterial roads or road networks as a whole.
Second, current methods [1], [4] are incapable of learning
dynamic spatiotemporal feature correlation from traffic
sensor data. The temporal features extracted from the traffic
sensors used by regression-based methods cannot represent
the spatial correlations of traffic incident duration prediction
tasks. Because the duration of a traffic incident is defined and
quantified in both the spatial and temporal domain, modulating
the spatiotemporal characteristics is essential for precisely
estimating duration. Additionally, it is critical to identify the
relative importance of spatiotemporal features and the relations
among these features. Most of the existing methods do not
address these concerns and leave much of this signal on
the table. Third, connectivity between arterial roads and
correlations between the traffic sensors are not properly
modeled. In real-world scenarios, the impact of a traffic
incident cascades along spatially correlated traffic sensors and
interconnected arterial roads. Properly modeling the intercon-
nections of arterial roads becomes integral for predicting the
duration of traffic incidents. The existing regression-based and
multitask learning-based methods [8], [9], discussed here, offer
limited capabilities for modeling spatial correlations between
traffic sensors and exploiting the connectivity of arterial roads.



To address these challenges, we propose the Hierarchical
Attention-based  SpatioTemporal Graph  Convolutional
Network (HastGCN) to formulate the spatiotemporal feature
correlations and traffic patterns between the traffic sensors
and the interconnections of arterial roads separately in their
natural hierarchical manner. In particular, because sensor
readings during traffic incidents show strong associations in
regional traffic sensors, connected arterial roads, and adhesive
time slots, we propose multiple attention mechanisms
targeting both the spatial and temporal features to learn
dynamic spatiotemporal feature correlation from traffic sensor
data. Also, because traffic patterns are only available in data
transmitted by a closely deployed network of traffic sensors
situated along connected arterial roads, we graph the traffic-
condition aware convolutional networks to learn the road
and incident representations, based on which traffic incident
duration forecasting is performed. The main contributions of
this paper are summarized as follows:

* Proposing a novel hierarchical structure for spa-
tiotemporal graph convolutional networks. We leverage the
topology of the road network to model the correlations of the
traffic data on multiple levels. Specifically, the sensor level
is represented by the spatial relatedness between the traffic
sensors on each corridor. The road level is represented by the
spatial connections between corridors.

¢ Formulating relation-aware, multi-attention mecha-
nisms on spatial and temporal traffic sensor features.
The proposed HastGCN model is capable of capturing the
dynamical dependencies between spatiotemporal features. In
particular, the spatiotemporal attention layer is proposed to
identify the density-based correlation between sensors and
roads, as well as the inequality of influence of distinct time
frames of incidents.

* Developing a sensor-road traffic-condition aware graph
convolutional network to learn road and traffic incident
representations. By considering both the natural spatial con-
nectivity and the invariant traffic conditions (e.g., number
of lanes), we propose a traffic-condition aware graph con-
volutional neural network to deliver the road and incident
representation based on the sensor-level and road-level graphs,
respectively.

II. PROBLEM STATEMENT

The real-world traffic network 7 is a topology which
consists of a set of road segments R and the set of intersections
C which connect them. Intuitively, by modulating this road-
level topology, models could make use of road connections for
incident duration prediction. However, we argue that, besides
the road-level topology, the sensors deployed on each arterial
road also construct a topology which contributes a reflection
of the real-world traffic situation. Thus, as shown in Fig. 1, we
adopt a hierarchical structure which consists of two topologies:
a road-level graph (RLG) and a sensor-level graph (SLG).

Definition I: Road-Level Graph (RLG). Naturally, the
vanilla road-level topology can be represented mathematically
as a graph G = (R,C,A), where R is the node set which
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Fig. 1. The Construction of the Hierarchical Graph. The road map on the
left-hand side represents the traffic sensors. The green, yellow, and purple
nodes represent the traffic sensors on the green, yellow, and purple roads,
respectively.

represents the arterial roads in the traffic network 7, and C is
edge set which refers the set of intersections C in the topology
T. Each node r € R is attached with an attribute vector which
is learned based on the sensor-level graph defined below. The
square matrix A € RI®IXIRI denotes the adjacency matrix of
this graph. In particular, for two arbitrary road segments 7;
and r;, the adjacency matrix A is formulated as:

1, if condition o(r;,r;) holds,
0,

OV

otherwise, M
where the condition g is a spatial correlation measurement
that calculates the spatial relation between the two targets r;
and r;. These spatial conditions will return True if r; and r;
intersect or touch each other.

Definition II: Sensor-Level Graph (SLG). The sensor graph
of one road segment r is defined as G, = (V,, &, A,.), where
V., is the node set which represents the n traffic sensors
deployed on this road and &, refers to the selective pairwise
correlation between different sensors. At time 7, the real-time
readings of all the sensors on this road compose the attribute
matrix X, , € R"*I¥l of graph G,, where F is the set of
traffic features monitored by a sensor. A, € R"*™ is the
adjacency matrix representing the Gaussian weights measured
as correlation between pairwise traffic sensors, defined as:

d2. d2.
exp(=%%) i# j and exp(—%
0 otherwise.

_ ) =€

ris ?)
where d;; is the distance between traffic sensors ¢ and j,
and o2 and e are hyperparameters which together control the
distribution and sparsity of matrix A,.

Assume that we are given a collection of traffic incidents
® from the traffic incident management system. The duration
(impact) of each traffic incident ¢ € ® can be characterized
and quantified by its occurrence time T1,, verification time
7, and the restoration time 7. (the time when the traffic
returns to normal). In this paper, we aim to forecast the
duration of the traffic incident defined by 7. — 7,, using a
small window of readings around the incident verification
time 7,. In particular, we define the window of size p
before 7, as the pre-verification window, and the window
of size q following the 7, as the post-verification window.
For the pre-verification window of the accident ¢, the traffic
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sensor readings for all arterial roads can be formulated as
X¢_ = {XTU—p-&-laXTU—p-‘r%--~7XTU} € R‘RN}X”X‘F"
where p is the pre-verification window size, and X, =
{Xi7,...,X|r|,+} is the collection of attribute matrix of
the sensor graph for each road r € R. Likewise, the traffic
readings during the post-verification window of the incident
¢ can be collected as X = {X, 11, Xr, 12, Xr 44} €
RIRIXaxnx|F| “where ¢ is the post-verification window size.

Then we can format our problem as: given a traffic incident
¢ which has not yet reached the restoration time 7., a small
window of size p pre-verification readings X~ and a small
window of size ¢ post-verification readings X, can we fore-
cast the duration of the traffic incident y4 = 7. —7, in minutes:
F(Xy) = yg, where Xy = {X; X} € RIRIxwra)pxnx|F]
is the collection of all the traffic readings during time window
7o —p+ 1,7 +q.

III. HastGCN MODEL

Fig. 2. The framework of the Hierarchical Attention-based Spatiotemporal
Graph Convolutional Network (HastGCN). The Xy ;. in the figure represents
the road sensor data tensor for the specific road.

This section details the architecture of the HastGCN in three
major building blocks: SensorNet, RoadNet, and the incident
duration forecasting layer. Aiming to construct an incident
representation, the SensorNet and RoadNet blocks work con-
secutively to extract, dynamically adjust, and integrate both
local (sensor-level) and global (road-level) spatiotemporal fea-
tures by capturing the spatiotemporal correlations and patterns
among traffic sensors and arterial roads. Then, based on the
learned incident representation, a prediction layer is used to
forecast the incident duration.

A. Model Overview

Recall that for each incident ¢, the traffic sensor readings are
collected as Xy € RIRIX(p+a)xnx[F|  SopsorNet is designed
to take X, as input and learn a representation for each road.
In particular, for each road r, we have traffic feature data
Xyr = {X, ;X)) € ReToxnxIFl which consists of
the readings of all the sensors on that road, during both the
pre- and post-verification windows of that incident. Xy, is
first fed into the local spatiotemporal attention layer where
both the spatial correlations between the traffic sensors and
the importance between different time frames around the
verification time are modulated and weighted. The outcome
is then fed into the sensor-level convolutional net, which
fulfills the graph convolution operations between the sensor
attributes and outputs one hidden representation for road 7.
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Next, RoadNet modulates the global spatial attention on the
road representation learned by SensorNet. The output of this
is used by the road-level convolutional net, followed by a
road-wise one dimensional convolutional layer, to learn the
incident representation on the entire road network. By design,
our framework allows stacking both SensorNet and RoadNet
multiple times. In order to train the model efficiently and
stably, we add residual connections [10] between each stacked
module. Finally, a prediction layer is applied to this learned
incident representation to forecast the potential incident dura-
tion.

B. Relation-Aware Spatiotemporal Attention Layer

In real-world traffic sensor networks, sensors are connected
naturally along with the directions of the arterial roads and
thus considering them together should enhance the model’s
generalizibility for identifying similar patterns. There are
two intuitions behind our proposal of the sensor-level spatial
attention: 1) the traffic sensors are not evenly deployed on the
arterial roads and 2) the closer the traffic sensors are deployed,
the more similar patterns these traffic sensors will share. Based
on these two intuitions, we argue that the density of traffic
sensors on an arterial road is integral to the spatial attention
calculation. Therefore, apply a degree vector S, € R™*! to
indicate the density information of the traffic sensors, where
Sr, = ;A Let Xy, € RPHOXnxIFl be the input
raw sensor readings for all the sensors deployed on road r.
Inspired by the selective attention mechanism in [11], we
propose a density-based sensor attention mechanism to capture
the spatial correlations between traffic sensors:

o = W, -ReLU ((Wslxw)wsg(xwwsg) + STW;{) ,
3
4)

exp(oj) T
= e Xy = (Xg,a)

N exp(ai;)
where &;; represents the attention strength between node 4 and
node j, and W, € R"*" W, € RPt4, W, € RIFIx@+a),
W, € RIFI, W, € R™" are all learnable parameters.
As the sensor-level spatial attention layer modulates the local
correlation between sensors on the same road, the road-level
spatial attention layer is designed to consider global, road-wise
interconnections. In particular, RoadNet obtains the spatially
integrated and adjusted graph signals X, by applying the
spatial attention layer (Eq. 3 and 4) on the ds-dimension
road representations X,. € RI®I*4 Jearned by SensorNet. The
detailed process of generating X, is given in Section III-C.

We propose a temporal attention layer, which aims to em-
power the model with the capacity to dynamically determine
the role of each time frame in estimating incident duration.
First, the importance of the pre- and post-verification windows
is differentiated by a gate mechanism:

~ = Sigmoid ((qugrw f)Wn) X =

@)
where W, € R, W; € RIFI, W, € R" are all learnable
matrices. Next, for time frames within each window, the
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pair-wise correlation is measured. Take the post-verification
window as an example, the attention is calculated as:
o (W) Wh(WEXS,) 6

BT = (Xpr Wit | Win Wiz Xy, ) (©)

where W}, € RIFI, W, € R™IFI and W} € R™ are all
learnable parameters. 3" is then normalized by the softmax
function and directly applied on X;T to obtain the temporal

. . ot o Lot
adjusted attribute matrix X ,.. Finally, by concatenating X, ,.

and X;)T on the temporal, we obtain the temporal attention
layer output 5((;5, € RP+a)xnxIF| Note that the temporal
attention layer is only used in SensorNet since the temporal
information is already integrated into the road representation
in RoadNet.

C. Traffic-condition Aware Graph Convolution

We assume that the traffic patterns which occur during an
incident are conducted by the spatial correlations between
the sensors (modeled by SensorNet) and the interconnections
between the arterial roads (modeled by RoadNet). To capture
the traffic pattern transmission between the sensors and the
arterial roads in the traffic networks, we adopt graph convolu-
tional layers to model the entire network. In general settings,
the graph signals are dynamically adjusted by the graph
convolution which is suitable to the learned representation
(e.g., road representation) in our model. However, we argue
that, some basic traffic conditions such as the number of
lanes also contribute to the understanding of incident and
these should, intuitively, be considered in an invariant fashion.
To fulfill all the above considerations, we propose a traffic
condition-aware graph convolution.

In general, given a graph represented in the spatial domain
G = (V,E,A), the graph convolution is implemented by
applying linear filters g(-) on the eigenvalue decomposition
of the graph’s Fourier domain projection, i.(;,., the nlormalized
Laplacian matrix defined as L = I — D 2AD™ 2 where I
is the identity matrix and D is the degree matrix calculated
as Dy; = Zj A;;. However, a large scale graph such as the
traffic network used in this paper requires expensive compu-
tation complexity. As a result, we adopt the m-th polynomial
approximation [12] to calculate the graph convolution

K
gu(L)sz = > wnTn(L-T)z, X, = ReLU (g0 (L) Xg+C.),
m=0
(N

where (. denotes real-world traffic condition terms related
to graph G, and X, is attribute matrix of this graph, w.
are learnable parameters, and 7}, is the m-th term of the
polynomial approximation defined as T, (a) = 22T,,—1(a) —
Tim—2(a), To(a) = 1,T1(a) = a.

In our current data setting, all traffic sensors deployed on
the arterial roads share similar specifications and we therefore
omit the (. in SensorNet. However, in scenarios where the
sensors have different attributes, our framework allows the
model to consider specific sensor conditions. For SensorNet,
the input X, for graph convolution (Eq. 7) is XW. and the
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output is then flattened to the ds-dimension vector, used as
the road representation. Once every road representation is
learned, we obtain X, € RIRIXds which is then fed into
RoadNet. According to the spatial correlations between the
traffic sensors in SensorNet, we adopt the kernel size K = 3.

For RoadNet, however, based on the observation that road
conditions (e.g. road types and number of lanes) play an im-
portant role in predicting traffic incident duration, we introduce
a road condition awareness term (:

(.= ReLU(p*W.,), (8)

where p* € RI®IXde js the additional road condition infor-
mation represented by one-hot annotation, and W, € R% *ds
is a learnable parameter. For RoadNet, the input for graph
convolution is the output X, € RIRIXds of the global attention
layer. Then, we apply an one dimensional convolution layer
to the flattened output of graph convolution X, to obtain the
incident representation hy: hy, = 1DConv(X,) € R%.

D. Incident Duration Forecasting Layer

The problem setup for the task of forecasting traffic incident
durations implies two constraints on our prediction results: 1)
the estimated duration 4 must be larger than p+g because we
aim to use a small window of observation to forecast the entire
duration, and 2) the estimated duration must be a positive
number. As a result, we modulate these two constraints in our
prediction layer:

9, = p+Softplus(Why),§; = g+ Softplus(W'hy), (9)

where g, is the estimated duration between the incident
occurrence time 7, and incident verification time 7, Q;
is the estimated duration between the verification time 7,
and the time 7. when the traffic returns to normal. The
Softplus layer guarantees that the constraints are satisfied, and
W~ € R and W' € R are learnable parameters.
At last, §g = Uy + Q(‘; is the estimated duration of incident ¢.

E. Parameter Learning

In practice, the time period between the verification time
and the time when the traffic returns to normal is much longer
than the pre-verification period, and thus should play a more
important role in the loss calculation. As a result, we use a
weighted mean squared error as our loss function:

N 2 1 -2
Loss = Z eHy[; - y:;HQ +(1— E)quﬁ Yy H2’
ped

(10)

where the hyperparameter € controls the trade-off between the
post-verification duration loss and the pre-verification duration
loss.

IV. EXPERIMENT

A. Dataset Description and Experiment Setup

Metrics: To justify the performance of our proposed model
on traffic incident duration prediction, we adopt root mean
squared error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). These metrics are widely
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TABLE I
TRAFFIC INCIDENT DURATION FORECASTING COMPARISONS (RMSE
(MIN), MAE (MIN), MAPE (%))

Method PeMS04 PeMS08

RMSE MAE MAPE RMSE MAE MAPE
Ridge 93.6618  74.9687  94.0881 89.0125  70.8411 87.8034
LASSO 90.8160  74.3216  90.4205 | 76.9342  57.8814  71.1917
SVR 86.4118  70.6930  89.0108 | 73.5938  54.4448  69.1099
nMTL 87.5108  72.8383  81.5823 | 55.1493  51.5852  76.2807
TITAN 82.9919  72.1177  79.7070 | 53.0547  46.9001 68.4498
ASTGCN 68.4086  54.7145  76.8028 | 39.3745  33.6342  46.2822
GeoMAN 69.3046  61.8778  75.6514 | 38.7785  31.1322  47.0357
HastGCNr | 72.8079  65.7555  75.8787 | 43.7245  40.7585  59.8090
HastGCNs | 70.4996  65.4185  70.8764 | 40.0726  34.8083  59.3436
HastGCN 66.5545  53.3862  74.5355 | 37.7521  30.0757  46.0682

utilized in the field of traffic duration prediction studies [3],
[8], [13], [14] and reflect upon the predictive performance of
the proposed model. The following calculations represent the

selected evaluation metrics: RMSFE = \/ % fv 1 (yi — Z)i)Q,

MAE = NZ ly; — 4i|, and MAPE = NZ vy
where NN is the total number of records; y represents the
predicted traffic incident durations as a vector; ¢y represents
the ground truth value of the corresponding record, also
represented as a vector. y; and §); are the " predicted result
and the i-th ground truth value respectively.

Comparison Methods: To evaluate the performance of our
traffic incident duration prediction, five conventional baseline
methods are considered in our experiment: {5 regularized
linear regression (ridge regression) [15], ¢; regularized linear
regression (LASSO) [9], support vector regression (SVR) [9],
naive multi-task learning model (nMTL) [16], and the TITAN
model [17]. Two state-of-the-art deep learning methods for
traffic flow forecasting are also selected for comparison:
ASTGCN [18] and GeoMAN [19]. Due to the different goals
of prediction, we change the output to be 1-step prediction in
the implementations of these methods.

Road-level Spai
PLMsUK

(b) The sensor-level and road-level spatial attention for San Bernardino Area
Fig. 3. Case Studies for Spatial Attention Learning. This figure demonstrates

the learned spatial attention parameters at both the local traffic sensor level
and the global arterial road level.
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B. Performance of Incident Duration Prediction

HastGCN vs. conventional methods with temporal fea-
tures only. Our model consistently and significantly outper-
forms the conventional methods (Ridge, LASSO, and SVR)
that only consider temporal features. In particular, our model
is able to achieve at least 23.0%, 24.5%, and 16.3% improve-
ments on MAE, RMSE, and MAPE, respectively. Furthermore,
we observe that the best performing method of the second
group also outperforms the “temporal features only” group.
These two observations suggest that the models would struggle
to modulate the incident duration if only temporal information
is available. Also, this experimental result indicates that the
temporal attention mechanism is beneficial for identifying and
differentiating the importance of different time frames during
the observation window during the early stages of an incident.

HastGCN vs. conventional methods with temporal fea-
tures and spatial constraints. Our model also consistently
outperforms the second group of methods that considers
temporal features with spatial constraints. In particular, on
three different datasets, HastGCN can achieve 19.8% to 34.5%
improvement on RMSE, 26.0% to 37.8% gain on MAE, and
6.4% to 38.4% improvement on MAPE. Furthermore, we
observe that our two ablations (HastGCN, and HastGCN,.),
which considers only RoadNet or SensorNet, also outper-
formced this method group in general. We argue that this
boost of performance is attributed to both spatiotemporal
attention mechanisms and graph convolutional networks. In
partular, at the sensor-level, comparing against the spatial
constraints used in nMTL and TITAN, our spatial attention
layer enables a greater flexibility in modulating sensor-wise
correlation and attending only to the important neighboring
sensors. Likewise, the temporal attention is more beneficial to
model by providing a way to attending the time points during
the pre- and post-verification window, comparing to the simple
temporal alignment mechanism used in nMTL and TITAN.
Besides, we conclude that the graph convolution’s capability
of modulating the transission of traffic pattern between sensors
and roads introduce this advantages in prediction performance.

HastGCN vs. deep learning models. Our proposed model
outperforms ASTGCN and GeoMAN on all measures across
all datasets. In particular, we observe that, on three different
datasets, HastGCN can achieve 2.6% to 9.0% improvement
on RMSE, 2.4% to 15.5% gain on MAE, and 0.5% to 13.1%
improvement on MAPE. Considering that GeoMAN is a
spatial-temporal attention based recurrent neural networks, we
argue that our model’s performance gain can be attributed
to the graph convolution layers deployed hierarchically on
the sensor-level and graph-level graph. This achievement of
performance indicates that, the design of the hierarchical struc-
ture and the flexibility it enables in integrating information
collected from sensors and roads, are able to improve the
accuracy of incident duration predictions. Furthermore, we
observe that our model has a more robust performance on all
scenarios while GeoMAN and ASTGCN suffer from unstable
performance in some cases. For example, on PeMS08, Ge-
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OoMAN achieves relatively high performance than ASTGCN,
but on PeMS04, GeoMAN is inferior to ASTGCN in terms
of RMSE and MAE. This can be interpreted as that our
hierarchical design could be advantageous in assisting the
model to adapt to the complicated and variable nature of the
real-world scenarios.

C. Ablation Study

RoadNet Analysis. We first analyze the contribution of the
RoadNet. In particular, we remove the RoadNet module from
the HastGCN, and create one variant, named HastGCN,. Since
SensorNet can only learn the road representation, in order
to predict the duration of the incident, we add one fusion
layer to obtain weighted sums of all the roads as the incident
representation to our traffic incident prediction layer: hy =
> rer Xr W, where hy is the incident representation learned
by HastGCNj, x, € R% is the learned representation for road
r € R, and W € R% <9 are learnable parameters. Note that
in this setting, road connectivity information is completely
ignored, though a road representation is still learned based
on the local sensor readings. The performance is reported in
Table I. As expected, we observe that HastGCN consistently
outperforms HastGCN, under every evaluation case expect for
MAPE on PeMS04. This result illustrates that the road network
and the connectivity information it contains are critical to the
incident duration forecasting problem, which agrees with our
intuition.

SensorNet Analysis. Next, we study the contributions of
the SensorNet. In this ablation test, we create an ablation
named HastGCN, by removing the SensorNet and keeping
only the RoadNet. As a result, we use the average of sensor
readings of each road as the road representations: X, =
nik Dor >k Xeorrks Where Xy o -1 € RIFl is the readings
of the k-th sensor on road r at time 7. Note that in this
setting, the temporal and spatial dependencies of readings of
sensors along the road are integrated using the plain average
function. The performance is reported in Table I. The fully
fledged HastGCN consistently outperforms HastGCN, on all
datasets. This result demonstrates the importance of allowing
the model to dynamically adjust and integrate the raw sensor
attributes via considering both the spatial correlation and
temporal difference.

V. CONCLUSION

In this paper, we present a hierarchical attention-based spa-
tiotemporal graph convolution network (HastGCN) to predict
the impact of traffic incidents from traffic sensor data. This
model expands on traditional graph convolutional networks
by implementing a hierarchical structure that is capable of
modeling graphs with sub-graphs. With this extension, the
model considers not only the distances between traffic sensors
but also the directions and interconnections of the corridors
where the traffic sensors are located. We employ spatial and
temporal attention mechanisms that encourage the building of
dependencies between traffic sensors and corridor topology
and which group the sequences that leverage dynamically
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learned weights. Our model is evaluated on three real-world
traffic datasets collected from the Caltrans Performance Mea-
surement System (PeMS) and the experimental results demon-
strate that our model can consistently outperform the existing
temporal models.
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