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Abstract
Predicting and measuring the impact of traffic collisions is crucial
for Intelligent Transportation Systems (ITS). Numerous works in
this field have successfully applied graph neural networks to ITS.
Existing research on graph neural networks mainly relies on the
graph Fourier transform, assuming neighborhood homophily. The
homophily assumption, on the other hand, makes it difficult to de-
fine abrupt signals such as traffic accidents. Our research proposes
an abrupt graph wavelet network (AGWN) for forecasting the dura-
tions of traffic incidents using a single shot. To begin, graph wavelet
(GW) is theoretically examined in terms of linear separability in
comparison to graph Fourier (GF), demonstrating its advantage in
modeling abrupt graph signals. Sensitivity analysis and admissi-
bility conditions are utilized to further study the behavior of GW
in abrupt graph signals, justifying the use of zero sum function as
wavelet kernel. The synthetic data results support our proposed
wavelet kernel’s effectiveness in modeling a variety of abrupt sig-
nals, while real-world trials demonstrate that our method signifi-
cantly outperforms baseline models in forecasting the duration of
an accident impact.

1 Introduction
A one-minute increase in the duration of traffic collisions
resulted in a loss of $65 [1]. Due to the magnitude of the
social and economic consequences connected with traffic ac-
cidents, the focus of research has turned to Intelligent Trans-
portation Systems (ITS), with the impact of traffic accidents
being a main research priority [2]. In general, traffic acci-
dents result in slower speeds, longer travel times, and higher
vehicular congestion. Failure to anticipate the impact of traf-
fic accidents may have more serious repercussions. A mas-
sive deployment of traffic speed sensors have been widely
deployed during the previous decade, giving ubiquitous ac-
cess to traffic speed data and accident reports. In this pa-
per, we focus on the early forecast of traffic accident impact
utilizing a single shot immediately following the accidents.
More precisely, time duration is the metric used to determine
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Figure 1: The graph Fourier transform smooths out an abrupt signal,
whereas the graph wavelet transform accentuates it.

the degree of accident impact. Early forecasting with a sin-
gle shot is desirable because (1) without early forecasting,
drivers may spend excessive time in traffic jams or in sec-
ondary accidents while primary accidents are not cleared,
and (2) single shot significantly reduces the time for data
collection and model prediction. On the other hand, it is
challenging since only one shot can be utilized for this task.

With the latest success of extending deep learning ap-
proaches from regular grids to structured data, graph neu-
ral networks (GNN) [3, 4, 5] has become a dominating re-
search methodology in network modeling and has numerous
applications in traffic [6, 7, 8]. However, current studies suf-
fer from several shortcomings: (1) Existing graph Fourier-
based methods cannot handle abrupt signal: Most exist-
ing graph neural networks rely on graph Fourier, which re-
sult in low-pass filtering [9, 10, 11, 12]. When a graph has
an abrupt signal in a few local places, the graph Fourier ba-
sis averages the neighborhood pattern throughout the graph,
ignoring the uncommon and abrupt signal. (2) Existing
neural networks based on graph wavelets are incapable
of recognizing the abrupt signal: In theory, the graph
wavelet transform can better identify abrupt signals then
graph Fourier [13], as illustrated in Figure 1. However, ex-
isting graph wavelet neural network [14, 15] violate the ad-
missibility condition, making abrupt graph signals difficult
to model [16]. (3) Insufficient theoretical and empirical

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited100

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

30
.1

8.
20

9.
21

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



evidence to justify graph wavelet design on abrupt graph
signals: Although graph wavelet can handle abrupt graph
signals, theoretical research on kernel selection is not explic-
itly studied with graph neural networks, particularly in traffic
accident scenarios.

To solve these issues, we examine the linear separabil-
ity of graph wavelet (GW) and graph Fourier (GF) trans-
forms, demonstrating that GW outperforms GF in recogniz-
ing abrupt signals. Then, using the admissibility condition,
graph wavelets with different kernels are compared, separat-
ing abrupt from non-abrupt kernels. As a result, we propose
a graph neural network with an appropriately sized kernel
for modeling abrupt graph signals. Finally, the early fore-
casting of traffic accident impacts is investigated using both
synthetic and real-world data. Our contributions are summa-
rized below:

• Compare graph wavelet and graph Fourier in theory for the
purpose of detecting abrupt graph signals. Fisher score is
used to evaluate graph Fourier and graph wavelet transforms on
abrupt graph signals.

• Analyze graph wavelet kernels for identifying abrupt graph
signals. By admissibility condition, graph wavelets are divided
into abrupt and non-abrupt kernels. Then, based on our theo-
retical analysis, we deduce the advantage of abrupt kernels for
abrupt signal modeling.

• Develop a graph wavelet neural network and undertake ex-
tensive experimentation. To characterize the abrupt graph sig-
nal, multi-scale graph wavelets are combined with graph neu-
ral networks. Extensive experiments are conducted on synthetic
data and real-world traffic accident datasets.

2 Related Work
2.1 Analysis of the Effects of Traffic Accidents: The
uses of traditional statistical approaches have demonstrated
their usefulness in predicting the duration of traffic accidents.
In the last decade, traffic control centers in numerous cities
and roads have adopted Traffic Accident Management Sys-
tems (TIMS) to mitigate the impact of traffic accidents on
traffic conditions [17]. Numerous data mining and machine
learning techniques have been used to quantify and predict
the duration of traffic accidents. The majority of traffic eval-
uations using graph neural networks (GNNs) focus on traffic
prediction, whereas GNNs disregard accident impact mod-
eling [6, 7, 8]. The use of graph neural networks in con-
junction with recurrent neural networks to categorize traffic
has increased significantly in recent years [8, 7, 18, 6]. They
do, however, require an input sequence to forecast the des-
tination at a specific time point. Our research establishes an
efficient graph neural network with a single input shot.

2.2 Graph Neural Networks: Numerous graphs and geo-
metric convolution approaches for modeling graph data have
been proposed recently [19, 4, 3]. Their theory is based

on Fourier analysis of graphs[20]. As a result, graph con-
volutional neural networks (GNNs) successfully adapt the
highly effective convolutional neural networks used to rep-
resent Euclidean data to graph-structured data [4, 3]. How-
ever, those studies mainly rely on the graph Fourier trans-
form, which may result in significant estimation errors when
dealing with abrupt signals. Another effective approach for
modeling complex signals on a graph is the graph wavelet.
Existing graph convolutional networks with wavelet kernels,
on the other hand, are unable to identify abrupt signals due
to their kernel choices [14, 15]. To solve this issue, we con-
duct a theoretical analysis of the various kernels and suggest
a model with the most appropriate kernel.

3 Problem Formulation: Single Shot based Prediction
Our objective is to provide an early estimate of the impact
duration in traffic accidents using a single shot taken im-
mediately after it occurs. The transportation sensor net-
work is defined as G = {V,E,A}, where V stands for a
set of N nodes which are the traffic sensors, E represents
connectivity among the sensors (e.g., geographical proxim-
ity), and A = {aij}N×N is an adjacent weighted matrix of
these connectivity. The graph Laplacian matrix is defined as
L = D−A,L ∈ RN×N (D is degree matrix with entries
dii =

∑
k aik) Therefore, traffic accidents can be formu-

lated as abrupt graph signals which is defined as below:

DEFINITION 3.1. (ABRUPT GRAPH SIGNAL IN TRAFFIC)
Let a graph signal X = {Xa,Xs}. Xs is a smooth neigh-
borhood, where all nodes have similar value. While Xa

is an abrupt neighborhood, where most nodes are similar
and contains a few nodes that have significantly different
values (i.e., signals of a traffic accident). Let σ denote the
variance, κ represents node amount, and µ being mean
value. X is abrupt graph signal as along as it satisfies (1)
σa � σs ≈ 0, (2) κa � κs, and (3) |µa − µs| � 0.

Remark: (2) and (3) in Theorem 3.1 are assumed for trans-
portation networks, as regular traffic speeds are constrained
by traffic flow and regulation. As a result, when an accident
occurs, its measures, such as speed and volume (e.g., 0 miles
per hour for severe incidents or a huge volume of vehicles
in traffic jams), are significantly different from those of nor-
mal traffic flow. Additionally, the number of sensors that are
impacted by accidents is always quite small.

Accordingly, the early forecast task can be written as a
regression task:

DEFINITION 3.2. (EARLY FORECAST OF ACCIDENTS)

(3.1) Y = f(G,X),

where G represent the sensor network, X ∈ RN×F repre-
sent an one shot observation on G immediately following the
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accident. F denotes the signal dimension, and Y is the dura-
tion time of traffic accidents, i.e., from when a traffic accident
happens to when it is cleared. f is the function to learn.

4 Abrupt Graph Wavelet Networks (AGWN)
In this section, the task of early forecast on the impact
of traffic accidents is described. The superiority of graph
wavelet transform is analyzed theoretically. Then a graph
neural network with a graph wavelet is presented.

4.1 Analysis on Graph Fourier and Graph Wavelet.
The majority of GNNs employ the graph Fourier transform
with a low-pass filtering flavor, and its over-smoothing issue
is well-known. [11, 9, 21, 22, 23, 24, 25, 26, 27, 28, 29].
This precludes the use of graph Fourier-based techniques for
modeling traffic accidents. The rationale for this is that when
low frequencies dominate the data (e.g., smooth traffic speed
and volume), the model readily fits the low frequencies and
ignores the high frequencies (e.g., traffic accidents), which
aids the model in achieving overall accuracy. On the con-
trary, graph wavelet is highly sensitive to high frequency,
particularly when a kernel satisfying the admissibility condi-
tion is used [16]. In the following analysis, graph Fourier and
graph wavelet will be theoretically contrasted in the presence
of an abrupt signal. Specifically, linear separability is used
to determine their capacity in distinguishing abrupt signals.
The phrase ”linear separability” refers to a group’s capac-
ity to be split by linear lines in planes. Linear discriminant
analysis (LDA) [30] is used to learn the optimal transform.
Similarly, linear separability can be used to assess the ability
of the GW or GF transform to distinguish abrupt signals.

Algorithm 1: Wavelet Transform Function
Input: adjacent matrix of a graph A ∈ RN×N ,

predefined distance threshold τ ∈ R, a
continuous 1D function h

Output: Wavelet Ψ ∈ RN×N

1 S ← Shortest Path Matrix ∈ RN×N , each entry si,j
being the shortest path between node i and j

2 // discretize h
3 h̄ ∈ Rτ×1 ← Divide h into τ groups along x-axis, and

take mean of each group
4 for vi ∈ V do
5 GV ∈ Rτ×1 ← Group the other nodes by distances

to vi and filtered by distance threshold τ (groups
whose distances are larger than τ will set to be zero)

6 // element-wise division

7 Ψ[i] ∈ RN×1 ← h̄/GV

The graph spectral domain calculation is based on the
Laplacian matrix (L = U Λ U) and it has a complete set of
orthonormal eigenvectors U = {ui}, i ∈ {1, 2, ...n}, with
corresponding non-negative real eigenvalues Λ = {λi}, i ∈

{1, 2, ...n}. The graph wavelet theory is derived from the
graph Fourier transform, which uses spectral graph theory
[16] to define Fourier modes and frequencies on graphs.
Graph Fourier transform is defined as X̂ = U>X, while
inverse graph Fourier transform is X = U X [16]. Similarly,
with a graph wavelet kernel Ψ ∈ RN×N Graph wavelet
transform: X̂ = Ψ−1 X, while graph wavelet inverse
transform: X = ΨX̂, where the design of Ψ is based on
the geodesic or shortest path distance dG(i, j) between node
i and j. Define j ∈ ∂N (i, δ) to be a node set such that
dG(i, j) ≤ δ where δ is a predefined threshold. Then the
wavelet function Ψs,i : V → R at scale s and center vertex
i ∈ V can be written as:

Ψs,i(j) =
φs,δ

|∂N (i, δ)| , ∀j ∈ ∂N (i, δ),(4.2)

where φs,δ is a wavelet kernel function, and φs,δ 6= 0 iff
δ ≤ s. Thus, each wavelet is constant across all vertices
j ∈ ∂N (i, δ) that are the same distance from the center
vertex i, and the value of the wavelet at the vertices in
∂N (i, δ) depends on the distance δ (see details in IV-C of
[20]). The wavelet calculation is described in Algorithm
1: Given a center vertex vi, a given kernel function h is
discretized into τ groups and the mean is calculated for each
group. The wavelet value at each neighbor vertex equals to
the ratio of the mean of its group to the volume of the group
(Line 7). The Mexican hat wavelet, which has an integral of
zero, is a typical wavelet kernel that will be employed in our
design [31]. As a result, a theorem is presented below.

THEOREM 4.1. (LINEAR SEPARABILITY COMPARISON)
Let X be an abrupt graph signal by Def. 3.1, and J is the
linear separability measured by the Fisher score, then we
have:

JGW (X) > JGF (X),

where JGW (X) and JGF (X) denote linear separability
level of graph wavelet and graph Fourier transform on X,
respectively.

Proof. Linear discriminant analysis is used to examine graph
Fourier (GF) and graph wavelet (GW) data (LDA). As a
result, the improved transform should make it easier to
distinguish between node representations of different classes
(i.e., Xa, Xs). The effectiveness of a transform can be
evaluated by linear separability with the Fisher score [30]:

(4.3) J(X) = S (Xa,Xs) =
(µa − µs)2

σa + σs
,

where S denotes the Fisher score. Equation 4.3 can be treated
as linear separability on raw data without any transform. The
value of abrupt neighborhood is significantly different from
that of smooth neighborhood, i.e., µa � µs or µa � µs.
By Def. 3.1, σs � σa. Formally, GF’s Fisher score can be
written as:

JGF (X) = S
(
XGF
a ,XGF

s

)
=

(
µGFa − µGFs

)2
σGFa + σGFs

,
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where superscript (·)GF means applying GF. Typical graph
Fourier methods with low-pass filtering equals to average
one node and its neighbors [10], so the mean values of abrupt
and smooth groups move to each other, and their different
become smaller after applying GF, i.e.,

(
µGFa − µGFs

)2
<

(µa − µs)2. On average, part of each group move closer to
each other, so scatter range of both of two group increases
and thereby their variances increase, i.e., σa < σGFs , and
σs < σGFs . Therefore, σGFa +σGFs > σa+σs, and we have:

(4.4) JGF =

(
µGFa − µGFs

)2
σGFa + σGFs

<
(µa − µs)2

σa + σs
= J

Similarly, graph wavelet satisfying admissibility condition
[16] is evaluated with Fisher score (see more about ad-
missibility in 4.2). According to admissibility condition,
integral of the kernel function (e.g., Mexico hat) is zero,
and abrupt and smooth neighborhood respectively: (1) For
smooth neighborhood: filtered smooth neighborhood by
GW is equal to the product of the kernel’s integral and a
constant vector (smooth signal), which leads to near zero.
Therefore, the mean of the smooth neighborhood is approx-
imately zero: µGWs ≈ 0. We also have σGWs ≈ 0 by Def.
3.1. (2) For abrupt neighborhood: graph wavelet high-
lights the difference between abrupt and smooth neighbor-
hood, so µGWa = α|µa−µs|, where α ∈ R+ is a weight and
varies with the position of abrupt value in the neighborhood.
It is easy to get σGW = α2σ. So we have the following
transformtion for both (1) smooth and (2) abrupt neighbor-
hood:

JGW =

(
µGWa − µGWs

)2
σGWa + σGWs

(definition)

≈
(
µGWa

)2
σGWa

(µGWs ≈ 0, σGWs ≈ 0)

=
[α(µa − µs)]2

α2σa
(apply graph wavelet)

=
(µa − µs)2

σa
(cancel out α2)

>
(µa − µs)2

σa + σs
= J (σs > 0).

Therefore, combining Equation 4.4, we have:

JGW > J > JGF ,

which means abrupt graph signals filtered by graph wavelet
are more linear separable than that by graph Fourier.

4.2 Configuration of Graph Wavelet. This subsection
will compare abrupt graph wavelets (AGW) with non-abrupt
graph wavelets (N-AGW) theoretically, as well as evaluate
the essential condition that provides abruptness awareness.
Then, we suggest using a Mexican hat kernel in graph
wavelet to enable the model to recognize a adrupt signal.
This is accomplished by ensuring that the integral of the
function is zero, in contrast to existing graph neural networks

with N-AGW (e.g., exponential function) [14, 15]. We will
use a typical wavelet kernel function, i.e., the Mexican hat
wavelet [31], to illustrate the necessity of the admissibility
condition. The Mexican hat is implemented with a mother
wavelet:

(4.5) φ(t) =
2

√
3σπ

1
4

(1− (
t

σ
)2)e

− t2

2σ2 ,

∫ ∞
0

φ(t) = 0,

where σ means standard deviation and t is the input distance
from the center. There are two reasons that support this
design:

Reason 1: Sensitive for Abrupt Signal. Take Mexico hat as
an example, AGW has distinguishable behaviors on smooth
signal and abrupt signals.

• For smooth neighborhood: For any neighbor of node i,
i.e., X(j) ∈ ∂N (i, δ) satisfies:

|X(i)−X(j)| < ε,∀j ∈ ∂N (i, δ),

where ε is a small value, and node j is in the neighborhood
of node i. Therefore, we have the result after applying
AGW transform in the neighborhood of node i:

ΨAGW
s,i X(i) =

s∑
δ=0

∑
j∈∂N (i,δ)

φs,δ
|∂N (i, δ)| X(j) ≈ Xj

s∑
δ=0

φs,δ = 0,

which means that the outcome of AGW transform is zero.

• For abrupt neighborhood: By Def. 3.1, the neighbor-
hood consists of a few abrupt part and majority is smooth,
satisfying:

abrupt : |X(i)−X(j′)| � ε, if ∃j′ ∈ ∂N (i, δ)
smooth : |X(i)−X(j)| < ε, if ∀j 6= j′ ∩ j ∈ ∂N (i, δ)

Therefore, applying graph wavelet on smooth part can be
written as:

ΨAGW
s,i X(i) (smooth part)

=

s∑
δ=0

∑
j∈∂N (i,δ)

φs,δ
|∂N (i, δ)| X(j) (traverse scales & neighbors)

≈X(j)

s∑
δ=0

∑
j∈∂N (i,δ)

φs,δ
|∂N (i, δ)| (X(j) ≈ Xi)

=X(j)

s∑
δ=0

φs,δ
|∂N (i, δ)| |∂N (i, δ)|

=X(j)

s∑
δ=0

φs,δ = X(j) · 0 = 0 (Equation 4.5).

By combining smooth and abrupt parts, the following
result is obtained:

|ΨAGW
s,i X(i)|

=

s∑
δ=0

∑
j

∣∣∣∣
smooth part︷ ︸︸ ︷
φs,δ

|∂N (i, δ)| X(j) +

abrupt part︷ ︸︸ ︷∑
j′

φs,δ
|∂N (i, δ)| X(j′)

∣∣∣∣
≈

s∑
δ=0

∣∣∣∣0 +
∑
j′

|X(i)−X(j′)|
∣∣∣∣� ε > 0,
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This result shows that the abrupt and smooth neighborhoods
can be distinguished by checking their absolute values, i.e.,
close to zero or significantly larger than zero.

Reason 2: Guarantee for Lossless Recovering. In the clas-
sical continuous wavelet (CWT) transform, the admissibility
condition [16] is a key that determines whether the CWT can
be inverted, and a wavelet ψ satisfies the admissibility condi-
tion [16] if Therefore, mean value of ψ must be 0 in discrete
version:

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dw <∞,

which means that as for the continuously differentiable ψ, it
follows ψ̂(0) =

∫
ψ(x)dx = 0 [16]. Therefore, mean value

of ψ must be 0 in discrete version:

ψ̂(0) =
∑
x

ψ(x) = 0.

Therefore, only zero sum function satisfies the admissibility
condition and ensures information lossless during transfor-
mation. This could be proved: when ω → 0, then ψ̂(ω) also
needs to→ 0 otherwise |ψ̂(ω)|

2

ω would be∞ and violates the
admissibility condition.

The proposed algorithm makes use of a Mexican hat
wavelet, which is a continuous and zero-integral function
that fulfills the admissibility condition. Theoretically, the
admissibility condition is required because it satisfies two
fundamental properties: (1) it is localized and has zero inte-
gral [32], which can help AGW be more effective at identi-
fying the abrupt graph signal. (2) Theoretical guarantee of
precise recovery implies that AGW is information-loss-free.
By contrast, previous research such as Graph Wavelet Neu-
ral Network (GWNN) [14] and GraphWave [15] employs an
exponential kernel with integrals greater than 0, which de-
generates into a low-pass filter. As a result, GWNN violate
the admissibility condition and are incapable of adequately
characterizing abrupt graph signals.

4.3 Implementation. Based on the analysis above, AGW
kernel, ΨAGW ∈ RN×N , is applied with neural network,
and the model is formulated as below:

Z = ΨAGW ⊗X(l) Θ(l),(4.6)

X(l+1) = σ(Z),(4.7)

where l is the layer number, X ∈ RN×F indicates the
graph signal, Θ ∈ RF×C is the learnable parameter of
network, and σ is sigmoid activation function. ⊗means each
wavelet in ΨAGW times X(l) and then apply concatenation
on the outcome. Specifically, ΨAGW consists of multi-scale
wavelet by concatenation:

ΨAGW = ΨAGW
s=1 ⊕ΨAGW

s=2 ⊕ . . .⊕ΨAGW
s=τ .

Traffic Accident

D
uration

Graph Wavelet (Scale=3)

Graph Wavelet (Scale=2)

Graph Wavelet (Scale=1)

Time: t0 Time: t1
Duration

Input Layer Graph Wavelet Layer Output Layer

Figure 2: Illustration of AGWN’s Architecture

where ⊕ denotes concatenation. Therefore Equation 4.6 can
be rewritten as concatenation:

ΨAGW⊗X(l) = ΨAGW
s=1 X(l)⊕ΨAGW

s=2 X(l)⊕ . . .⊕ΨAGW
s=τ X(l) .

Equation 4.6 has a time complexity of O(N2), while the
graph Fourier operation, such as in GCN [3], also has a time
complexity of O(N2) (After adding fully connected layers,
both become O(N2FC), where F and C represent the di-
mensions in hidden and output layers, respectively). When
adjacency is sparse, GCN deviates from O(N2) to O(|E|).
Similarly, the wavelet transform can be considered sparse be-
cause all entries beyond τ are zeros, and τ is often set to a
small value. As a result, the sparse representation for GW
can be reduced to O(N2) rather than O(|E|). The multi-
scale architecture of AGWN is illustrated in Figure 2: the
input layer takes a single shot with graph, whereas the graph
wavelet layer initializes multi-scale wavelets and performs
concatenated wavelet transforms. The output layer is then
used to forecast the duration time. In multi-scale AGW de-
sign, the outcomes of different graph wavelet transforms are
concatenated. Note that there is a trade-off between scale and
efficiency since more kernels incur a higher computational
cost. Additionally, using several sizes of scales enables easy
adoption with paralleled or distributed computation, which
may save significant computational resources.

5 Experiment
This section presents synthetic data experiment for AGW,
and evaluation on real-world data for AGWN 1. All experi-
ments are conducted with GPU 1080Ti.

1Code is available at https://github.com/gm3g11/AGWN
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Figure 3: Fisher scores after different transforms. The X-axis
denotes scale (τ ), while Y-axis indicates Fisher score. Top: abrupt
point signal; Middle: abrupt line signal; Bottom: abrupt area
signal. Note that GF does not have a scale parameter, so it is
constant w.r.t. scale.

5.1 Evaluation on Synthetic Data. This subsection is
for the purpose of verifying the theoretical study on graph
wavelets: (1) On abrupt signals, does graph wavelet yield
more separable representations than graph Fourier? (2) Is
the admissibility condition a requirement for the ability of
a graph wavelet to deal with abrupt signals? To account
for all possible scenarios, the Minnesota road network is
subjected to three types of simulated traffic congestion:
point, line, and area congestion (see visualization in Figure
8 in supplementary materials). All the nodes are assigned
with value 0 (normal traffic), whereas a few nodes which are
blocked are set to value 1 (congestion):

• The point congestion is generated by selecting 100 nodes ran-
domly and setting them to value 1.

• The line congestion is generated by calculating the shortest path
from the 1st node which is selected as the beginning of the line
to the 2400th node which is selected as the end of the line, and
setting the nodes in the path to value 1.

• The area congestion is generated by calculating the shortest
distance between the 1900th node which is selected as the center
of the area and the other nodes and setting these nodes whose
distance is the shortest 10% of all to the value 1.

Different scales are sensitive to different ranges (Figure 9
illustrate scales in the supplementary materials). Notably, a
larger size also entails a greater computing cost.

5.1.1 Graph wavelet and graph Fourier transform. Us-
ing the Fisher score, this experiment compares the linear sep-

Original

Point
GF

Point
GW

Line
GF

Area
GF

Area
GW

Line
GW

Figure 4: Examples of graph Laplacian and graph wavelet for
different signals. Deeper red is close to value 1, and more white
is close to value 0. Top row: abrupt point signal; Middle row:
abrupt line signal; Bottom row: abrupt area signal; Left column:
graph Laplacian; Right column: graph wavelet.

arability of AGW and graph Fourier transform. The greater
the Fisher score, the more separable the linear data is. As
illustrated in Figure 3 abrupt point line area (correspond-
ing number is listed in Table 3 in supplementary materials),
Fisher scores for AGW are typically much higher than those
for GF. The scales with the highest Fisher scores vary: 50
is the best scale for an abrupt point signal, 10 is the best
scale for an abrupt line signal, and 15 is the best scale for an
abrupt area signal. Figure 4 depicts the distinction between
graph Laplacian and graph wavelet, demonstrating that GF
smooths the signal while GW accentuates it. In area conges-
tion signal (the third row in Figure 4), there is little visual
difference between congestion and the others.
5.1.2 Ablation test for admissibility condition. The con-
dition of admissibility is empirically investigated using the

5 10 15 20 25 30 35 40 45 50

101
103 e−τx

φ̃(τx)

φ(τx)

Figure 5: Ablation test of admissibility condition. X- and Y-axis
denotes scale (τ ) and MSE.
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mean square error of recovery (transform and then inverse
transform). Accurate recovery entails lossless transforma-
tion. Specifically, we compared three kernels: one is Mex-
ican hat wavelet (φ(τx), where τ is the scale) 2 whose in-
tegral is 0, satisfying the admissibility condition. The sec-
ond is φ̃(τx) = φ(τx) + 1, which violates the admissibility
condition. The third one is heat kernel (e−τx) that is often
used in existing graph wavelet neural networks [14, 15]. As
shown in Figure 5 (see Table 4 for numbers in supplemen-
tary materials), φ(τx) has the smallest error, while the error
significantly increased by a upshift (i.e., φ̃) or by heat kernel.
Note that the error level of Mexico hat is almost constant.

5.2 Evaluation on Real-world Data. Our experiments
are conducted on real-world data compiled with three
sources:

• [Feature (X)] Traffic data: PeMS-8 by Caltrans Perfor-
mance Measurement System (PeMS) [33] is used as traf-
fic data, which contains the occupancy rate and average
vehicle travel speed of the San Bernardino/Riverside and
Stockton areas in California.

• [Graph (G)] Road network data: Corresponding road
networks are extracted from Topologically Integrated Ge-
ographic Encoding and Referencing (TIGER) shapefiles
by U.S. Census Bureau’s Master Address File 3, which
represents the topological connections among the roads
and corridors.

• [Label (Y)] Accident record: 8574 traffic accident
records are collected from the Regional Integrated Trans-
portation Information System (RITIS)4. Accident duration
is used as the ground truth.

This dataset aggregates traffic records over a 5-minute
period, and each sensor node has two features: the occu-
pancy rate is between 0 and 100%, and the traffic speed is
between 0 and 80 (miles/hr). To eliminate the magnitude’s
influence on the features, normalization using the Z-Score
approach is used. Each sensor is considered as a node in
a graph when constructing the road network graph. Each
pair of nodes has a distance between them defined as the
Euclidean distance between their real latitude and longitude
coordinates. Then, for each pair of nodes, the pairwise dis-
tances are calculated, and the reciprocal of the distance is
utilized as the edge weight. This Euclidean-based weight is
frequently utilized in similar work [20, 6] because to (1) the
lack of reliable data for road connectivity in conjunction with
sensors, and (2) sufficient precision for the majority of nodes

2Implementated by Ricker with SciPy [link]
3https://catalog.data.gov/dataset/tiger-line-shapefile-2015-state-

california-primary-and-secondary-roads-state-based-shapefile
4https://ritis.org/access

due to the physical connection of most neighbors. Addition-
ally, we allocated 70% of the data for training, 10% for vali-
dation, and 20% for testing. Each accident has 60 shots with
a 5-minute interval. The 40th shot is used as the input, as it
is the one taken immediately following each accident. Our
objective is fundamentally distinct from many other related
research in traffic speed prediction, which need the input of
a time series just before the target.

Additionally, we experiment on two subgraphs of the
original one. Specifically, we split the PeMS08 traffic sensor
nodes by the county code information from the CalTrans.
The county code is the unique number that identifies the
county that contains this census station within PeMS. Our
experiment identifies two counties (county number 65 and
71) in the PeMS08 area. Therefore, we split the original
PeMS08 dataset into two sub-dataset representing county
numbers 65 and 71, which have 695 and 495 nodes. In
the next step, it is necessary to separate the traffic accident
into two parts correspondingly. This segmentation method
depends on the location of the accidents and attributes the
data to the nearest sensor node. Through this method, we
split the total 8574 traffic accident records into 4634 and
3940. In order to ensure the accuracy of this division, some
accident data near the boundary of two counties would drop
off.

Following the preparation of the dataset, this sec-
tion will discuss the models. To begin, we propose the
AGWN model, which has a single critical hyperparame-
ter: scale. To determine the scale range, we use the Dijk-
stra shortest path algorithm, which is included in the Net-
workX package 5. Then, based on these scales, we calculate
different abrupt graph wavelets and integrate them into an
AGWN model in which the weight is determined by the
self-attention mechanism [34]. By contrast, we also imple-
ment some classical graph models that are suitable for our
task. All the baselines are implemented with PyTorch Geo-
metric 6, except that GWNN is implemented by its indepen-
dent official code 7. Baselines include popular graph neural
networks such as GCN [3], ChebNet [35], GAT [4], Graph-
SAGE [5], Graph Isomorphism Network (GIN) [36], Sim-
plifying GCN (SGC) [37]. Graph Wavelet Neural Network
(GWNN) [14] is also included for showing the advantage of
AGW over non-AGW. In this experiment, the event forecast-
ing task is to predict accident duration. Hence, we choose the
Root Mean Square Error (RMSE), the Mean Absolute Error
(MAE), and the Mean Absolute Percentage Error (MAPE) as
the evaluation criterion. Besides, we choose the Adam as the
optimizer, and the learning rate is set as 0.001 at the begin-
ning and would decay after 200 epochs. All models ran for
1000 epochs, and they all converged. The following two Ta-

5Implementated by single-source Dijkstra path length with NetworkX
6https://github.com/rusty1s/pytorch geometric
7https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork
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bles 1 and 2 record the experiment results by implementing
different graph models.

Table 1: Experiment results on real world traffic accident datasets:
MAE, RMSE, MAPE in the first subgraph of the county

Method MAE RMSE MAPE
GAT 10.60± 3.38 8.37± 1.91 24.02%± 12.79%
SGC 7.61± 2.87 8.05± 1.97 21.77%± 17.79%
GIN 11.85± 2.61 9.9± 2.01 18.02%± 14.26%

GWNN 11.79± 3.14 9.25± 2.45 19.34%± 7.30%
GCN 7.54± 3.27 7.98± 1.94 20.65%± 16.67%

GraphSAGE 10.6± 3.38 8.37± 1.91 24.02%± 12.79%
ChebNet 7.51± 3.3 6.94± 1.97 19.36%± 18.09%
AGWN 6.37 ± 2.41 5.70 ± 1.11 14.64%± 5.41%

Table 2: Experiment results on real world traffic accident datasets:
MAE, RMSE, MAPE in the second subgraph of the county

Method MAE RMSE MAPE
GAT 11.26± 3.42 7.45± 2.5 25.77%± 13.54%
SGC 7.04± 3.6 7.79± 2.59 11.52%± 14.15%
GIN 15.10± 3.84 10.76± 2.81 21.22%± 10.56%

GWNN 13.81± 4.05 10.38± 2.85 22.00%± 6.70%
GCN 7.54± 3.56 7.93± 2.43 16.99%± 13.11%

GraphSAGE 7.19± 3.58 5.66± 2.46 13.37%± 13.79%
ChebNet 7.37± 3.61 6.94± 2.55 15.93%± 13.60%
AGWN 6.97 ± 2.98 4.64 ± 2.12 6.64%± 2.78%

Experimental Results Analysis. Table 1 and the table 2
show 5-fold experiment results. AGWN significantly out-
performs the other baselines in predicting accident duration.
In the first subgraph, AGWN improves the best baseline
(i.e., ChebNet) by 17.89% of MAE, 21.75% of RMSE, and
23.1% of MAPE. Besides, we could find the criterion on the
AGWN model does not vary much on both subgraphs which
could prove the robustness of the AGWN . Furthermore,
the AGWN model has the smallest variance comparing to
other models, and this could illustrate the stability of itself.
GWNN has average performance as the other baselines, im-
plying that non-AGW does not have any advantage beyond
GF-based methods in abrupt signal modeling. Each training
epoch of AGWN only took 0.09 min on average, dramati-
cally faster than all the baselines. Efficiency: For each epoch,
models’ average runtime (in minute) are: 1.77 for GAT , 2.56
for SGC, 0.29 for GIN, 1.88 for GWNN, 1.02 for GCN, 0.4
for GraphSAGE, 1.43 for ChebNet. Our AGWN is 0.09, in-
dicating a high efficiency.
Case Study. Figure 6 and Figure 7 depict four
accident cases from the dataset: accident 1 (lati-
tude/longitude is 34.078035/-117.62377) and accident 2
(34.061758/-117.179004) happened in the first subgraph,
whereas accident 3 (33.905268/-117.458919) and accident 4
(33.878030/-117.658212) happened in the second subgraph.
Comparing the actual accident durations to the predicted re-

sults by all of the models, we could summarize the following
items: firstly, although occasionally other models could give
out more accurate results. Specifically, AGWN could pre-
dict more accurate results in all the cases and outperforms
the other models overall except in the accident 2 (still is the
second best model); secondly, the AGWN is more robust as
the prediction results are closed to the ground truth and the
error value would not exceed 4 minutes, whereas other mod-
els have violent fluctuations or have unstable performance.

ActualDuration 108.00min
AGWN 107.01min
GCN 113.74min

ChebNet 110.77min
GAT 170.81min

GraphSAGE 101.34min
GIN 88.54min
SGC
GWNN

105.07min
68.74min

accident 1 accident 2

ActualDuration 59.00min
AGWN 62.15min
GCN 49.42min

ChebNet 49.81min
GAT 139.83min

GraphSAGE 45.44min
GIN 68.54min
SGC
GWNN

38.88min
60.47min

Figure 6: Case study: (Accident 1) and (Accident 2)

ActualDuration 88.00min
AGWN 90.75min
GCN 51.08min

ChebNet 64.86min
GAT 66.18min

GraphSAGE 79.94min
GIN 73.21min
SGC
GWNN

55.82min
75.12min

ActualDuration 38.00min
AGWN 40.22min
GCN 41.43min

ChebNet 37.68min
GAT 43.96min

GraphSAGE 34.50min
GIN 22.14min
SGC
GWNN

41.77min
56.27min

accident 3

accident 4

Figure 7: Case study: (Accident 3) and (Accident 4)

6 Conclusions
This paper studied the early forecast of traffic accident im-
pact with graph learning. After formulating traffic accidents
as abrupt graph signals, we analyzed major graph learning
techniques such as graph Fourier and graph wavelet by quan-
tifying their linear separability, showing an apparent differ-
ence between them. Then sensitivity analysis and the ad-
missibility condition are used to distinguish abrupt and non-
abrupt graph wavelets, highlighting the prominent advantage
of abrupt graph wavelets. Accordingly, we designed an end-
to-end graph neural network, AGWN, to characterize traf-
fic accidents. Finally, the synthetic data experiment verified
our understanding between graph Fourier and graph wavelet,
justifying our kernel design. Promising results and cast study
on real-world data demonstrated AGWN ’s effectiveness and
efficiency in the early forecast of traffic accident impact.
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