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Abstract—With the proliferation of bots on social media
platforms, especially X, the need for effective and efficient bot
detection mechanisms has never been more paramount. However,
the inherent imbalance between the number of genuine users
and bots presents a significant challenge, often leading to biased
classifiers. In this paper, we introduce HyperSMOTE, a novel
approach for imbalanced node classification leveraging the rich
structure of hypergraphs. By representing X users as nodes and
their interactions as hyperedges, we construct a hypergraph that
captures the intricate relationships and interactions among users.
This hypergraph-based representation allows for a more nuanced
understanding of user behavior and interactions, providing a
robust foundation for bot detection. HyperSMOTE addresses the
class imbalance by generating synthetic bot accounts in the hyper-
graph, ensuring a balanced training dataset while preserving the
hypergraph’s semantics. Our method significantly outperforms
existing baselines across various metrics, demonstrating its effi-
cacy. We further delve into the impact of different upsampling
scales on classification performance, providing insights into the
optimal configurations for HyperSMOTE.

Index Terms—hypergraph, hypergraph learning, bot detection,
class imbalance, node classification

I. INTRODUCTION

Online Social Networks (OSNs), particularly platforms like
X (formerly known as Twitter), are pivotal in modern commu-
nication and influence public opinion [1]. However, they face
challenges like misinformation and polarization, with concerns
about destabilizing democratic systems [2]. A major issue
is the rise of bots on X, with many acting maliciously and
mimicking human behavior, complicating detection [3]. This
highlights the need for advanced bot detection methods to
distinguish genuine from malicious accounts.

Over the past decade, extensive research has focused on
detecting X bots [4], resulting in various datasets and detection
techniques. Traditional methods, based on hand-crafted fea-
tures and classic machine learning [5], have faced challenges
due to the evolving sophistication of X bots. Deep learning
models, like recurrent neural networks and graph convolutional
networks [6], have emerged to address this. However, they
grapple with challenges such as: (1) imbalanced datasets
with more human than bot accounts, (2) limited labeled
data in semi-supervised scenarios, and (3) previous algo-
rithms’ neglect of relationships in graph data, assuming
independent samples.

Class imbalance in node classification is a prevalent chal-
lenge in graph-based machine learning [7]. Traditional meth-

ods have tackled this issue through data-level [8], algorithm-
level [9], and hybrid approaches [10]. Data-level techniques
aim to balance class distribution using over-sampling or down-
sampling. Algorithm-level methods introduce penalties for
misclassification or set prior probabilities for classes. However,
directly applying these to graphs can be suboptimal. Recently,
innovative techniques have emerged that synthesize minority
oversampling specifically for node classification with Graph
Neural Networks (GNNs) [7], addressing the unique chal-
lenges of preserving relational information and maintaining
topology structures in graphs.

The topological properties of social networks, such as X,
can be structurally characterized as a hypergraph. In this
representation, users serve as nodes and their relationships
or interactions with one another form hyperedges. Each ac-
count on X embodies a distinct node, with its interactions,
tweets, and other activities constituting the feature vector of
that node. The formation of hyperedge connections between
nodes is determined by the presence of interactions between
accounts, such as retweets, mentions, or shared content. Given
the significant disparity in the number of genuine accounts
compared to bot accounts, there exists a class imbalance in
the nodes of the X hypergraph. While oversampling methods
offer a solution to this class imbalance problem, their direct
application in a hypergraph setting presents challenges. One of
the primary difficulties is establishing the connections between
synthetic samples and the original hypergraph while ensuring
the preservation of the hypergraph’s integrity and semantics.

The need to solve the challenges mentioned above and
the wide range of applications with imbalanced data classes
motivated us to propose a hypergraph neural network for
imbalanced node classification. The objective of this work
is to create a robust system that evaluates X accounts while
addressing challenges like dataset imbalance by synthesizing
minority oversampling for node classification with hyper-
graphs, ensuring the preservation of relational information,
capturing high-order relations, and maintaining the integrity
of topology structures.

In summary, our contributions are as follows:
1) Hypergraph Representation of X Ecosystem: We

introduce a novel representation of the X platform as
a hypergraph, where each user account is depicted as a
node and their interactions (tweets, retweets, mentions,
etc.) form hyperedges. This representation captures the
intricate relationships and interactions between X ac-
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counts, providing a rich structure for subsequent analysis
and bot detection.

2) Addressing Class Imbalance with HyperSMOTE:
Recognizing the significant class imbalance in the hy-
pergraph, where genuine user accounts outnumber bot
accounts, we propose the HyperSMOTE technique. This
method generates synthetic bot accounts in the hy-
pergraph, ensuring a balanced training dataset while
preserving the hypergraph’s structure and semantics.

3) Hypergraph Neural Network for Bot Detection: We
design a hypergraph neural network that aggregates
information from neighboring nodes and hyperedges to
generate a robust representation for each node. The
network is trained to classify nodes (X accounts) as
either bots or genuine users, with the aim of achieving
high accuracy in bot detection.

4) Empirical Validation: We perform comprehensive ex-
periments centered on bot detection in the X hypergraph.
The empirical results highlight the effectiveness of our
proposed methods, demonstrating their superiority in
detecting bots, especially in scenarios with pronounced
class imbalances.

II. RELATED WORK

A. Bot Detection

The rapid proliferation of bots on X has necessitated ad-
vanced detection techniques. Traditional supervised methods
relied on annotated datasets, but their static nature made
them susceptible to evolving bot behaviors [5], [11], [12].
Recent approaches have shifted towards graph techniques,
with methods like SATAR [13] and GCN-based approaches
[6] leveraging network structures. However, their efficacy is
closely tied to specific datasets and bot types. Deep learning,
employing architectures like GANs [14] and RNNs [15], has
shown promise in bot detection, albeit with the challenge
of being ”black-box” models. The dynamic landscape of
bot detection indicates the need for continuous research and
adaptation.

B. Class Imbalance in Graph-based Methods

In graph-based machine learning, the class imbalance prob-
lem is a prevalent challenge. Generally, there are two primary
techniques to address this issue: algorithm-level and data-level
approaches. Algorithm-level methods modify classifiers by
adjusting specific mechanisms that might falter in imbalanced
settings. However, the efficacy of these modified classifiers is
often contingent upon the performance of the chosen classifier,
which can be limiting in certain scenarios [16]–[18]. On
the other hand, data-level techniques aim to balance class
distribution using over-sampling or down-sampling. Directly
applying these techniques to graphs can be suboptimal due
to the unique challenges of preserving relational information
and maintaining topology structures. Graph Neural Networks
(GNNs) have emerged as a promising solution to address these
challenges [19]. For instance, graphSMOTE [20] synthesizes
minority samples in graph-structured data, while GATSMOTE

[21] extends the GAT architecture to tackle imbalanced node
classification. By leveraging the inherent structure of graph
data, GNNs can capture complex relationships between nodes,
making them particularly suited for tasks like imbalanced
node classification. However, the application of GNNs in this
domain requires innovative techniques that can synthesize mi-
nority oversampling while ensuring the preservation of graph
topology and relational information. Despite the advance-
ments, there’s a growing realization that hypergraphs, with
their ability to capture higher-order relationships, could offer
a more comprehensive representation. Incorporating hyper-
graphs into imbalance correction techniques might address the
nuances that traditional graph-based methods might overlook,
paving the way for more robust solutions.

C. Hypergraph Learning

The realm of hypergraph learning has recently seen a surge
in interest, especially in areas such as classification [22],
link prediction [23], and community detection [24]. While
traditional graphs offer a foundational understanding, hyper-
graphs provide a richer representation by capturing intricate
relationships and high-order interactions between data points.
This advanced modeling allows hypergraphs to delve into a
more expansive nonlinear space, enhancing their ability to
represent complex correlations and subsequently boosting their
performance in various tasks [25]. In the context of our study,
we harness the power of hypergraphs to intricately map the
dynamic ecosystem of X, which includes users, their tweets,
and the complex web of interactions between them.

III. PROPOSED METHOD

In this section, we formally define the problem statement
and then introduce our proposed approach, HyperSMOTE, a
hypergraph-based learning method to detect bot accounts in
an X’s sub-graph using oversampling. Figure 1 illustrates the
difference between oversampling methods.

A. Problem Definition

Given the X ecosystem, we represent each user account
as a node and their interactions (tweets, retweets, mentions,
etc.) as hyperedges, forming a hypergraph. Let’s denote this
hypergraph as H = (N , E), where N is the set of nodes
(X accounts) and E is the set of hyperedges (interactions
between accounts). Each node n ∈ N has an associated
label yn, where yn = 1 indicates a bot account and yn = 0
indicates a genuine user account. Our objective is to design
a classifier f : N → {0, 1} that predicts the label of
each node based on its features and its position within the
hypergraph. The challenge lies in the imbalanced nature of the
dataset, where genuine user accounts significantly outnumber
bot accounts. This imbalance can lead to biased classifiers that
perform poorly on the minority class (bots). To address this,
we propose a hypergraph-based SMOTE approach to generate
synthetic bot accounts, ensuring a balanced training dataset
while preserving the intricate structure and semantics of the
hypergraph.
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Fig. 1. Illustrating the difference between oversampling methods

B. Hypergraph Construction

A hypergraph is a generalization of a graph where an edge,
termed a hyperedge, can connect any number of nodes. In
the context of X, this allows us to capture more complex
relationships and interactions between user accounts.

1) Node Representation: Each user account on X is repre-
sented as a node n in the hypergraph. Let N be the set of all
nodes, where each node ni has an associated feature vector xi

that encapsulates information about the user’s profile, tweeting
behavior, and other relevant attributes.

2) Hyperedge Formation: Hyperedges in our hypergraph
are formed based on interactions between user accounts. We
define three primary types of hyperedges:

1. Tweet Interaction Hyperedges: For every tweet, the
author of the tweet and all users who interact with it (e.g.,
retweets, replies, mentions) form a hyperedge. Mathematically,
for a tweet tj , the hyperedge etj is defined as:

etj = {n|n interacts with tj} (1)

2. Content Sharing Hyperedges: Users who share similar
content or hashtags can be grouped under a hyperedge. For a
specific content or hashtag hk, the hyperedge ehk

is:

ehk
= {n|n shares content or hashtag hk} (2)

3. Temporal Interaction Hyperedges: Users who interact
within a specific time window can be connected by a hyper-
edge, capturing temporal patterns of interaction. For a time
window τl, the hyperedge eτl is:

eτl = {n|n interacts within time window τl} (3)

The set of all hyperedges is denoted as E . Each hyperedge
e ∈ E is associated with a weight we that signifies the strength
or importance of that hyperedge in the hypergraph.

3) Hypergraph Weighting: The weights of the hyperedges
can be determined based on the frequency of interactions,
the significance of shared content, or other relevant metrics.
Formally, the weight we of a hyperedge e can be computed
as:

we =

∑
n∈e interaction frequency of n

|e|
(4)

where |e| denotes the number of nodes in hyperedge e.
This construction ensures that the hypergraph captures the

intricate relationships and interactions between X accounts,
providing a rich structure for subsequent analysis and bot
detection.

4) Addressing Class Imbalance with HyperSMOTE: Given
the imbalanced nature of the dataset, where bot accounts
are outnumbered by genuine accounts, directly training the
hypergraph neural network can lead to a biased model that pre-
dominantly classifies accounts as genuine. To address this, we
employ the HyperSMOTE technique according to Algorithm
1 to generate synthetic nodes (accounts) in the hypergraph.

Algorithm 1 HyperSMOTE for Hypergraph Node Augmenta-
tion
Require: Hypergraph H = (N , E), Minority node set Nmin,

Oversampling rate r
Ensure: Augmented hypergraph H′

1: for each bot node ni in Nmin do
2: for j = 1 to r do
3: Identify neighboring nodes of ni and associated

hyperedges
4: Randomly select a neighboring bot node nj

5: Compute the difference in feature vectors: ∆x =
xnj − xni

6: Generate a synthetic feature vector: xsyn = xni +
λ∆x where λ is a random number between 0 and 1

7: Add the synthetic node with feature vector xsyn

to N
8: Connect the synthetic node with relevant hyper-

edges based on similarity criteria
9: end for

10: end for
return Augmented hypergraph H′ = (N , E)

This process augments the dataset with synthetic bot ac-
counts, ensuring a more balanced distribution between bot
and genuine accounts. The synthetic nodes are generated in
a manner that respects the hypergraph structure, ensuring that
the topological properties and relationships are preserved.
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C. Hypergraph Neural Network for Bot Detection

Given the constructed hypergraph, our goal is to learn a
function that can classify nodes (X accounts) as either bots
or genuine users. To achieve this, we propose a hypergraph
neural network that aggregates information from neighboring
nodes and hyperedges to generate a robust representation for
each node.

1) Hypergraph Convolution: The convolution operation on
a hypergraph is an extension of graph convolution. For each
node ni, we aggregate information from its neighboring nodes
and the hyperedges it is associated with. The aggregated
feature for node ni is given by:

hni
= σ

∑
e∈E

we

∑
nj∈e

AijWxnj

 (5)

where A is the adjacency tensor of the hypergraph, W is
a learnable weight matrix, and σ is a non-linear activation
function.

2) Pooling and Classification: After convolution, we apply
a pooling layer to down-sample the node features and capture
the most important information. The pooled feature matrix P
can be obtained using various pooling strategies such as mean
pooling or max pooling.

Finally, the pooled features are passed through a fully
connected layer followed by a softmax activation to obtain
the classification probabilities for each node:

yni = softmax(PWc + bc) (6)

where Wc and bc are the weight matrix and bias vector for
the classification layer, respectively.

3) Loss Function and Training: We employ the cross-
entropy loss for training our model. Given the true labels Y
and the predicted probabilities Ypred, the loss L is:

L = −
N∑
i=1

Yi log(Ypred,i) (7)

where N is the number of nodes.
The model is trained using gradient descent optimization

algorithms, adjusting the weights to minimize the loss and
improve the classification accuracy.

4) Bot Detection: After training, for a given node ni, if
yni

[1] > θ, where θ is a threshold, the node is classified as a
bot. Otherwise, it is classified as a genuine user. The threshold
θ can be set based on the desired trade-off between precision
and recall.

IV. EXPERIMENTS

A. Dataset

We evaluate our proposed method on three real-world X bot
dataset benchmarks. The dataset description can be found in
Table I, where each dataset is described as follows:

• verified-2019 [26]: A collection of authenticated human
X accounts, showcasing genuine user behaviors and in-
teractions.

TABLE I
DATASETS DETAILS

verified-2019 & botwiki-2019 cresci-rtbust-2019

# Nodes 53,321 824,902
# Bots 15,996 148,482
# Humans 37,325 676,420
# Attributes 17,509 42,051

• botwiki-2019 [26]: A set of self-declared bot accounts,
offering insights into bot strategies. For our study, it’s
merged with verified-2019 [26] to create an imbalanced
human vs. bot dataset.

• cresci-rtbust-2019 [27]: A dataset capturing Italian user
activities over two weeks in 2018, highlighting retweet
patterns and bot interactions.

B. Baselines

We compare our proposed method, HyperSMOTE, against
four existing bot user detection baselines and four class-
imbalance baselines:

• Botometer [28]: A widely-used tool that evaluates the
likelihood of a Twitter account being a bot. It leverages
a combination of machine learning techniques and ana-
lyzes various account features, including tweet metadata,
sentiment analysis, and network patterns.

• SATAR [13]: A method that combines user information
with Twitter network graph structure features to identify
bots. It captures both content and connection patterns
to differentiate between genuine users and automated
accounts.

• BotRGCN [29]: Utilizes relational graph convolutional
networks to represent the Twitter network and user fea-
tures. By capturing the relational dependencies between
users, it offers a robust framework for bot detection.

• ADNET [30]: An anomaly detection network designed
to identify unusual patterns in user behavior. By treating
bot detection as an anomaly detection task, ADNET can
identify bots that exhibit behaviors deviating from typical
user patterns.

• SMOTE [7]: Synthetic Minority Over-sampling Tech-
nique is a popular method to address the class imbalance
by generating synthetic samples in the feature space to
balance out the minority class.

• Embed-SMOTE [31]: An extension of SMOTE that
leverages embeddings to generate synthetic samples. It
captures the semantic relationships in the data, ensuring
that the synthetic samples are contextually relevant.

• GraphSMOTE [20]: Adapts the SMOTE technique for
graph data. It synthesizes nodes in a way that respects the
graph structure, ensuring that the topological properties
of the graph are preserved.

• GATSMOTE [21]: Combines the Graph Attention Net-
works (GAT) with SMOTE to address the class imbalance
in graph data. It leverages attention mechanisms to weigh
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the importance of neighboring nodes when generating
synthetic samples.

C. Evaluation Metrics

We utilize several metrics to assess bot detection per-
formance. Accuracy measures the overall correctness, while
precision and recall evaluate the detection of actual bots. The
F1 score offers a balance between precision and recall. Ad-
ditionally, the AUC-ROC assesses the model’s distinguishing
ability between bot and genuine accounts.

V. RESULTS

Fig. 2. Accuracy for different Imbalance Ratios.

Fig. 3. Accuracies of proposed HyperSMOTE for imbalanced node classifi-
cation under different upsampling scales for an imbalance ratio of 0.5.

In our approach, the hypergraph structure was leveraged
to represent intricate relationships and interactions between X
accounts, capturing both the content and connection patterns.
By introducing HyperSMOTE, we aimed to address the class
imbalance inherent in bot detection tasks, generating syn-
thetic bot accounts that respect the hypergraph’s structure and
semantics. Our proposed HyperSMOTE method consistently
surpassed existing baselines across both datasets, as shown in
Table II, underscoring the efficacy of our model. We delve
deeper into the performance and nuances of each component
of our approach in the following:

1) Superiority of HyperSMOTE: The most striking obser-
vation is the unparalleled performance of HyperSMOTE.
On the “verified-2019 & botwiki-2019” dataset, Hyper-
SMOTE achieved an accuracy (ACC) of 0.815, an F1
score of 0.809, and an AUC-ROC of 0.957. Similarly, for
the “cresci-rtbust-2019” dataset, HyperSMOTE’s perfor-
mance metrics were 0.844, 0.845, and 0.970, respec-
tively. These figures are notably higher than any other
method, underscoring the effectiveness of HyperSMOTE

in addressing class imbalances in node classification
tasks.

2) Comparison with GATSMOTE: GATSMOTE, another
prominent method, was the second-best performing
model, particularly with an accuracy of 0.727 and an
AUC-ROC of 0.895 on the first dataset. However, even
with its robust performance, it was still outperformed by
HyperSMOTE.

3) Performance of Traditional Methods: Traditional
methods like Botometer and SATAR delivered consistent
results across both datasets. For instance, Botometer
achieved accuracy values of 0.637 and 0.606 for the
two datasets, respectively. However, these figures were
considerably lower than the more advanced techniques
like HyperSMOTE and GATSMOTE.

4) Emergence of SMOTE Variants: It’s evident that
various adaptations of the SMOTE technique, such as
Embed-SMOTE and GraphSMOTE, have improved the
performance metrics compared to the original SMOTE.
Especially, GraphSMOTE’s accuracy of 0.725 on the
“verified-2019 & botwiki-2019” dataset indicates the
potential of adapting traditional techniques to more
complex structures like hypergraphs.

5) Imbalance Ratio Performance: As shown in Figure
2The HyperSMOTE method demonstrates increasing
accuracy as the imbalance ratio rises, highlighting its ef-
fectiveness and adaptability in handling varying degrees
of dataset imbalance.

6) Performance Enhancement with Upsampling: From
Figure 3, we notice HyperSMOTE’s accuracy consis-
tently improves as the upsampling scale increases, indi-
cating the method’s capability to benefit from additional
synthetic data.

7) Saturation Beyond a Point: Additionally, Figure 3
shows that while there is a noticeable increase in accu-
racy from an upsampling scale of 0.5 to 1.5, the gains
start to diminish slightly beyond this point, suggesting a
potential saturation or optimal point for upsampling in
this context.

In summary, while several methods showcased commend-
able results in imbalanced node classification, HyperSMOTE’s
performance stood out, emphasizing its potential as a leading
technique in the class imbalance domain.

VI. CONCLUSION

In this study, we presented HyperSMOTE, a novel approach
for imbalanced node classification within hypergraphs tailored
for the X ecosystem. By harnessing the intricate structure
of hypergraphs, HyperSMOTE consistently surpassed existing
baselines across various datasets and metrics. Our findings
highlight the significance of selecting the appropriate upsam-
pling scale and the adaptability of HyperSMOTE to diverse
imbalance ratios. Ultimately, HyperSMOTE emerges as a
promising tool for bot detection in social media, emphasizing
the potential of hypergraph-based techniques in addressing
classification challenges in imbalanced scenarios.
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TABLE II
IMBALANCED NODE CLASSIFICATION PERFORMANCE

Dataset verified-2019 & botwiki-2019 cresci-rtbust-2019

Metric ACC F1 AUC-ROC ACC F1 AUC-ROC

Botometer 0.637 0.640 0.856 0.606 0.599 0.813
SATAR 0.648 0.623 0.859 0.616 0.583 0.817
BotRGCN 0.652 0.640 0.869 0.620 0.599 0.826
ADNET 0.651 0.630 0.861 0.619 0.590 0.819
SMOTE 0.639 0.630 0.855 0.608 0.590 0.813
Embed-SMOTE 0.689 0.680 0.874 0.655 0.637 0.831
GraphSMOTE 0.725 0.724 0.882 0.690 0.677 0.838
GATSMOTE 0.727 0.723 0.895 0.692 0.676 0.851
HyperSMOTE 0.815 0.809 0.957 0.844 0.845 0.970
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