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Few-shot text classification is important.

» Few-shot text classification A Few New
learns a classifier by a few %g%”p?g'ss
training or even only one 1
training example per class. é
Classification
O E.g., a new disease with Model tml
only a few recorded aln

diagnosis at beginning
Diagnosis g
Result

Trust the diagnosis results?
Ask human expert for recheck?



Therefore, we need uncertainty estimation to
detect false prediction in few-shot scenerios.

» Uncertainty estimation quantifies 1’_%1 ® 0

tq which degree we s_ho_uld ao " N K | O
discard a model prediction.

A Model Predictions
» Applications of uncertainty estimation  1,c ‘ False
0 Out-of-domain detection
- : Expect Smaller
O Active Ieammg Uncertainty Score Uncertainty Score

0 Misclassification detection

Misclassification detection
(Our focus)



Our Task: Uncertainty Estimation in Few-Shot
Text Classification (UEFTC)

Task Setting: Based on meta-learning (meta-training & meta-testing)
Training Episode 1 Training Episode 2 Training Episode 3

Meta-training: p-shot (sample size) k-way (class size), 1-shot 3-way
Samples in both support and query sets are given labels for minimizing loss.



We aim to improve Uncertainty Estimation in
Few-Shot Text Classification (UEFTC).

Task Setting: Based on meta-learning (meta-training & meta-testing)
Testing Episode 1

baseball

space

graphics

support set
(p x k texts)

baseball

space

graphics

baseball

space

graphics

query set

(m x k texts)

Testing Episode 2

Another sampled
episode

Evaluate

» Classification
Evaluate

" Uncertainty Estimation

Meta-testing Process (use disjoint classes to meta-training)
Only in support samples are given labels.
Evaluation: classification & uncertainty estimation




Challenge in UEFTC: Few Support Samples

Sufficient training samples — Few support samples — inaccurate
accurate sample or parameter sample or parameter distribution.
distribution. (i.e., 1 support sample per class)
": .:. oo Unknown
Previous: Uncertainty estimation Qurs: Uncertainty estimation
on traditional text classification on few-shot text classification

(UEFTC)



Few-support-sample Impacts on Current
Uncertainty Estimation Models in UEFTC

1. Sample-distribution-based methods

» probability/distance to distribution of each class of training samples

O e.g., Posterior Neural Network
Sample distribution in UEFTC is inaccurate.

N(O,1)  N(0,1)  N(0,1)

v
Normalizing Flow
p(zlc; 9)

Dir(ﬁ(i)—k,ﬁ(prior))

BI=N, p(zV|c; 9)
/

(6]

BP =N, p(z?|c; ¢) ‘
[0]

BO =N, p® ;) A\
-

Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts. NIPS 2020.

A simple unified framework for detecting out-of-distribution samples and adversarial attacks. NIPS 2018.

Prediction



Few-support-sample Impacts on Current
Uncertainty Estimation Models in UEFTC

2. Parameter-distribution-based methods
O e.g., Bayesian Neural Network (BNN)

Feasible parameter set has a larger size
Inaccurate parameters distribution

T\
l\\ X
S — .

:

Forward Pass
Parameters 6,

A Survey of Uncertainty in Deep Neural Networks. Arxiv 2021.

:

Forward Pass
Parameters 0,

i

Forward Pass
Parameters 0,




Few-support-sample Impacts on Current
Uncertainty Estimation Models in UEFTC

3. Pseudo-label-based methods

O Augment samples

O Manually set their psuedo ground-truth uncertainty score given a
specific model structure.

O E.g., Mix-up

Advantage: Independent on sample size
Drawback: Manually set pseudo uncertainty scores (inaccurate).

Thus, we propose a method to self-adaptively learn pseudo ground-
truth uncertainty scores.
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Towards More Accurate Uncertainty Estimation In Text Classification. EMNLP 2020.



Our Model: Contrastive Learning from
Uncertainty Relations (CLUR)

Augmentation] 5 EXENEE S Embeddingl > Embidding | Projector g i)(;?lj;(;tis(:lrrln 1;())12 Predictor f)] -
Augmented text tokens X1 Yo ¢
T t ! T —
Text tokens t
) . Embedding >Projection folr T
Augmentation2]  Augmented text tokens Embedding2 X9 Projector g, ! querysggr:lp ‘ Predictor f,
|
; ;
Pre-set < Penalize Inconsistency > Predicted
Uncertainty Relation Uncertainty Relation

Global View

Main motivation: self-adaptively learn pseudo ground-truth
uncertainty scores given a model.



CLUR: Augmentation & Unequal Relation

[Augmentation 1 ) EXEEEE S

Augmented text tokens

LTI T Tl TT] tl
Text tokens t

» EEXEXE---EEXX

Augmentation? Augmented text tokens

\4

Pre-set
Uncertainty Relation

Augmentation: Token-mask

P~

t =t-m¢1

T2=t-m¢2

My, and Mgy, : binary vectors to

randomly mask by ratios of ¢1and 92 .

t; X - - - <

P1 = ¢2 N
$1 € [0, Dy} t, DX - - EEEX

Case 1: Equal uncertainty relation

¢1, P2 are independent T, NN - - - NN
Q51 € [O,(I)l]

¢2 € [0, P4 1, DX <

Case 2: Unequal uncertainty relation
with no margin

®1, 2 are independent ¢, IIX NN - - - NN
¢1(¢2) S [07(1)1]

P2(¢1) € [@1 + 7, P2] to HEIXEXE- --EEIXX]

Case 3: Unequal uncertainty relation
with a margin

Uncertainty Relations



CLUR: General Modules

Augmented text tokens

t;

Augmented text tokens
to

General Module

Embeddingl

Embedding2

> Projection & prediction

>

O Both k-dimensions (k classes)
O Follow contrastive learning (SOTA usage of augmented samples)

Embedding
X1

Embedding
X2

Projector g,
[Projectorg]

Projection for
a query sample

YQ

Projection for

Projector g,

»-a query jample
YQ2

Predictor f,

Predictor f,




CLUR: Loss Functions

[Projector g] Projection for  [Predictor f, al - [f
2 query sample = Y1 =)» Yo
Yo \L X
| Loss Functions| LV
LCTb CTb LRC
Projection for
. a query sample _
Projector g, S Predictor f, y y
yQ2 gz yQZ fz sz
» Motivated from SimSiam (b)

O No negative pairs & large batch size (Few-support-sample limitation)
Contrastive loss equal uncertainty relation (D: Cosine distance; o: detach):

Ler, = D[yg,,0(¥0,)] + D[y, 0(¥0,)]

Contrastive loss in unequal uncertainty relation: (H: entropy for uncertainty)

Ler, = max{[H(yg,) — H(0(y,))] X (¢2 — ¢1), 0} + max{[H(yg,) — H(0o(yp,))] X (¢1 — ¢2), 0}

\

I
Predicted uncertainty relation

Total loss: LSUM;, = Lrc + YLCTb —> LRc avoids overconfidence (not closing to 1)

Exploring simple siamese representation learning. CVPR 2021.



CLUR: Inference

| Embedding] | ¢ Embedding Projector g, > Projection folr Predictor f;| ——— Inference
= aquerysample ———— —
X1

Y

y» [T [ T1]

HEEEEEGT NN
Text tokens t

DX O

Only use the first submodel (first row) & skip augmentation

Classification: arg max

Uncertainty Score: reciprocal of maximum probability — (13; )
Q1

Exploring simple siamese representation learning. CVPR 2021.



Experimental Settings

» Five public datasets

0 News domain: 20News, HuffPost, RCV1
0 User review domain: Amazon Reviews
0 Medical domain: Med-Domain

» Metrics

O AUROC
O AUPR
O F1 scores in eliminated ratios
€ Simulate human recheck
€ Replace the most uncertain parts by the ground truth

» Our CLUR and baselines are all default based on a classical few-
shot model, FTC-DS.

Few-shot Text Classification with Distributional Signatures. ICLR 2020.




Our CLUR model performs better than baselines
in UEFTC on 5-way 1-shot setting.

Uncertainty Ratio (F1 Score, Eliminated Ratio)T

Methods % To% 0% 0% 0% AUROC T AUPRT
20News in the 5-way 1-shot setting
FTC-DS 47.56+1.56  55.76+1.38 62.92+1.25 69.86+1.11 75.77+1.04  68.17+£2.15  68.20+1.29
DE 52.32+1.70  59.45x1.59 65.71x1.47 72.12+1.32  77.57£1.27 67.69+2.44  69.38+£1.57
DE+Metric 52.33+1.61 59.63+1.44  65.73+1.36  72.04+1.26 77.61+1.15 68.02+2.38  69.44+1.45
MSD1 53.11+1.60 60.47+1.47 66.61+1.36 72.87+1.26  78.38+1.09 68.40+2.35 70.01+1.36
MSD2 52.54+1.32 60.09+1.19 66.54+1.10 72.59+1.04 77.96+0.93 68.49+1.91 69.78+1.01
SimSiam(CLUR-a-1) | 53.30+1.57 60.63+1.43  66.86+1.32  73.19+1.23  78.59+1.16  68.74+2.29  70.89+1.36
CLUR-b-3 54.53+1.50 62.06+1.37 68.29+1.25 74.59+1.11 80.02+0.98 70.50+2.13 73.71+1.22
RCV1 in the 5-way 1-shot setting
FTC-DS 51.32+1.64 59.71+1.49 66.16+1.33  72.83+1.23 78.65+1.12 70.48+232 73.99+122
DE 35.42+1.62  62.96+1.50 68.91+1.37 74.99+1.22  80.09+1.14 70.72+2.34  75.12+1.12
DE+Metric 54.89+1.68 62.50+1.52 68.41+1.34  74.59+1.25 79.78£1.20 70.61+2.46 74.51+1.24
MSD1 54.91+1.79 62.32+1.64 68.27+1.48 74.60+1.36 79.82+1.26 70.11£2.50 73.67+1.35
MSD2 55.54+1.65 62.96+1.50 68.91+1.39 75.18+1.30 80.39+1.17 71.12+2.37  75.34+1.23
SimSiam(CLUR-a-1) | 54.12+1.97 61.66+1.79 67.98+1.67 74.47+1.49  79.71+1.38 71.10+2.73 74.24+1.56
CLUR-b-3 55.89+1.60 63.48+1.44 69.47+1.35 75.62+1.23 80.91+1.12 72.31+2.26 77.00+1.10

UEFTC results on 5-way 1-shot on 20News & RCV1




Our CLUR model performs better than baselines
in UEFTC 5-way 5-shot setting.

Uncertainty Ratio (F1 Score, Eliminated Ratio)T

Methods 0% 10% 0% 30% 10% AUROC T AUPRT
20News in the 5-way 1-shot setting
FTC-DS 47.56+1.56  55.76+1.38  62.92+1.25 69.86+1.11  75.77+1.04 68.17+2.15  68.20+1.29
DE 52.32+1.70  59.45+1.59  65.71+1.47  72.12+1.32  77.57+1.27 67.69+2.44  69.38+1.57
DE+Metric 52.33+1.61 59.63+1.44  65.73+1.36 72.04+1.26 77.61+1.15 68.02+2.38  69.44+1.45
MSD1 53.11+1.60 60.47+£1.47 66.61+x1.36 72.87+1.26 78.38+1.09 68.40+2.35 70.01£1.36
MSD2 52.54+1.32  60.09+£1.19  66.54+1.10  72.59+1.04 77.96+£0.93 68.49+1.91 69.78+£1.01
SimSiam(CLUR-a-1) | 53.30+1.57 60.63+1.43 66.86+1.32  73.19+1.23  78.59+1.16 68.74+2.29  70.89+1.36
CLUR-b-3 54.53+1.50 62.06+1.37 68.29+1.25 74.59+1.11 80.02+0.98 70.50+2.13 73.71+1.22
RCVT in the 5-way 1-shot setting
FTC-DS 51.32+1.64 59.71%149 66.16+1.33 72.83+1.23 7865+1.12 70.48+232 73.99+1.22
DE 535.42+1.62  62.96x1.50 68.91x+1.37 74.99+1.22  80.09+1.14 70.72+2.34  75.12+1.12
DE+Metric 54.89+1.68 62.50+1.52 68.41+1.34  74.59+1.25 79.78+1.20 70.61+2.46 74.51+1.24
MSD1 54.91+1.79 62.32+1.64 68.27+1.48 74.60+1.36 79.82+1.26 70.11£2.50 73.67+1.35
MSD2 55.54+1.65 62.96+1.50 68.91+1.39  75.18+1.30 80.39+1.17 71.12+2.37  75.34+1.23
SimSiam(CLUR-a-1) | 54.12+1.97 61.66+1.79 67.98+1.67 74.47+1.49  79.71+1.38 71.10+2.73  74.24+1.56
CLUR-b-3 55.89+1.60 63.48+1.44 69.47+1.35 75.62+1.23 80.91+1.12 72.31+2.26 77.00+1.10

UEFTC results on 5-way 5-shot on 20News & RCV1
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ring simple siamese re

Designed Loss for Ablation Studies of

Contrastive Learning Modules

presen

DT: =) I N | | 1 - [f] . |
IT: Yo—»Lo€—Fo|, !> YO : !> YQu !y yc;;1 | YQ1 Yo :
PD: & : X : : :
I DJF 1:/r P\? i Lia Loyl [Lic i Lc“j‘ iLcTJ \LRcli L. L, E
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Comparision Table (a) (b) (c)

Summary and comparisons between our designed four loss functions
(DT: Detach operation, IT: Intersection comparison, PD: Predictor).

» Designed another three losses

tation

O Main one: choice (b)

learn

ing. CVPR 2021.




Ablation studies of CLUR

Methods

Detach

Intersection

Predictor

Uncertainty Ratio (F1 Score, Eliminated Ratio) T

0%

10%

20%

30%

40%

AUROC 1

AUPR 1

Amazon in the 5-way 5-shot settin

CLUR-b-3 v X v 81.95+1.09 87.37+090 91.49+0.76 94.47+0.57 96.21+0.51 82.35+1.79 95.16+0.36
CLUR-c-3 X X v 31.44+1.09  86.91+£0.94  90.59+0.77  93.63+£0.70  95.76+0.61  381.26+1.92  94.52+0.43
CLUR-d-3 v X X 80.17£2.09  85.90+1.76 89.93+1.48 93.33+£1.23  95.58%+1.02  81.13+3.05  94.33+0.92
CLUR-a-2 v v v 80.83+1.29  86.32+1.12  90.14+0.96  93.33+0.82  95.50+0.71  80.69+2.15  94.23+0.55
CLUR-b-2 v X v 80.59+1.23  86.11+1.06 90.00£0.91  93.25+0.80 95.42+0.70  80.79+2.07 94.17+0.52
CLUR-c-2 X X v 80.90+1.19 86.31+1.01  90.05+0.84  93.08+0.75  95.20+0.66  80.11+2.05 93.91+0.48

UEFTC results on 5-way 5-shot on Amazon dataset

CLUR with loss choice (b) using unequal uncertainty
relation with a margin (case 3) performs the best.

Besides, the p-values of our t-test indicate that module

contribution is Predictor > Detach > Intersection




Generalization of CLUR

We test CLUR on another classical few-shot model, Prototypical
Network, and it is still effective.

Uncertainty Ratio (F1 Score, Eliminated Ratio)T
Methods 0% 0% 0% 30% 0% AUROC T AUPRT
FTC-DS 27.12+3.58  35.75+3.43  43.48+3.29 51.64+3.09  58.96+2.95 55.75+£5.96  37.11+6.91
DE 29.83+3.52 38.09+3.36  45.55+3.18 53.51+3.00 60.72+2.88 58.81+5.70  41.14+6.81
DE+Metric 31.09+3.04  39.22+2.89 46.54+2.76 54.35+2.56  61.35+2.41 58.76+4.74  42.17+5.05
MSD1 30.96+2.84 39.06+2.68 46.36+2.58 54.08+2.48 61.04+2.38 57.75+4.76  40.13+4.33
MSD2 30.36+3.53 38.44+3.34  45.71+3.17 53.53+2.99  60.60+2.77 57.72+5.26  40.54+5.85
SimSiam(CLUR-a-1) | 30.39+3.42 38.52+3.28 45.81+3.14 53.55+2.97 60.66+2.76  57.58+5.32  40.62+5.90
CLUR-b-3 31.77+3.32 40.16+3.09 47.54+292 55.37+2.73 62.47+2.56 59.20+5.18 43.89+5.75

UEFTC results on 5-way 1-shot on 20News based on
Prototypical Network.

Prototypical Networks for Few-shot Learning. NIPS 2017.




Conclusion

We define and provide a benchmark for Uncertainty Estimation
on Few-shot Text Classification (UEFTC).

For few-support-sample challenge in UEFTC, we propose
Contrastive Learning with Unequal Relation (CLUR) to self-
adaptively learn the pseudo ground-truth uncertainty scores
given a specific model structure.

Propose unequal uncertainty relation (>, <), which is ignored
by the contrastive learning using only equal relation (=, #).

The data split and code is coming soon, where the link has
been attached in the paper.
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Appendix: More Related Work

» Uncertainty estimation on text classification

O Training process

e.g., active learning

O Testing process

e.g., out-of-distribution detection, misclassification

> Few-shot text classification

O Meta-learning based
O Transfer-learning based
» Contrastive learning

O Equal relation
e.g., same(=)/different(#) instance, same(=)/different(+) class

O Unequal relation (Our proposed)
e.g., larger (>) /smaller(<) uncertainty to be classified




Appendix: Revised Cross-Entropy loss

Projector g, Projection for Predictor f,
——————— » a query sample
YQu ¢

|Loss Functions|

Projection for
a query sample
YQ2

Projector g, Predictor f,

Contrastive loss in unequal uncertainty relation: (H: entropy for uncertainty)

Let, = max{[H(yg,) — H(0(y0,))] X (¢2 — ¢1),0}+ max{[H(yp,) — H(o(yp,))] X (¢1 — ¢2),0}

|

Predicted uncertainty relation

O Revised cross-entropy loss: probability of correct class is within [, 1), instead of closing 1
Lrc =max{Lcg(y,,yQ) +log(B), 0}+max{Lce(yp,, yo) +log(p), 0}
Total loss: Lsum, = Lrc +YLcT,

Exploring simple siamese representation learning. CVPR 2021.



Appendix: Experiments on Medical Domain

We also test CLUR on a medical domain dataset, and it is still effective.

Uncertainty Ratio (F1 Score, Eliminated Ratio)T

Methods 0% 10% 50% 30% 10% AUROC T AUPRT
FTC-DS 50.63£1.79  58.98+1.55 65.63+1.40 71.69+1.28 77.08+1.23  67.42+2.37 70.24+1.66
DE 56.01+1.83  63.13+£1.67 69.36x1.53  75.17+1.44  80.36+x1.32  70.94+2.54  75.53+£1.43
DE+Metric 54.98+2.12 62.06£1.96 68.32+1.85 74.31+1.71  79.80+1.55 71.01+2.839  75.62+1.79
MSD1 55.93+£1.99 62.88+1.82 69.04+1.70 74.85+1.60 80.02+1.44  70.10+2.71  74.39+1.65
MSD2 55.99+1.50  62.96+1.39  69.04+1.32  74.78+1.21 79.94+1.08 70.15+£2.10 75.82+1.08
SimSiam(CLUR-a-1) | 54.484+1.69 61.49+1.62 67.78+1.51  73.89+1.39  79.43+1.32 70.64+2.36 74.31+1.49
CLUR-b-3 56.81+1.69 63.87+1.51 70.16+1.42 76.10+1.32 81.44+1.21 72.31+2.36 77.29+1.31

UEFTC results on 5-way 1-shot on the Med-Domain dataset.

Prototypical Networks for Few-shot Learning. NIPS 2017.
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