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groups [4]. The strong connection between hate speech and
actual hate crimes [5] make the detection of hate speech
a vital task. On top of being a precursor to potential hate
crimes, hateful speech can have deep impacts on an individual
such as heightened stress and anxiety [6], lowered academic
performance and self-esteem [7], alcohol and drug use [8], and
in extreme cases, suicide.

Current methods of combating hate speech are primarily
through informing consumers. This involves educating chil-
dren [9] and advocating on social media. Facebook, Twitter,
Tiktok, and other leading social media platforms prohibit
hateful speech in their respective community guidelines and
also have passive reporting procedures built-in to their ap-
plication [10]. However, these social media platforms are
yet to utilize active hate speech detection tools. An active
system is critical as only an estimated 12% of incidents are
reported [11]. In this work, we leverage recent developments in
natural language processing, casting the hate speech detection
problem into the field of machine learning-powered sentiment
analysis and seek to stop the inflicted verbal harm before it
escalates to hate crimes.

One of the challenges facing current hate speech research is
the class imbalance problem leading to severe class biases,
hindering the performance of models (see Section IV). This
is reflected in the three datasets used in this paper, RSN [12],
HON [13], HANS [14], which all showed imbalances in the
minority class. For example, RSN had only 26.3% of tweets
as sexist whereas 73.7% of its tweets were labeled as neutral,
HON had only 5.7% of its data labeled as hateful whereas
77.2% of its data is labeled as offensive, and HANS had only
5% of its data labeled as Hateful and 27.2% as abusive whereas
53.9% of its data was labeled as neutral.

The second challenge in hate speech research is the sparsity
of information in textual data. In social media, hateful
comments are a very clear minority making the data more
sparse than in other event detection tasks.

The third challenge in hate speech research is balancing the
trade-off between utilizing semantic similarity and noisy
network language. On one hand, we want to utilize as much
information about the semantic similarity among tweets as
possible, leading to a relatively dense graph structure with
more edges, and thus, more information about the relationship
between tweets. On the other hand, due to the noisy Internet
language usages, the semantic similarities are not always
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I. INTRODUCTION

The growing popularity of online interactions through social
media in every demographic [1] (age, race, gender, etc.)
has led to both positive and negative impacts. While social
media has revolutionized information sharing, it has also
become a medium for increasing hateful speech [2]. The Pew
Research Center [3] has reported that 41% of Americans have 
personally experienced some form of online harassment and
66% of Americans reported to have witnessed abusive or 
harassing behavior towards others online. On top of this, the
COVID-19 pandemic has made hateful speech an increasingly
worrying threat as hate, and by extension hatecrimes, toward
Asian Americans and Pacific I slanders h ave i ncreased a s a
result of many people blaming the pandemic on these ethnic
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accurate especially between the less correlated tweets. In hate
speech detection, the data is particularly noisy compared to
other tasks in social media as the language used is more
informal, consisting of subtle nuances and hidden subtexts
in language, including sarcasm, irony, slang, nicknames, and
double negatives.

In this paper, we propose HateNet to address these chal-
lenges. Our main contributions of this work are:

1) Development of an active system to detect hate speech
on social media. We cast the hate speech detection
problem into the field of machine learning-powered
sentiment analysis, leveraging recent developments in
natural language processing, seeking to stop the inflicted
verbal harm before escalation to hate crimes.

2) Formulation of a Short Text Data Augmentation
technique using Substitution Augmentation and Dy-
namic Query Expansion. We improved upon Short
Text Data Augmentation by establishing a procedure
to iteratively expand an existing dataset by utilizing a
hybrid of the DQE algorithm and Substitution Based
Augmentation in a novel way to combat the class imbal-
ance problem. We successfully leverage the algorithm
to generate new data points in the minority class in a
semi-supervised fashion. This procedure automates most
of the data collection process as well as facilitates the
collection of balanced data, solving the class imbalance
problems faced by almost every dataset.

3) Construction of a graph structure of tweet em-
beddings and implementing a Graph Convolutional
Network to capture semantic connections of tweets.
GCNs are a previously unexplored classification method
in the hate speech detection task. We propose a GCN-
based framework that takes in a graph generated by the
thresholded semantic cosine similarities between every
tweet, allowing for the effective propagation of labels
across tweets with similar main ideas, providing new
insights with how ideas are connected. If sentence or
word embeddings can be constructed (with the aim
of encoding a primitive “knowledge” or “conceptual”
graph), our GCN may be able to take advantage of
these connections. This helps combat the sparsity of
information in textual data problem, and we show
promising results for its application in hate speech
classification.

4) Formulation of a DropEdge-based stochastic regu-
larization technique to prevent overfitting and over-
smoothing. We improved upon the DropEdge regular-
ization technique by creating weighted probabilities for
each graph edge, based on the semantic similarity score.

5) Comprehensive experiments to validate the effictive-
ness and efficiency of the proposed techniques. We
evaluated a combination of 5 tweet embedding meth-
ods, 7 classification models, and 7 data augmentation
techniques on 3 datasets for the hate speech detec-
tion task. Results showed that the proposed methods

consistently outperformed competing baseline methods
seen in traditional natural language learning models. By
meticulously experimenting with so many comparison
methods on real-world datasets, we demonstrate the
performance of the HateNet in full context.

II. RELATED WORKS

Hate Speech Detection via Social Media Analysis. A large
body of existing work [15]–[17] regards hate speech detection
as various classification tasks and performs the analysis based
on handcrafted lexcial-syntactic text features. For example,
Wanner et al. [18] aimed to detect abusive speech targeting
specific group characteristics by applying binary classifiers on
features explicitly generated by the template-based strategies.
As the growing impact on the social media platform such
as Facebook and Twitter, more and more researchers [19]–
[23] start to explore the ways to actively detect and moderate
online hate speech. For example, Waseem et al. [12] collected
a Twitter corpus using the common slurs and terms used
pertaining to religious, sexual, gender, and ethnic minorities,
and analyzed the impact of various extra-linguistic features in
conjunction with n-grams for hate speech detection on this
dataset. Cao and Lee [24] used an adversarial deep generative
reinforcement learning model to detect hate speech while also
addressing the class imbalance problem. Overall, none of these
papers investigated using a Graph Convolutional Network
(GCN) for hate speech detection. Some papers [12] were
able to address the sparsity of textual data but ultimately did
not address the class imbalance problem. Other papers [24]
were able to address the class imbalance problem but were
not successful in addressing the sparsity of textual data. Our
proposed model is the first of our knowledge to utilize a Graph
Convolutional Network for the hate speech detection task and
also addresses both the sparsity of textual data and the class
imbalance problem.

Deep Learning for Text Classification. Recently, re-
searchers [25]–[27] discovered that the implicit features ex-
tracted by the deep learning based models could outperform
the explicitly manually summarized features. For example,
Djuric et al. [28] demonstrated that textual content represen-
tations generated via embedding models perform better on
downstream applications than traditional term-based bag-of-
words features. Going beyond the analysis on pure text data,
recently, graph neural network [29], as a deep learning tech-
nique that focuses more on modeling the linguistic behaviors
and dependencies between information, attracts researchers’
attention. For example, Mishara et al. [30] proposed a model
based on graph convolutional networks (GCNs) for abusive
language detection. The introduction of GCN architecture is
claimed to be able to capture and identify not only commu-
nity structure but also the linguistic behavior of the users.
Wang et al. [31] proposed a GCN-based classifier that aimed
to detect online cyberbullying behaviors by modeling the
semantic structures between tweet embeddings. All of the
mentioned papers use fully connected, dense, graphs that
lead to overfitting and oversmoothing. In our paper however,
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we have formulated a weighted DropEdge-based stochastic
regularization technique that enables textual GCNs to address
overfitting and oversmoothing by randomly dropping edges
based on probabilities assigned by the semantic similarity
scores.

Data Augmentation for Text Classification. A number of
methods have been utilized in natural language processing
to combat class imbalance. Upsampling and downsampling
have been used as a simple technique to augment data in
previous NLP tasks. Rizos et al. [32] proposed three data
augmentation techniques for NLP, applying them to hate
speech detection. HateGAN [24] proposed a deep generative
reinforment learning model which augments the dataset during
learning. Guzman-Silverio et al. [33] compared three different
augmentation techniques [34]–[36] to detect aggressiveness in
Mexican Spanish speech. Beddiar et al. [37] explored using
back translation and paraphrasing to expand data for hate
speech detection. None of the mentioned techniques are able to
identify and target the most representative part of the dataset.
Our paper, however, utilizes Dynamic Query Expansion as a
tool to identify the most representative part of the dataset and
targets augmentation toward that subsection of the dataset.

III. PROBLEM FORMULATION

A. Hate Speech Detection in Graph Data

Let X = (x1,x2, . . . ,xN ) ∈ RN×F be the set of textual
posts from the social media platforms, where N is the number
of posts in our input and F is the number of features that
preserve the semantic meanings of the posts.

Definition I: Semantic Similarity Graph for Online Posts.
Let each online post, xi, represent one node in the graph
and construct a fully-connected graph, G∗ = (V,E∗), of the
online posts given in the dataset, X, where |V| = N , and V
represents the corresponding vertex set for the set of online
posts, dataset X. Let E∗ be the edge set for the fully-connected
graph, G∗(|E∗| =

(
N
2

)
). When the filtering criteria ϵ holds

(see section IV), we construct the semantic similarity graph
G = (V,E) representing the semantic distance between the
posts, where E ⊆ E∗.

Given the graph representation, now we can formulate the
hate speech detection problem in a graph. We define a vector
Y = (y1,y2, . . . ,yN ) ∈ {bk|k = 1, 2, . . . ,K}N , where bk is
the kth hate speech class (racism, sexism, etc.) in the labeled
dataset; K is the number of targeted hate speech classes. Thus,
our hate speech detection problem is defined as follows: given
the input dataset X, the filtering criteria ϵ, and the respective
labels Y , how can we find an optimal solution to accurately
classify the type of hate speech activity when given a new
verbally abusive online post? Mathematically, we formulate
the problem as learning a function F∗ parameterized with W ,
which maps X to Y: F∗(X) → Y. We minimize the loss
function as follows:

argmin
E,W

L(Y,F(X,W,E)) (1)

B. Short Text Data Augmentation with Dynamic Query Ex-
pansion for Hate Speech Detection

We propose a Short Text Data Augmentation method to
further augment the initial hate speech dataset in order to
overcome the challenge of unbalanced data in online posts.
The input to our Short Text Data Augmentation is the initial
collection of online posts, Xk = (xk

1 ,x
k
2 , . . . ,x

k
pk), where pk

is the initial number of online posts for the kth target hate
speech class bk. The initial size of the dataset is defined as
P =

∑K
k=1 pk. From A, X ∈ RN×F is defined as the dataset

we require, thus, the number of online posts expanded by our
Short Text Data Augmentation is N − P . Let Xk

+ denote the
subspace of the target online posts which, for this task, are the
posts containing the relevant hate speech queries.

Definition II: Seed Query. We define a seed query, Q0, as
a manually selected and typed dependency query targeted for
a certain type of event.

Definition III: Expanded Query. We define an expanded
query, Qk, as a typed dependency query that is automatically
generated as an output of the Dynamic Query Expansion
algorithm based on a set of seed queries and a collection of
online posts Xk.

Short Text Data Augmentation Task: Given a small set of
seed queries, Q0, and an initial collection of online posts, Xk,
the task of our Short Text Data Augmentation is to iteratively
expand Xk

+ and Qk until all the relevant online posts are
included.

IV. METHODOLOGY

We present our proposed model, HateNet, which addresses
active hate speech detection. Figures 1 and 2 show the overall
architecture of our proposed model, HateNet, comprising four
main components: short text data augmentation, semantic
similarity graph, graph convolution, and weighted DropEdge.

The input of our model is a set of Tweets. We start
by running the Tweets through our novel Short Text Data
Augmentation technique, called SubDQE. It starts by running
a Dynamic Query Expansion (DQE) on the entire dataset
to identify expanded queries that help target the imbalanced
classes and representative data (Parts 1 and 2 of Figure 1).
Then, a substitution technique is applied on the representative
data that utilizes synonym replacement and word embedding
vector closeness to generate new data (Part 3 of Figure 1). A
detailed description of the short text data augmentation method
can be found in Section IV A.

After the data augmentation, the augmented dataset is
then used to construct a fully connected graph using the
word/sentence embeddings as nodes and the semantic cosine
similarities between embeddings as edges. Textual graph con-
volution is then applied on the graph (Figure 2). At each
training epoch, our weighted DropEdge technique drops out a
certain rate of edges of the input graph based on probabilities
assigned using the semantic similarity scores of edges. The
details of the textual graph construction and convolution and
weighted DropEdge can be found in Sections IV B, IV C, and
IV D.
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Fig. 1. Overview of Our SubDQE Process for Short Text Data Augmentation. Perturbed copies of an original short text are generated based on high cosine
similarity and POS-tag match after queries are flagged. In part 3, note that although ‘getting’ exceeds the similarity threshold, it is a gerund, while 1get’ is a
regular verb.

Fig. 2. Overview of Our Proposed HateNet Framework for Hate Speech Detection.

A. Short Text Data Augmentation

Hate Speech datasets suffer from severe class imbalance
including a 5.77% Hate Speech class in HON and a 4.96%
Hateful class in HANS (see Section IV A). We must use data
augmentation to combat this imbalance but we cannot use
techniques from non-NLP domains, so we want to utilize new
ones that satisfy three desiderata: change the input to the neural
network (new sample), be class-conditional, where no manual
labeling is required (same class), produce perturbed versions
of the original sentence samples (same meaning). We propose
a novel hybrid of DQE and Substitution Based Augmentation,
which we call SubDQE (see Figure 1).

The purpose of SubDQE is to automatically identify the
most representative words or features (which we call candi-
dates) from a textual dataset. A rudimentary input of seed
queries is hand-selected that vaguely captures the main idea
or theme being queried for. The traditional DQE workflow
has been modified to be a semi-supervised text augmentation
algorithm consisting of four steps:

1) Identify Target Space. A seed query set is used as a
filter to identify the most representative part of the dataset,
enabling the subsequent query generation to stay focused on
a specific class.

2) Rank Candidate Queries. Term-frequency inverse-
document frequency (TF-IDF) weighting is applied to each
word in each tweet of the target space, and the 30 highest
ranking words become our candidate query set for augmenta-
tion.

3) Substitution Based Short Text Data Augmentation.
This step is our modification to the DQE algorithm. After
ranking candidate queries, we concatenate the top 30 candi-
dates and expand the dataset by making relevant substitutions
of words with synonyms as seen in Figure 1 Part 3. Pre-
trained neural word embeddings are utilized, allowing us to
determine the relative semantic similarity between each word
in the vocabulary space of a text corpus. We are given a
training sequence of words (our expanded query set), {qt}
with corresponding embedding vectors {vt},∀t ∈ {1 : T}.
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For each center query qt, we predict the surrounding con-
text words qo within a radius m. For example, when using
Word2Vec [38] as our embedding method, we maximize the
probability of any context word given the current center word
qô, while minimizing the probability of a random word from
the vocabulary (i.e., negative sampling):

Jt(θ) = log σ(v⊤
t vo) +

∑
ô∼P (q)

log σ(v⊤
t vô), (2)

where P (q) represents a distribution that places higher sam-
pling probabilities on less frequent words, θ is the entire array
of embedding vectors, and σ is a nonlinear scoring function.
Our use of neural embeddings is useful in substitution based
text augmentation, as it is a central part of the main model.

This substitution based augmentation builds on the def-
inition of a semantic similarity score between the equal-
size vector representations denoted by vi in Equation 2. We
denote c ∈ [0, 1] as the semantic similarity score between
two embeddings vi and vj : c =

vT
i ·vT

i

∥vi∥·∥vj∥ where ∥v∥ is the
norm of the vector v. For each query qi of the input query
set, this method describes a substitution that is determined by
two factors. Any candidate replacement word must exceed the
thresholded cosine distance, t, where t ∈ [0, 1], and it must
match the POS-tag assigned to the word. Our intuition for
setting both of the above requirements is that two words must
have been used in sufficiently equals contexts, allowing one
to be replaced with the other without changing the sentence
semantics, helping satisfy our previously defined desiderata.

4) Update Seed Query and Reiterate. The previous 3
steps are repeated, using the top 30 candidate queries from the
current iteration as the seed query set for the next iteration.
This process repeats until the difference between candidate
significance values, measured by the TF-IDF weights, from
the last iteration and the current iteration is within a predefined
threshold value. This difference is calculated by:∑

i∈Ct\Ct+1
wt(i) +

∑
j∈Ct+1\Ct

wt+1(j)∑
k∈Ct

wt(k) +
∑

l∈Ct+1
wt+1(l)

, (3)

where t denotes the iteration, Ct denotes the set of candidates
at iteration t, and wt denotes the significance value of the
candidate at iteration t.

Our semi-supervised short text data augmentation method,
which we refer to as SubDQE, produces a high quality dataset
with few, if any, outliers upon a brief visual check. The
strength of our method is that it encourages the downstream
task to place lower emphasis on associating single words with
a label and instead place higher emphasis on capturing similar
sequential patterns, i.e. the context of hate speech. Our use
of the DQE algorithm and Substitution Based Augmentation
is novel because it is the first of our knowledge that can
(i) augment current datasets with the aim of solving class
imbalance, (ii) build off of already labeled data in a semi-
supervised fashion such that no manual labeling is required,
(iii) keep the same meaning while emphasizing sequential
patterns, (iv) identify the most representative words to target

augmentation, and (v) run separate processes for each of the
classes.

B. Semantic Similarity Graph for Online Posts

We construct graph structures that can capture the semantic
correlations or similarities between the online posts (e.g.,
tweets on Twitter). The graph is constructed based on the
text similarities inferred according to text embedding models
trained on large corpus. According to Definition I, we describe
the online posts graph with a partial graph representation
G = (V, E ,A), where A denotes the adjacency matrix of
the graph, and V is the set of vertices in the graph which
represents the set of online posts X. For online post xi and
xj which are represented by vertices vi and vj respectively
in V of graph G, the existence of edge i ⇐⇒ j denoted by
the variable Ai,j in the adjacency matrix A ∈ RN×N can be
formulated as:

Ai,j =

{
Sc(xi,xj), if condition ζ(xi,xj) holds,
0, otherwise,

(4)

where Sc(xi,xj) is the cosine similarity between the post
representations; ζ is a textual similarity condition that cal-
culates the textual similarity between the input targets xi

and xj . In our HateNet model, we select the ζ condition
as: Sc(xi,xj) ≥ ϵ. Such edge exists only if xi and xj

have a meaningful semantic similarity to each other, as ϵ is
empirically chosen to trim insignificant edges while preserving
the relational information that can be helpful for improving the
performance in the downstream tasks.

C. Graph Convolution for Online Posts

We utilized a Graph Neural Network (GNN) to help learn
a better semantic representation of posts using the semantic
similarity graph described in the last section. Given the graph
representation of the online posts X and G = (V,E,A),
the spectral graph convolution is operated in the Fourier
domain. An essential variable for graph convolution in the
spectral domain is the Laplacian matrix L, which is defined
by L = D − A, where D ∈ RN×N is the degree matrix,
and Dii =

∑
j Aij . Then we further calculate the normalized

Laplacian matrix by LN = IN−D− 1
2AD− 1

2 ∈ RN×N , where
IN is an identity matrix. The normalized Laplacian matrix LN

is symmetric and semi-positive definite. The spectral decom-
position of LN can be represented as LN = UΛUT , where
U is comprised of orthogonal and normalized eigenvectors
U = [u1, . . . ,uN ] ∈ RN×N and Λ = diag([λ1, . . . , λN ])
is the combination of the eigenvalues λ ∈ RN . Then, the
convolution can be defined in the spectral domain as:

y = σ
(
Ugθ(Λ)U

Tx
)
, (5)

where x is the graph signal, y is the convolution output,
gθ is the low-pass graph filter of the convolution, and σ
is the activation function. This formation is feasible of the
spectral convolution; however, the computation complexity is
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high for large graphs. To reduce the computation complexity,
a Chebyshev polynomial approximation can be applied to the
low-pass filter gθ(Θ):

gθ(Λ) ≈
K∑

m=0

θmTm

(
Λ̃
)
, Λ̃ =

2

max (λ)
Λ− IN . (6)

This approximation was first proposed by Hammond et
al. [39]. Here the Chebyshev polynomials are recursively
defined as Tm(x) = 2xTm−1(x). To further simplify the graph
convolution and improve the efficiency, Kipf et al. [29] limit
the number of order m to be 1, along with the max eigenvalue
to be 2. One layer of Graph Convolution Network is now
represented as

Y = (D+ IN )−
1
2 (A+ I)(D+ IN )−

1
2XΘ. (7)

In the prediction layer, the target is the similarly formulated
graph representation G∗ = (V∗,E∗) where V∗ additionally
contains the new online post observations up for prediction and
E∗ is the thresholded semantic similarities between the ver-
tices of the updated V∗. The input X ∈ RN×K is the hidden
representation of online posts generated by the sentence-based
post encoders, and the output Y ∈ {bk|k = 1, 2, . . . ,K}N is
the predicted hate speech labels based on both the contents
and the connectivity of the online posts. Information sharing
between the connected posts/nodes can be modeled by the
filter gθ. Thus, HateNet can be utilized as an appropriate model
for classifying hate speech online posts.

D. Weighted DropEdge for Textual Graph

To help relieve the over-smoothing issue, we propose a
DropEdge-based stochastic regularization technique. DropE-
dge has been proven to be effective on preventing over-fitting
and over-smoothing in GNNs. The original DropEdge ran-
domly removes edges from the graph by drawing independent
Bernoulli random variables at each iteration. More specifically,
if we denote the adjacency matrix used in the l-th layer as
Al

drop, then its relation with the ground truth A is

Al
drop = A⊙ Z(l) (8)

where Z(l) is a sparse matrix expanded by a random subset of
size |V|p from the original edges E, where p is a pre-defined
hyperparameter of the probability to drop edges.

DropEdge does not fit well with our textual graph topology
because it was designed for graphs with binary edges and
doesn’t consider the edge weights. However, the textual graphs
as described in Section IV B are edge weighted graphs. As
the edge weights in V is in the range of [ϵ, 1], the weight
DropEdge

z
(l)
i,j = p(1− eAi,jBi,j∑|V|

j=1 e
Ai,jBi,j

)Bi,j (9)

where p is the pre-defined maximum probability to drop edges,
and B is the Boolean matrix of A. Eq. (9) enforces to drop

edge with higher probability on existing edges with lower
weights because these edges are most likely to have misleading
information on contextual similarity relationship.

E. Time Complexity Analysis

The time complexity of SubDQE is

O (l · (|F| · nETF
+ |T | (nETF

+ nETT
))) , (10)

where F refers to feature nodes, T refers to tweet nodes,
nETF

≪ |F| is the average number of connections between
a tweet node and feature nodes, nETT

≪ |T | is the average
number of connections from a tweet node to other tweet nodes,
and l is the number of the iterations of SubDQE. Typically,
l ≤ 10.

The time complexity of our Weighted DropEdge GCN is

O
(
L |E|F 2 + LN2F

)
(11)

where L is the number of layers, E refers to the edges, N is
the number of posts in our input data, and F is the number of
features that preserve the semantic meanings of the posts.

V. EXPERIMENT

A. Experiment Setup

In this paper, we used three datasets from the literature to
train and evaluate our model. These publicly available datasets
were selected because they are commonly used in twitter hate
speech studies and will achieve state of the art performance.
Although all datasets addressed the category of hateful speech,
they used different strategies of labeling the collected data.
These datasets are referred to as RSN [12], HON [13], and
HANS [14]. Note that the third dataset was published after
Twitter’s character limit change from 140 to 280 in 2017.

1) Waseem and Hovy [12] dataset includes roughly
17,000 tweet IDs labeled as Racist, Sexist, or Neutral.
The annotation for these tweets were performed using
CrowdFlower. Because this dataset was in the form of
tweet IDs, the Twitter API1 was used to retrieve the
actual tweet content of which only 61.3% of the content
could be retrieved given that many tweets were taken
down or removed since the publication of the dataset.
Of the tweets were retrieved, only 11 or 0.1% were
labeled as racist so we decided to get rid of this class all
together making the dataset consist of only sexist and
neutral tweets. We refer to this dataset as RSN.

2) Davidson et al. [13] dataset includes roughly 25,000
tweets labeled as Hate speech, Offensive, or Neutral.
These tweets were obtained using the hatebase2 lexicon
to filter tweets for common abusive terms, and then
pulling all the tweets from all the users selected (approx-
imately 85 million). The 25,000 tweets were a random
sample taken from the overall pool of tweets and were

1https://developer.twitter.com/en/docs/twitter-api
2https://hatebase.org/
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TABLE I
OVERVIEW OF DATASETS BEFORE AND AFTER SUBDQE-AUGMENTATION

Dataset Class % Before Total Before Class % After Total After

RSN R S N S N
0.1 26.2 73.7 15,000 50 50 15,000

HON H O N H O N
5.7 77.4 16.7 15,000 26.4 40.3 33.3 15,000

HANS H A N S H A N S
5 27.2 53.9 14 15,000 25 25 25 25 15,000

labeled using CrowdFlower. We refer to this dataset as
HON.

3) Founta et al. [14] dataset includes roughly 100,000
tweets labeled as Hateful, Abusive, Normal, and Spam.
These tweets were labeled using CrowdFlower by anno-
tators who meet certain demographic requirements. We
refer to this dataset as HANS.

Our main contribution was utilizing a hybrid of Dynamic
Query Expansion and Substitution Based Augmentation (see
Section IV) to increase the number of samples of the minority
class in a semi-supervised manner. We have found that it is
very important to use regular downsampling for all cases in
order to prevent the model from almost exclusively predicting
only the majority class. At every epoch we used a different
downsampled version of the training set as follows: all the
samples of the minority class were included, but for the other
classes we sample without replacement a number of data
samples that is equal to the number of samples of the minority
class. This ensured that the model receives training samples
from each class at the same average frequency and also has
the entire training set available to it over the entire training
course.

B. Comparison Methods

The use of embedding methods was required in order to con-
vert textual data into mathematical vectors that could be used
as inputs to machine learning models. The goal was to gen-
erate representative vectors, where similar words have similar
vectors. The following embedding methods were used in our
experiment: Bag of Words (BOW), Term Frequency-Inverse
Document Frequency (TF-IDF), word2vec [40], GloVe [41],
fastText [42], BERT [43], DistilBERT (DBERT) [43], Sen-
tenceBERT (SBERT) [44].

To demonstrate the performance of HateNet in full context,
six other traditional machine learning classifiers that have
precedent in previous hate speech detection studies [45] were
experimented on: Logistic Regression (LR), Naı̈ve Bayes
(NB), k-nearest neighbors (KNN), Support Vector Machine
(SVM), XGBoost (XGB), and Multi-Layer Perceptron (MLP).
All of these methods were implemented with sklearn.

Our SubDQE data augmentation is also compared with
seven other data augmentation techniques previously used
in hate speech detection studies: Upsampling (Up), Down-
sampling (Down), Substitution Augmentation (SubAug) [32],
Word Position Augmentation (PosAug) [32], Neural Genera-

tive Augmentation (GenAug) [32], Back Translation (BT) [37],
and Paraphrasing (Para) [37].

With our comparison methods in place, we went through
five steps for each tweet embedding + classifier model
combination: word embedding generation,3 feature extrac-
tion, normalization, running/tuning with 5-fold stratified cross-
validation, and experimental analysis. This process was re-
peated for all 3 datasets.

C. Experimental Design

The purpose of our experiment is to investigate the efficacy
of different tweet embedding and classifier model combina-
tions for detecting hate speech across three datasets. The
independent variable was the combination of tweet embedding
and classifier model used. The dependent variable was the
resulting performance of the combination, measured by the
evaluation metrics that we selected: accuracy and F1 score.
The accuracy, F1 score, and Hate Recall were all used as
measurements. Different baseline models and our HateNet
model were tested with and without data augmentation. Our
null hypothesis is that GloVe+HateNet will have no statis-
tically significant difference between the evaluation metrics
across the levels of IV. Our alternative hypothesis is that
GloVe+HateNet will have a statistically significant difference
between the evaluation metrics across the levels of IV.

D. Hate Speech Detection Results

Our experiments show that Sentence BERT+HateNet out-
performs every other method on all 3 datasets in both ac-
curacy and F1 scores (see Tables II III IV). Of the baseline
models, SVM does very well and has proven to be generally
effective in previous literature. BOW and TF-IDF are very
simple embeddings that were tested: BOW only counts word
frequencies and TF-IDF weights those frequencies. When
combined with XGBoost, a simple classifier that uses decision
trees, the results showed that simple models, while they are
not the most interpretable, may prove to be as effective as
complex models. The promising outcomes fo the decision-
based quality of XGBoost suggests that vocabulary may be a
strong discriminating factor to classify hate speech.

Apart from simple models, SBERT was the generally most
effective embedding method across the classifier models.
This made sense as SBERT is one of the current State-Of-
The-Art sentence embedding methods for natural language

3For BOW, and TF-IDF, no word embeddings were generated; the output
of these models were already features.
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TABLE II
PERFORMANCE OF HATENET AND BASELINE MODELS ON THE HON DATASET WHERE ACC IS ACCURACY AND M-F1 IS MACRO-F1 SCORE

HON LR NB KNN SVM XGB MLP HateNet
Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1

SBERT 0.807 0.810 0.739 0.731 0.718 0.702 0.831 0.832 0.819 0.821 0.829 0.824 0.845 0.843
BERT 0.769 0.766 0.601 0.597 0.621 0.624 0.771 0.772 0.761 0.762 0.791 0.787 0.785 0.791
DBERT 0.811 0.807 0.661 0.657 0.699 0.703 0.814 0.812 0.808 0.806 0.822 0.831 0.810 0.816
GloVe 0.791 0.796 0.621 0.623 0.645 0.648 0.820 0.819 0.817 0.814 0.801 0.803 0.809 0.811
W2V 0.761 0.759 0.633 0.634 0.633 0.639 0.812 0.816 0.813 0.817 0.810 0.808 0.791 0.789
FastText 0.751 0.755 0.545 0.543 0.599 0.604 0.800 0.796 0.801 0.806 0.781 0.777 0.772 0.776
TF-IDF 0.759 0.762 0.729 0.725 0.145 0.152 0.571 0.573 0.825 0.826 0.661 0.665 0.651 0.648
BOW 0.760 0.763 0.701 0.703 0.334 0.331 0.573 0.572 0.831 0.828 0.693 0.694 0.689 0.685

TABLE III
PERFORMANCE OF HATENET AND BASELINE MODELS ON THE HANS DATASET WHERE ACC IS ACCURACY AND M-F1 IS MACRO-F1 SCORE

HANS LR NB KNN SVM XGB MLP HateNet
Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1

SBERT 0.837 0.841 0.771 0.767 0.746 0.739 0.863 0.865 0.852 0.854 0.841 0.837 0.877 0.873
BERT 0.801 0.798 0.634 0.631 0.654 0.651 0.801 0.805 0.790 0.793 0.814 0.816 0.823 0.821
DBERT 0.842 0.846 0.694 0.690 0.732 0.730 0.846 0.843 0.841 0.837 0.854 0.859 0.841 0.843
GloVe 0.822 0.829 0.654 0.657 0.677 0.672 0.852 0.849 0.845 0.842 0.833 0.837 0.841 0.846
W2V 0.799 0.795 0.661 0.668 0.661 0.666 0.846 0.843 0.846 0.843 0.842 0.849 0.823 0.820
FastText 0.784 0.786 0.572 0.575 0.630 0.634 0.836 0.829 0.833 0.836 0.811 0.807 0.804 0.808
TF-IDF 0.786 0.781 0.763 0.760 0.177 0.181 0.603 0.605 0.859 0.857 0.694 0.697 0.685 0.682
BOW 0.794 0.797 0.733 0.737 0.368 0.364 0.605 0.604 0.863 0.859 0.722 0.726 0.716 0.711

TABLE IV
PERFORMANCE OF HATENET AND BASELINE MODELS ON THE RSN DATASET WHERE ACC IS ACCURACY AND M-F1 IS MACRO-F1 SCORE

RSN LR NB KNN SVM XGB MLP HateNet
Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1 Acc M-F1

SBERT 0.782 0.783 0.723 0.718 0.695 0.693 0.814 0.812 0.800 0.803 0.793 0.796 0.824 0.823
BERT 0.758 0.754 0.587 0.584 0.601 0.602 0.755 0.761 0.747 0.745 0.763 0.764 0.772 0.775
DBERT 0.796 0.793 0.641 0.645 0.683 0.684 0.796 0.799 0.798 0.792 0.802 0.806 0.796 0.798
GloVe 0.774 0.773 0.609 0.601 0.624 0.623 0.806 0.804 0.796 0.801 0.786 0.789 0.794 0.790
W2V 0.752 0.748 0.612 0.615 0.611 0.607 0.798 0.803 0.800 0.794 0.798 0.795 0.775 0.773
FastText 0.731 0.734 0.526 0.523 0.675 0.676 0.784 0.789 0.781 0.782 0.760 0.762 0.753 0.752
TF-IDF 0.734 0.739 0.714 0.712 0.126 0.119 0.552 0.556 0.807 0.802 0.645 0.641 0.632 0.638
BOW 0.745 0.741 0.684 0.686 0.312 0.315 0.557 0.554 0.819 0.810 0.674 0.671 0.663 0.665

processing and the semantic textual similarity benchmark.
Further advancements in NLP embeddings can be expected to
generally improve current automatic hate speech detection. Of
the transformer-based methods, DBERT outperforms BERT.
Of the word embedding methods, GloVe and word2vec are
similar and outperform fastText as shown in Table II, even
though fastText is the only method capable of embedding out-
of-vocabulary words.

Our experiments also show that SubDQE is an effective data
augmentation method. The HANS dataset originally had a 5%
Hateful class and a 14% Spam class and after augmentation,
is equally distributed at 25% for each class. The HON
dataset originally had a 5.7% Hateful class, 77.4% Offensive
class, and a 16.7% Neutral class and after augmentation, is
distributed as 26.4%, 40.3%, and 33.3% respectively. We can
observe that in Table V, each model tested had a drastically
higher hate recall in the augmented HON dataset compared
to the imbalanced dataset.

SubDQE outperforms all other baseline data augmentation
methods seen in hate speech detection research as demon-
strated in Table VI. Of the baseline models, Back Translation
and Paraphrasing combined do very well and has been proven
to be generally effective in previous literature. Separately,
back translation and paraphrasing also led to an increase in
accuracy and Macro-F1 score across all datasets. Upsampling
and downsampling, some of the simplest data augmentation
methods, actually led to lowered accuracies and macro-F1
scores across all three datasets. Of the three data augmentation
methods that Rizos et al. [32] proposed, SubAug and PosAug
led to a general increase in accuracy and Macro-F1 scores
across all datasets but surprisingly, GenAug did not lead
to much change in accuracy nor Macro-F1 score across all
datasets.

E. Ablation Study

Removed Weighted DropEdge: The HateNet framework
unifies several components that contribute to its effectiveness
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TABLE V
CONPARISON OF MODELS ON HON WITH AND WITHOUT SUBDQE

Model Macro-F1 Hate Recall
GloVe+HateNet 0.811 0.18
GloVe+HateNet+SubDQE 0.919 0.87
W2V+HateNet 0.789 0.20
W2V+HateNet+SubDQE 0.926 0.89
TF-IDF+SVM 0.573 0.29
TF-IDF+SVM+SubDQE 0.874 0.86

TABLE VI
COMPARISON OF DATA AUGMENTATION METHODS ON SBERT+HATENET

Method HON HANS RSN
Acc M-F1 Acc M-F1 Acc M-F1

No Aug 0.845 0.843 0.877 0.873 0.824 0.823
Up 0.781 0.783 0.812 0.820 0.765 0.761
Down 0.723 0.727 0.751 0.753 0.701 0.703
SubAug 0.856 0.852 0.885 0.887 0.834 0.836
PosAug 0.871 0.873 0.901 0.904 0.856 0.853
SGenAug 0.847 0.841 0.879 0.877 0.826 0.823
BT 0.903 0.906 0.936 0.934 0.881 0.863
Para 0.884 0.886 0.902 0.905 0.863 0.866
BT+Para 0.920 0.926 0.958 0.961 0.903 0.906
SubDQE 0.946 0.948 0.971 0.973 0.920 0.926

in hate speech detection. We ran experiments on each dataset
using the highest performing embedding method, SBERT,
and no augmentation against a similar baseline method,
TextGCN [46], that uses a GCN without our Weighted DropE-
dge. This resulted in a roughly 7% decrease in both accuracy
and Macro-F1 score across all three datasets as demonstrated
by Table VII, providing insights on how each component
of our HateNet framework is indispensible to our learning
framework (note that the SubDQE component was already
experimented on in the previous subsection).

5,000 Tweets: We also ran experiments on a downsized
version of all three datasets and the SBERT+Hatenet com-
bination continued to produce the best accuracy and F1
score (Table VIII). The TF-IDF and BOW had the largest
decline in performance across both evaluation metrics. These
experiments demonstrate the robustness of the HateNet model
on smaller datasets.

Case Study: We observed numerous tweets during the
rise in hate crimes in 2017 from the HON dataset. Of
the 1000 tweets from the HON dataset that were tested,
the SBERT+HateNet combination misclassified a total of 76
tweets. Of the 76 tweets, 29 tweets came from SubDQE-
generated data (38.1%), demonstrating the robustness of the
SubDQE process. On analysis of the confusion matrix pro-
duced from our experiments, across the board, the most
confused class was Hateful and this accounted for the majority
of the error (See Table V). We noticed that some created
samples do not actually make sense from a semantic point of
view because the samples are completely artificially generated.

One limitation to the findings of this work is imposed by
the subjectivity of the topic, as different people have different

TABLE VII
COMPARISON WITH REMOVED DROPEDGE ON SBERT

Model HON HANS RSN
Acc M-F1 Acc M-F1 Acc M-F1

HateNet 0.845 0.843 0.877 0.873 0.824 0.823
TextGCN 0.773 0.770 0.799 0.806 0.753 0.756

TABLE VIII
HATENET RESULTS ON DOWNSIZED DATASETS

Model HON HANS RSN
Acc M-F1 Acc M-F1 Acc M-F1

SBERT 0.711 0.717 0.746 0.744 0.696 0.693
BERT 0.666 0.664 0.698 0.696 0.624 0.621
DBERT 0.705 0.702 0.733 0.739 0.664 0.661
GloVe 0.681 0.686 0.710 0.717 0.648 0.643
W2V 0.663 0.667 0.694 0.698 0.613 0.612
FastText 0.647 0.644 0.673 0.676 0.593 0.596
TF-IDF 0.502 0.504 0.533 0.536 0.464 0.468
BOW 0.520 0.528 0.556 0.551 0.475 0.472

beliefs about what is offensive and what is hateful. The
subjectivity is reflected by the high annotator disagreement
in the HON dataset. Each sample was labelled by at least
three people and different coders had differing opinions on
what the true label of a sample should be. The fact that
even amongst humans there is a relatively high annotator
disagreement indicates that by attempting to model samples
assuming they are properly labelled might introduce errors due
to label noise as a result of lack of an objective definition.

VI. CONCLUSION

The purpose of our paper is to establish an effective hate
speech detection framework to flag hateful tweets before esca-
lation to actual hate crimes occur. First, we demonstrate that a
hybrid of Dynamic Query Expansion and Substitution Based
Augmentation effectively combats class imbalance which is
very prevalent in hate speech datasets, and we recommend its
use for other applications in social media data mining and nat-
ural language processing. Second, we improve on existing hate
speech detection research, conducting meticulous experiments
with a multitude of embedding method and classifier model
combinations, and show similar progress to previous studies.
Finally, our proposed Graph Convolutional Network frame-
work HateNet capitalizes on inherent semantic connections
between tweets while preventing overfitting and oversmooth-
ing, and our results show that this approach matches or exceeds
the performance of traditional classifiers in this domain. Our
research represents a step forward for establishing an active
anti-hate speech presence in social media, and a step forwards
towards a safer internet for everyone.

REFERENCES

[1] B. Auxier and M. Anderson, “Social media use in 2021,” Pew Research
Center, 2021.

[2] A. Hassan, “Hate-crime violence hits 16-year high, f.b.i. reports,” The
New York Times, 2019.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 23,2025 at 16:41:05 UTC from IEEE Xplore.  Restrictions apply. 



5707

[3] E. Vogels, “The state of online harassment,”
https://www.pewresearch.org/internet/2021/01/13/the-state-of-online-
harassment/, 2021, accessed: 2021-08-19.

[4] Y. Kim, “The painful history of anti-asian hate crimes in america,” CBS
News, 2021.

[5] Z. Laub, “Hate speech on social media: Global comparisons,” Council
on Foreign Relations, vol. 7, 2019.

[6] M. Sullaway, “Psychological perspectives on hate crime laws.” Psychol-
ogy, Public Policy, and Law, vol. 10, no. 3, p. 250, 2004.

[7] A. F. Cabrera, A. Nora, P. T. Terenzini, E. Pascarella, and L. S.
Hagedorn, “Campus racial climate and the adjustment of students to
college: A comparison between white students and african-american
students,” The Journal of Higher Education, vol. 70, no. 2, pp. 134–
160, 1999.

[8] A. M. Schenk and W. J. Fremouw, “Prevalence, psychological impact,
and coping of cyberbully victims among college students,” Journal of
school violence, vol. 11, no. 1, pp. 21–37, 2012.

[9] “Online safety,” https://kidshealth.org/en/teens/internet-safety.html,
2018.

[10] R. Carroll, “Facebook gives way to campaign against hate speech on its
pages,” The Guardian UK, May 2013.

[11] C. Devine and L. Byington, “Millions are victims of hate crimes, though
many never report them,” https://publicintegrity.org/politics/millions-are-
victims-of-hate-crimes-though-many-never-report-them/, August 2018,
accessed September 1, 2021.

[12] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? predictive
features for hate speech detection on twitter,” in Proceedings of the
NAACL student research workshop, 2016, pp. 88–93.

[13] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate
speech detection and the problem of offensive language,” in Proceedings
of the International AAAI Conference on Web and Social Media, vol. 11,
no. 1, 2017.

[14] A.-M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn,
G. Stringhini, A. Vakali, M. Sirivianos, and N. Kourtellis, “Large scale
crowdsourcing and characterization of twitter abusive behavior,” in 11th
International Conference on Web and Social Media, ICWSM 2018.
AAAI Press, 2018.

[15] A. H. Razavi, D. Inkpen, S. Uritsky, and S. Matwin, “Offensive language
detection using multi-level classification,” in Canadian Conference on
Artificial Intelligence. Springer, 2010, pp. 16–27.

[16] J. Liscombe, J. Venditti, and J. Hirschberg, “Classifying subject ratings
of emotional speech using acoustic features,” in Eighth European
Conference on Speech Communication and Technology, 2003.

[17] J. Qian, M. ElSherief, E. Belding, and W. Y. Wang, “Hierarchi-
cal cvae for fine-grained hate speech classification,” arXiv preprint
arXiv:1809.00088, 2018.

[18] W. Warner and J. Hirschberg, “Detecting hate speech on the world wide
web,” in Proceedings of the second workshop on language in social
media, 2012, pp. 19–26.

[19] L. Natasha, “Facebook, google, twitter commit to hate speech ac-
tion in germany,” http://techcrunch.com/2015/12/16/ germany-fights-
hate-speech-on- social-media/, 2015.

[20] M. Geir, “Zuckerberg in germany: No place for hate speech on face-
book,” http://abcnews.go.com/Technology/ wireStory/zuckerberg-place-
hate- speech-facebook-37217309, 2016.

[21] J. C. Wong, “Mark zuckerberg tells facebook staff to stop
defacing black lives matter slogans,” http://www.theguardian.com/
technology/2016/feb/25/mark- zuckerberg-facebook-defacing-black-
lives-matter-signs, 2016.

[22] S. Sood, J. Antin, and E. Churchill, “Profanity use in online commu-
nities,” in Proceedings of the SIGCHI conference on human factors in
computing systems, 2012, pp. 1481–1490.

[23] S. O. Sood, J. Antin, and E. Churchill, “Using crowdsourcing to improve
profanity detection,” in 2012 AAAI Spring Symposium Series, 2012.

[24] R. Cao and R. K.-W. Lee, “Hategan: Adversarial generative-based data
augmentation for hate speech detection,” in Proceedings of the 28th
International Conference on Computational Linguistics, 2020, pp. 6327–
6338.

[25] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang, “Abusive
language detection in online user content,” in Proceedings of the 25th
international conference on world wide web, 2016, pp. 145–153.

[26] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos, “Deeper atten-
tion to abusive user content moderation,” in Proceedings of the 2017

conference on empirical methods in natural language processing, 2017,
pp. 1125–1135.

[27] J. Qian, M. ElSherief, E. M. Belding, and W. Y. Wang, “Leveraging
intra-user and inter-user representation learning for automated hate
speech detection,” arXiv preprint arXiv:1804.03124, 2018.

[28] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and
N. Bhamidipati, “Hate speech detection with comment embeddings,”
in Proceedings of the 24th international conference on world wide web,
2015, pp. 29–30.

[29] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[30] P. Mishra, M. Del Tredici, H. Yannakoudakis, and E. Shutova, “Abusive
language detection with graph convolutional networks,” arXiv preprint
arXiv:1904.04073, 2019.

[31] J. Wang, K. Fu, and C.-T. Lu, “Sosnet: A graph convolutional network
approach to fine-grained cyberbullying detection,” in 2020 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 2020, pp. 1699–1708.

[32] G. Rizos, K. Hemker, and B. Schuller, “Augment to prevent: short-text
data augmentation in deep learning for hate-speech classification,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 991–1000.
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