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Abstract—The prompt estimation of traffic incident impacts
(TIIs) plays a crucial role in guiding commuters’ trip planning
and enhancing the decision-making resilience of transportation
agencies. Despite the strong capability of spatiotemporal mod-
eling, the gap between the TII prediction and the dynamic
data mining approaches has not been seamlessly filled. (1) The
TII evaluation metrics have never been well-defined, although
many criteria for TII exist in research works. (2) Previous
attempts heavily rely on predefined road network structures
and underscore vital features, leading to inaccurate TII pre-
dictions. (3) Predicting the spatiotemporal TII using dynamic
road networks is more challenging as it requires extracting both
abnormal sub-graph and long-range dependencies due to the
large variation of incident clearance time. This research proposes
RoadFormer, a novel Road-Anchored Adversarial Dynamic Graph
Transformer, for predicting unlimited-range spatiotemporal TIIs.
(1) We introduce novel criteria for assessing spatiotemporal
TIIs and construct two new benchmark datasets to validate the
performance of our methods. (2) RoadFormer leverages a road-
anchored spatial transformer and an importance-score temporal
transformer to form an encoder-decoder framework. The road-
anchored spatial transformer prunes unnecessary edges between
nodes with a road-anchored cascade attention mechanism, accu-
rately pinpointing the affected sub-graphs. (3) The importance-
score temporal transformer highlights abnormal changes in node
features with a score-based adversarial training mechanism,
enabling predictions to rely on informative feature changes after
the accident occurrence. Extensive experiments on real-world
datasets demonstrate that RoadFormer outperforms the state-of-
the-art methods, especially in capturing spatiotemporal depen-
dency patterns and predicting unlimited-range spatiotemporal
TIIs.

Index Terms—intelligent transportation System, traffic inci-
dent impact, spatiotemporal, dynamic graph transformer, pre-
diction

I. INTRODUCTION

Accurately predicting the spatiotemporal impact of traffic
accidents is crucial for efficient Intelligent Transportation
Systems (ITS) due to the inevitable traffic congestion caused
by such sudden events [1]. However, effectively pinpointing
traffic incidents remains challenging due to their uncertain
causes, random occurrence times and locations, the lack
of incident labels, and the demand for ultra-low inference
times. Many efforts have been made to alleviate the above
problems [2]-[4]. Generally, these methods either emphasize
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Fig. 1: Temporal and spatial dimensions of TII. The TIIs
can be identified by congestion. The closer a location is to
the incident, the longer it is affected. As indicated in the map,
the incident on [-210 affected four upstream sensors’ speed
observations from 15:25 to 16:00. To quantify the impact of
the incident, we used impact length (3.8 miles) and duration
(35 minutes) as the indicators of the accident’s impact. On
the accompanying plot (right), the vertical axis illustrates the
differences between the historical average speeds and speeds
during the incident.

predicting TIIs solely by counting the numbers of incidents
within a region [5], [6] or in the temporal domain [7]-
[9]. However, our perspective is that the influence of traffic
incidents can extend over significant durations (ranging from
several minutes to hours) and cover extensive distances (rang-
ing from hundreds of meters to tens of miles), which should
not be limited to the prediction of within specific regions or
time ranges. Therefore, this paper proposes and tackles a more
challenging yet practical scenario: predicting spatiotemporal
Tlls by extracting the anomaly subgraph from dynamic graphs.
This task aims to develop a generalizable and robust predictive
model to foresee the unlimited spatiotemporal range of TII
through more powerful dynamic graph learning.

The impact of traffic incidents should be quantified in two
dimensions: time and space [10]. As illustrated in Fig. 1, the
impact of a traffic accident typically manifests as a decrease
in speeds, starting at the accident’s time and location and



then propagating upstream before reaching its peak. Follow-
ing the clearing of the obstruction, the queue of congested
vehicles begins to advance, leading to a gradual reduction in
the impacted distance until the final congested vehicle has
passed the incident site. Although some studies have proposed
criteria for assessing spatiotemporal TIIs, they often define
impact duration (temporal TII) as the time between incident
validation and restoration, while the impact length (spatial
TII) is quantified by the number of cars blocked by the
incident. However, our observations suggest that vehicles tend
to slow down even when they are not in close proximity
to the accident site. Given this insight, we propose a new
definition for spatial impact length on the road: the maximum
continuous congestion distance immediately upstream of the
incident. In this context, “congestion” is identified by the
difference between the average historical speed and the current
speed at the location. L.e., the location at the time is considered
as “congested” if

D

is satisfied. Where v4,9—q is the average historical speed of
the location at the same time of the week, v is the current
speed, and 7 is the threshold of the speed differences. The
criteria used to determine 7 is built on the local, daily, and
historical speeds. See Section V-A for details.

Early graph-based deep learning approaches have numer-
ous limitations in TII prediction: (1) Rarely considered
spatiotemporal TII quantification and limited publicly
available data support. Research has primarily focused on
the temporal impact of accidents or impacts within limited spa-
tiotemporal ranges. The absence of a well-established spatial
TII assessment standard significantly impacts the outcomes of
TII evaluation. It is essential to define comprehensive “traffic
incident impact” criteria and develop open-source datasets
in dynamic graph data mining. (2) Unleashing adaptive
attention mechanisms for dynamic road networks. Pre-
vious works have developed different ways to merge the
static road network structure with the dynamic similarities
of traffic sensor measurements. Yet, the road network graph
was constructed with strong human assumptions, while sen-
sor measurements falter in providing ample data for pre-
cise similarity assessment. Therefore, it’s crucial to create a
new method that effectively uses attention mechanisms and
sufficiently considers the characteristics of road networks in
predicting TII. (3) Unexplored task-focused sub-graph and
sub-time-series extraction in dynamic graph learning. In
the context of abnormal events, the propagation of congested
traffic flow shockwaves has undergone changes [11]. Minor
traffic incidents can be easily cleaned up and affect only a
small region of the traffic network. While for severe incidents,
given the long time required to clear incident blockages, the
variation and interaction among different road sections can be
very complex. Many of the existing traffic forecasting models
have been primarily developed for sensor-level forecasting,
and their potential for sensor-network level (i.e., sub-graph
level) forecasting has yet to be thoroughly unexplored.
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To address these challenges, we present RoadFormer, an
innovative method for predicting the unlimited-range spa-
tiotemporal impact of traffic incidents. It leverages novel
criteria for spatiotemporal TIIs and validates its performance
using new benchmark datasets. RoadFormer’s key innovation
lies in its ability to effectively extract spatiotemporal relations
within the traffic network, identifying variations in patterns
through a combination of a road-anchored spatial trans-
former (RAS-Transformer) and an importance-score temporal
transformer (IST-Transformer). These components create a
powerful encoder-decoder framework. The RAS-Transformer
precisely identifies affected sub-graphs by efficiently pruning
unnecessary edges with a road-anchored cascade attention
mechanism. Meanwhile, using an importance-score-based ad-
versarial training approach, the IST-Transformer effectively
detects abnormal node feature changes. In summary, the main
contributions of this paper include:

(1) Quantifying the concept of “’traffic incident impact”
and sharing two open-source datasets. We redefine TII
by quantifying spatiotemporal relationships between accident
records and sensor measurements and offer two open-source
datasets. These datasets encompass not only data for our pro-
posed task but vital auxiliary information like sensor networks,
accident records, metadata, and road structures, for future
research of this field.

(2) Presenting the RAS-Transformer for accurate af-
fected sub-graph identification. The RAS-Transformer mod-
ule employs a novel road-anchored cascade attention approach.
This approach eliminates the need for human assumptions
in constructing road network graphs. Moreover, it optimally
utilizes the correlations existing among sensors and effectively
integrates various types of relationships among traffic sensors.

(3) Designing the IST-Transformer with importance-
score-based adversarial training to highlight sensors af-
fected by accidents. Inspired by TranAD [12], we employ
anomaly detection techniques to facilitate precise localization
during prediction. The IST-Transformer effectively accentu-
ates abnormal changes in node features by incorporating an
importance-score-based adversarial training.

(4) Evaluating RoadFormer’s performance with exten-
sive experiments. Experiments on real-world datasets demon-
strate that RoadFormer outperforms the state-of-the-art meth-
ods, especially in capturing spatiotemporal dependency pat-
terns and predicting unlimited-range spatiotemporal TIIs. Each
module in RoadFormer is proven effective. The effectiveness
of the importance score is validated through our case study.

II. RELATED WORK

Traffic incident impact prediction has been a significant
focus in traffic management for decades. Traditional studies of-
ten treated it as a 1-D propagation task, and designed determin-
istic queuing diagrams [13] and shockwave theory [14]. [15]
summarizes statistical and machine learning methods, and
argues that quantile regression (QR), finite mixture (FM), and
random parameters hazard-based duration (RPHD) perform
the best.
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Grid-based TII Prediction. As machine learning methods
have evolved, TII prediction models have become more sophis-
ticated, considering a more comprehensive range of factors.
Lin et al. [16] perform incident duration predictions with a
decision tree. Zou et al. [17] utilize Bayesian Model Averaging
(BMA) to merge the prediction results of multiple machine
learning models. [18] provides three traffic incident datasets.
[19] analyzes how road attributes affect congestion durations.
[20] discusses the relations between incident report time and
congestion occurring time. Zhu et al. [21] propose a model
that updates incident duration prediction every five minutes.
However, these models fail to consider the complexity of road
networks, instead considering only one road.

Deep Learning based TII Prediction. Some researchers
treat traffic forecasting as a downstream task of deep learning.
RadNet [22] considers TII prediction as an anomaly detection
problem and employs a combination of transformer and GCN
(Graph Convolutional Network). PrePCT [23] utilizes a CNN
and LSTM for TII prediction. DIGC-Net [24] predicts traffic
flow speeds by considering incident records and similarities
among flow segments in the same time window. SLCNN [25]
utilizes static and dynamic graphs, incorporating top-K atten-
tion for a C3D-like [26] temporal convolution. Yoo et al. [27]
propose a covariance loss considering the basis function space
and the targeted variable space. Huang et al. [28] utilize
a generative adversarial network (GAN) to predict TIls by
directly learning speed heatmaps.

Attentive Dynamic Graph Representation Learning. The
attention mechanism is a popular method for capturing rela-
tionships between graph nodes by considering their feature
similarities. ADN [29] merges the spatial and temporal di-
mensions with attention across all elements. STAWnet [30]
employs gated TCN (Temporal Convolutional Network) to
extract temporal dependencies. Other studies have explored
transformers for spatiotemporal data mining. Transformers can
harness graph structure and positional features like position
encoding [31]. [32] consider a GNN as an auxiliary mod-
ule for transformers. GraphGPS [33] offers three different
ways to encode graph structures and node positions. Some
dynamic graph representation learning models like Graph
WaveNet [34], AGCRN [2], DMSTGCN [35], DL-Traff [36],
MegaCRN [37], and STAEformer [38] have shown efficiency
in traffic flow forecasting tasks. However, these methods
mainly focus on node-level or whole-graph tasks, leaving the
extraction of significant sub-graphs unexplored.

Task-Specific Dynamic Graph Representation Learn-
ing. Several studies have tackled the “sub-graph extraction”
problem using aggregation or denoising techniques. Titan [7]
performs the TII prediction with a shared-parameter multitask
model [8]. Meng et al. [9] show that proper graph aggrega-
tion techniques improve the performance of dynamic graph
learning models for TII prediction. Nevertheless, these models
focus solely on the temporal impact of incidents and overlook
the significance of spatial impact prediction.

As the survey above reveals, there is a notable gap in the
formal definition of spatiotemporal traffic incident impact pre-
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diction within dynamic graph representation learning. There
is a pressing need for a fresh problem definition, benchmark
datasets, and avenues to explore sub-graph impacts.

III. PROBLEM DEFINITION
A. Traffic Graph

A typical traffic performance measurement system utilizes
static traffic loop sensors on arterial roads to collect traffic
data. Previous research often linked groups of sensors based on
their proximity in the geographic or feature space. However,
we argue that the common assumption in previous research
is indeed valid. For instance, if two sensors are recording
traffic in opposite directions on the same freeway, they might
be physically close to each other due to the road’s width.
However, it is inappropriate to link these two sensors since
making a ”U” turn is not allowed on freeways. Moreover, two
sensors on different roads could be geographically close at an
intersection. However, the vehicle’s path to switch to another
road might involve a long ramp, resulting in a significantly
longer distance than the Euclidean distance would suggest.

Considering the challenge of quantifying relations between
sensors on different roads, we propose a road-anchored graph
to represent the traffic network. This graph includes three map-
pings: “sensor-to-road”, ’road-to-road”, and “road-to-sensor”.
The “sensor-to-road” and “road-to-sensor” mappings connect
sensors to the roads they are located on. The “road-to-road”
mapping links two roads if they intersect. It is important to
note that our graph representation treats two directions on one
freeway as separate roads.

Definition 1. Road-anchored traffic network graph.

Consider a road-anchored traffic network graph as G,
where G = (S,R,E*",E"",E"5 A" A" A"%). S is the
sensor node set of size |S|. R is the road node set of size
|R|. E*",E"",E"® are the edges linking sensor-road, road-
road, and road-sensor, respectively. A" € RISIXIEl A ¢
RIFEIXIEI Ars ¢ RIEIXIS| are the adjacent matrix form of
BT E™ E". Note that the edges here may continuously
change during the model training process, as these adjacency
matrices are learnable. The road-anchored traffic graph repre-
sentation at time ¢ is denoted as G. t is the timestamp around
the accident validation time.

We assume that 7' timestamps around the incident vali-
dation time are utilized for prediction as they are typically
the most relevant to the incident impact. We observed that
traffic behaviors before and after an incident can be quite
different. Hence, we split the 7' timestamps into “before-
validation” (comprising 7}, timestamps) and “after-validation”
(comprising T}, timestamps).

Definition 2. Dynamic traffic network graph.

A dynamic traffic graph can be denoted as
g = {gb1)7 g(w} = {Go, ey GTbv—la GTbvv ey GTM-FTO,,,—I}-
Go,...,Gr,,+1,,—1 indicates road-anchored traffic network
graphs at timestamp O0,....,7Tp, + Ty — 1. Gy, and Gy,
are dynamic graphs before and after the validation time,
respectively.
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B. Incident Impact Prediction

As stated in Section I, the TII can be characterized in
two dimensions: spatial and temporal. Here, we use Y p,; to
represent the temporal TII, which is the difference between the
accident validation time and restoration time. This definition
aligns with the formal accident duration provided by the
Department of Transportation (DOT). Regarding the spatial
dimension, our definition differs from the traditional approach
used in transportation research, which involves counting the
number of blocked cars upstream of the incident. It is essential
to consider that cars’ speed can be influenced by congestion
even if they are not completely blocked. To address this aspect,
we define the impact length Y 1., as the maximum continuous
congested road distance in the immediate upstream of the
accident.

Definition 3. Traffic incident impact precision.

Given a dynamic traffic network graph for an accident G
and corresponding sensor feature tensor X € RISIXT*Cin  the
aim is to find a model F so that

]: : (Q,X) — (YDumYLen) (2)

where C},, is the number of input channels recorded by the
sensors, Yp,, is the impact duration, and Y7, is the impact
length. Given that the number of channels can vary across
layers within RoadFormer, we will use the variable C' to denote
an arbitrary number of channels in the subsequent sections.

IV. METHODOLOGY

As shown in Fig. 2, the proposed RoadFormer contains three
main parts. The Road-Anchored S-Transformer effectively
integrates spatial information among sensors at each times-
tamp. The Importance-Score T-Transformer aggregates tempo-
ral information for each sensor, assigning higher “importance-
scores” to sensors that undergo sudden feature changes after
the validation time. A Pooling module projects the learned
dynamic graph representation to the expected output.

A. Road-Anchored S-Transformer

The design of the RAS-Transformer draws inspiration from
the concepts of anchored graphs and hypergraphs. Anchors
have been effectively utilized in various studies to reduce
attention complexity [39]. In our approach, roads serve as
anchor nodes for the sensors located on them. This not only
addresses the issues discussed in Section III-A but also reduces
the rank of the adjacency matrix from |.S| to | R|, making multi-
hop message-passing relevant only among roads. The model
maintains a global latent feature tensor H” € RIFIXT*C for
each road at each timestamp, which does not vary by case.
For each accident case, the sensor features are initially used
to update the case-irrelevant road features, obtaining case-
relevant road features H®". Then, message-passing among
roads further updates the road features to H™". At this stage,the
output road features can be considered both an intermediate
pooling of the sensor features and a spatial feature fusion of
the sensors. Finally, the road features are propagated back to
the sensors for the next step.
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Denote sensors as S and roads as R. A vanilla self-attention
exploring spatial relations between sensors can be summarized
as (3):

aii =o( Nz ) 3)

where s; and s; are two different sensor nodes, Q and K
are query and key projection parameters, hg, and h,, are
embeddings of s; and s;, d = C'+n_head is the dimension of
each attention head, and o is the row-wise softmax activation
function.

In contrast to the vanilla approach, in RAS-Transformer,
the attentive message-passing is accomplished with three trans-
former layers. The first transformer layer contains a ”sensor-to-
road” attention layer and a linear layer. The sensor-to-road”
attention computes the correlation between sensors and roads
and masks out the edge between s; and r; if s; is not on 7,
as (4):

o (Qh,,)(K*"hy,)"
ajj = o(masks,( Nz ,mij)),
4)
mask(x, \) = {X A=l
—o00 A=0

where s; and r; represent an arbitrary sensor and a road. Q°"
and K*°" are query and key projection parameters for r; and
s;. h,, and h,, are embeddings of s; and ;. h,, € RT*¢
is a learnable parameter matrix. M*" € {0, 1}/SI*I%l is the
adjacent matrix between sensors and roads. m;; = 1 if sensor
s; is on road r;, otherwise mf} 0. M*" performs as the
mask of all the attention heads. With a7, the road embedding

J
can be updated as h}” = W~ Z‘.S‘ aii (V¥ h,,) +b*".

=1 "7
The second layer of the Road-Anchored S-Transformer is
a “road-to-road” self-attention layer designed to extract road

intersection information. The attention can be expressed as (5):

@QBKTBDT
Vd J

where M € {0, 1} 21%IEl represents four levels of adjacency
between roads: m;; =1 if (1) % = j, (2) r; intersects r;, (3)
r; intersects 7 and r; intersects 7y, and (4) fully connected.
The four different masks can be applied to different attention
heads. In our design, each of the four masks was applied to one
attention head. A spatial-relation awared road feature tensor is
then computed as hy” = W'" ZL£|1 aij (VI™hyT) +b™.

The last transformer layer contains a “road-to-sensor” at-
tention, meaning that sensor vectors are queries, and road
vectors are keys and values. The output of this step propagates
the aggregated road features to the sensors. The equation is
essentially the reversed version of (4):

T
]

a o(masky,( (5

(Qrs Hrr) (Krs Hrr)T
Vd

Note that there is no mask in this step, which preserves the
attention mechanism’s flexibility. Previous works have usually

H'r‘s — 0_( )(VT‘SHTT) (6)
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Fig. 2: The architecture of RoadFormer. The blue rectangle
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labeled A. Road-Anchored S-Transformer first encodes the

input tensor by performing “sensor-to-road”, “road-to-road”,and “road-to-sensor” attentions. The orange rectangles labeled
B. Importance-Score T-Transformer further process the output of A H%T with three modules. H*” is split into Hj, and Hy,
by the validation time of the accident, then fed to the T-Transformer with importance-scores initialized as 0. The outputs
H and H,, are sent to Decoder #1 to reconstruct X,, and compute the importance-score as H — H/ . With the updated
importance-score, H*T is fed to T-Transformer again. The output is further processed by Decoder #2 to become H/ . The
green rectangle labeled C. Pooling shows how the latent features are projected to the desired outputs. Finally, the loss is
computed as the weighted combination of 1) the reconstruction from H/, to X,,, 2) the reconstruction from H/  to X,

and 3) the prediction loss of impact duration and length.

linked the top-k closest sensors in the geographic or feature
space, weighting the links with the distances. However, we
observe that attention is good at learning weights but weak
at learning graph structures. In this case, we simply need
to find nodes that are definitely linked to each other and
leave the weight learning task to attention. Therefore, we
chose to partially control the graph structure with unweighted
adjacent matrices. Finally, we applied skip-connection, layer-
normalization, and dropout to H".

Essentially, RAS-Transformer stresses the effects of sensors
on high-degree-centrality roads. The strengths of the RAS-
Transformer can be summarized as follows. (1) It avoids the
human error introduced by manually choosing road-to-road”
for "top-k”, (2) it allows long-range message-passing as all
sensors on intersected roads are linked, (3) it preserves the
flexibility of attention with a relatively small number of edges
(S| + |R|* + |S||R|,|R| < |S| at most) (4) it is more
time efficient (O(|S||R|? + |R|® + |R|?|S]), |R| < |S|) than
traditional attention mechanisms (O(|S|?)) and requires fewer
layers as the spatial message-passing is performed sufficiently
by the “road-to-road” self-attention module.

B. Importance-Score T-Transformer

Accidents typically impact a limited section of the traffic
network. Treating all sensors equally for prediction can add
unnecessary noise. Yet, manually selecting sensors near the
accident might overlook broader, intricate impact patterns
and essential features due to the traffic network’s prompt or
delayed response. In this case, a method that dynamically
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locates the region and time window affected by the acci-
dent is important. Based on the assumption that the traffic
measurements of sensors affected by incidents show more
obvious changes than other sensors, we locate the accidents
with anomaly detection techniques (i.e., assigning sensors with
larger variance a higher “importance-score”).

Inspired by [12], our IST-Transformer contains three mod-
ules: a temporal transformer (T-Transformer) and two de-
coders. The T-Transformer module encodes the output of
the RAS-Transformer with and without the importance-score
along the time dimension. The first decoder computes the
importance-score and reconstructs X,,, while the second
reconstructs X, from the combination of the importance-
score and the graph embedding. Denote the “after-validation”
section of HST as H,, and the “before-validation” section
of H5T as H;,. The combination of the T-Transformer and
any one of the decoders is equivalent to a classic transformer
network when considering H*” as the input sequence and
H,, as the output sequence.

Assume the importance-score is I € RI!SIX7*C and the
output of RAS-Transformer as H57 e RISIXT*C The output
of the T-Transformer can be written as (7):

H= TTrans([HST\ [To]) @)

where TTrans() indicates T-Transformer, which is a block
sequentially performing temporal self-attention and skip-
connection. Ij is the initialized importance-score (which is
an all-zero tensor).
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The task for both Decoder #1 and Decoder #2 is to re-
construct X,,. Each decoder has a self-attention layer and a
mutual-attention layer. Decoder #1 attempts to achieve its goal
using H and H,,, as (8):

®)

The three parameters in mu-attn; are placeholders for value,
key, and query.

Then, the importance-score is updated as I = HS7 — H/, .
Note that H*7 has T timestamps while H’, has T}, times-
tamps. We examined various methods, such as repeating
timestamps in H/,, and getting mean/min/max of H/, along
the time axis. All the methods resulted in similar performance.
Accordingly, we adopt the general form to represent the
difference between H°? and H/,,. Replacing I with I, we
apply the T-Transformer and Decoder #2 the same way as
the previous steps, with the concatenated H°” and I as the
input,as (9).

H/, = mu-attn;(H, H, self-attn,(H,,))

H' = TTrans([HT||1])

9
HZ/U = mu-attHQ(H/, H', self-attn, (Hav)) ®

Finally, H/,, and H/  are used to reconstruct X, sepa-
rately with the same two-layer feed-forward network (FFN):

X!y =Wia(p(Wi1H,, +b11))+bio

(10)
Xow = Wi2(p(W11Hy, +bi1)) +bio

where W1 1,b1 1, Wy 2, by o are parameters of the two linear
layers and ¢ is the activation function, which is the LeakyReLu
in the FFN in (10).

C. Pooling and Loss

After the spatial and temporal encoding, the spatiotemporal
representation H' is considered well-learned and ready for
prediction. To further refine the features, the importance-score
is used to weight the elements in H’ through element-wise
multiplication. This is followed by a temporal dimension
aggregation through a 2-D convolution layer and a spatial
dimension aggregation through SUMPooling. Lastly, three
linear layers with LeakyReLU activations are used to project
the features into the desired dimension. This process can be
summarized as (11):

'» = Conv2d(H'), H}. € RISIXC
's = SUMPool(H},), H, € RY)
Y = WP3¢(WP2¢(WP1H{S' +bp1) + bp2)> + bps

(1)

where Y € RCut Oy, = 2. The first value represents
the impact duration, and the second is the impact length.
SUMPooling is chosen because it is the most expressive
pooling method [40], and we want the pooled representation
to be capable of representing all possible accident scenarios.
L1 loss is chosen as the prediction loss function so that
the model focuses on the overall trends of Y instead of
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outliers. The prediction loss can then be written as Loss; =
|YDuT - YDuT| + ‘YLen - YLen|~

The second part of the loss is the reconstruction loss. This
loss is for regularization purposes and is self-supervised. The
only objective of the model is to predict Y p,, and Y ,. L1
loss is employed for both X/, and X . i.e., the loss functions
are Losss = |X!, — Xgp| and Lossz = |XI/, — Xyl To
generate the importance-scores correctly, the IST-Transformer
is trained in an adversary way. Here, we explain our design in
terms of a GAN in order to make it understandable. Consider
H,, as the true ”"image”, Hy, as the fake “image”, Decoder
#1 as the discriminator, and Decoder #2 as the generator. In
the first several epochs, the weight of Losss is far larger than
the weight of Losss. As a result, Decoder #1 discriminates
H,, and H,, better by assigning H,, larger attentive weights
in TTrans(). As the weight of Losss increases, Decoder #2
is trained to “generate” a new Hjy, by concatenating it with
I,, =~ Hy, —H,,. The new H,,, — Hj  receives more attention
in TTrans() with the importance-score and thus enlarge Losss.
This way, as the weight of Losss grows, the attentive weights
in TTrans() finally stabilize at some point that slightly inclines
to Hy,,, which makes Decoder #1 produce a larger importance-
score for H,, and a smaller score for Hy,,.

The loss during training can be written as (12):

Loss = ¢ Lossy + wLossy + (1 —w)Losss (12)

where 1 is the weight of the prediction loss. w € (0,1] is
the weight of the reconstruction loss of Decoder #1, while
(1 — w) is the weight of the reconstruction loss of Decoder
#2. w is initialized as 1 and decreases as the number of epochs
increases.

V. EXPERIMENT
A. Dataset and Data Preprocessing

The traffic loop sensor data used for this research are
collected from the Caltrans Performance Measurement System
(PeMS)'; The incident record data are from RITIS 2; The
road networks are downloaded from Tiger Priscroads 3. Based
on the location of sensors and incidents, we selected several
freeway segments in Los Angeles and San Bernardino regions,
which have well-constructed and complex road networks.

In addition to the data used in this research (i.e., sensor
measurements, adjacency information, and incident impact
records), we also provided auxiliary data to broaden the
potential problem domain. Specifically, our datasets contain
three basic elements: roads, sensors, and accidents. For roads,
we provide a matrix indicating whether two roads intersect
and the location of the intersections (in the form of the
distance from the start point of the road). We collect their
positions on the roads and their five-minute speed and oc-
cupancy measurements for sensors. As the rate of missing
records is less than 0.005%, we filled those values with daily

Thttps://pems.dot.ca.gov/
Zhttps://www.ritis.org/
3https://www2.census.gov/geo/tiger/
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average speed/occupancy. Finally, for incidents, we provide the
position on the road, the DateTime (number of five minutes
from 2019/09/01 00:00:00), the incident category, the impact
duration, and the impact length.

Since we lacked the ground truth of impact length, we
acquired the label with three steps. We first extracted the
regular weekly traffic pattern by averaging the speeds from
2019/06/01 to 2019/08/31. In this case, the value of “average
historical speed” for each sensor at each timestamp of the
week is acquired as the average of approximately 4 weeks
x 3 months = 12 speed measurements. The differences
between the current speed and the corresponding average
historical speed are then computed to distinguish incident-
caused congestion from regular traffic patterns.

The second step is to determine the threshold of speed
differences, so that speeds significantly lower than the regular
pattern are considered an indicator of non-recurrent conges-
tion. For each incident, we performed a binary 1D k-means
classification of the upstream speed differences between the
incident occurrence and clear time. The low-speed cluster is
then marked as affected by the incident. To reduce the impact
of special events and adjacent congestion events, we removed
markers of the speed differences smaller than 0.5x standard
deviation of the daily differences and sensors further than 7x
duration values. The impact length is zero if the selected sensor
is the nearest sensor to the incident. Otherwise, the impacted
length is defined by the distance from the accident to the
upstream sensor before the picked sensor.

To construct appropriately scaled datasets, we selected sev-
eral inter-state freeways as illustrated in Fig. 3a and 3b. The
time was set to one month (2019/09/01 — 2019/09/30). Sensors
and accidents not on the chosen freeways were filtered out.
We also removed accidents with a duration of fewer than 30
minutes due to their limited temporal impact. Fig. 3c shows
the distribution of impact duration and length. The orange
dashed lines indicate the fluctuations of log event counts across
different durations and impact lengths. The shades of the bars
show the magnitude of event counts. All the label values
follow power-law distributions except that the impact length in
the San Bernardino region is relatively noisy compared with
the others. Finally, we present two datasets for TII prediction:
Incident-LA and Incident-SB. The detailed attributes of the
two dynamic networks are illustrated in Table L.

TABLE I: Dataset Properties

Dataset # event # node # edge # 0 length
(R/S) (R-R/S-S)
Incident-LA 5,668 32/1,663 142/869,640 2,062
Incident-SB 1,452 28/1,150 140/390,822 454

B. Baselines

To evaluate the efficiency of RoadFormer, we chose nine
representative models to perform the same task. Considering
that only a few models target similar jobs, we choose the
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Fig. 3: Basic Dataset Information

two most recently published incident impact prediction mod-
els, two conventional models, and five state-of-the-art traffic
forecasting models. Two of the later five models leverage
attentive graph representation learning techniques, while the
other three use graph convolution. For the traffic forecasting
models, we employ a pooling module identical to the one used
in RoadFormer to obtain the desired output.

o L-1 regularized linear regression (LASSQO) [41]. As
LASSO only accepts one-dimensional inputs, we ex-
plored various feature aggregation approaches: 1) aver-
aging across spatiotemporal dimensions, 2) selecting the
nearest upstream/downstream sensor and averaging tem-
porally, and 3) choosing the closest upstream/downstream
sensor along with the five minutes after validation. For
parameter selection, we examined A values of 0.1, 1.0,
10.0, and 100.0.

o Support vector regression (SVR) [41]. Similar to
LASSO, we examined three different feature aggregation
methods. We used the default parameters (C' = 1,¢
0.1) in the sklearn [42] package of Python.

o HastGCN [8]. It is a spatiotemporal attention model
for incident duration prediction. We reproduce the model
with the help of the author. All the settings are the same
as the original model.

o AGWN [9]. It preprocesses the adjacency matrix with a
wavelet filter before the graph convolution operation. All
the hyperparameters are the same as in the original paper.

e STTN [31]. STTN leverages transformers for spatial and
temporal message-passing, focusing on predicting node-
level speeds. The code is derived from the official STTN
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GitHub repository #. All the hyperparameters remain the
same as is mentioned in the paper.

o« STAWnet [30]. It employs attentive graph message-
passing and gated TCN. We used the original code > and
kept the hyperparameters unchanged.

« DMSTGCN [35]. It decomposes the adjacency matrix
into four trainable embeddings for graph convolution. All
the hyperparameters are the same as in the original paper.
6

o Graph WaveNet [34]. It contains a self-adaptive GCN
module and a dilated TCN module. All the hyperparam-
eters are the same as in the original paper .

e AGCRN [2]. AGCRN performs node-adaptive graph
convolution and GRU-like temporal message-passing. All
the hyperparameters are the same as in the original paper
8

C. Hyperparameter and Metrics

In the problem settings of this paper, we assume that the
objective is to predict the incident’s impact within a short time
after the event. To do so, nine timestamps (six for “before-
validation” and three for “after-validation”) were adopted. As
a result, the model could not see the full traffic pattern during
the incident.

For the training process of RoadFormer, we adopted a batch
size of 8 due to the GPU memory limitation. The learning
rate was 0.0005 with a 0.001 weight decay. The number
of attention heads was 4. The LeakyReLU factor was set
to 0.2, and the dropout rate was 0.1. In the loss function
(Equation 12), the prediction loss weight ) was 1.0. To adjust
Losss and Losss as described in Section IV-C, w was set to
H%l, where i is the index of the current epoch.

Following our previous works [7]-[9], we adopted root
mean squared error (RMSE) and mean absolute error (MAE)
as metrics. However, the impact length introduces labels of
zero value making mean absolute percentage error (MAPE)
invalid. Therefore, we replaced MAPE with symmetric mean

absolute percentage error (SMAPE). Based on the definition
(RMSE = \/% Ziﬂyvﬁ —§;)2, MAE = LsumlY,|y; —
Gil, SMAPE = - sum || \271‘?\4:5‘\ ), RMSE penalizes large
gaps more harshly than MAE, while sSMAPE focuses more on
the magnitude of the differences from the true values.

D. Prediction Result Analysis

The input to the models includes the adjacent matrices and
sensor measurements one hour before and half an hour after
the validation time. The output is the impact duration and
length. We evaluated the duration and length separately as
they are of different units. Table II illustrates the performance
of RoadFormer against the baselines.

“https://github.com/wubin5/STTN
Shttps://github.com/CYBruce/STAWnet
Ohttps://github.com/liangzhehan/DMSTGCN
7https://github.com/nnzhan/Graph- WaveNet
8https://github.com/LeiBAI/AGCRN
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Conventional baselines. For LASSO and SVR, the best
performance is achieved with the closest upstream sensor and
the first timestamp after the validation time as inputs. The re-
sults appeared to be insensitive to hyperparameters. As shown
in Table II, even though they produced competitive results in
RMSE and MAE impact length prediction, LASSO and SVR
performed poorly in predicting impact duration prediction.
This result matches our hypothesis that the “closest” sensors
and timestamps are not optimal for prediction.

Spatiotemporal neural network baselines. RoadFormer
surpasses the other baselines (i.e., spatiotemporal neural net-
works) in most of the metrics and achieves competitive per-
formance on the other metrics if it is not the best. Specifically,
RoadFormer outperforms another spatiotemporal transformer,
STTN, by about 10% in duration prediction and 5% in length
prediction. RoadFormer also beats previous incident impact
prediction models, HastGCN and AGWN, by approximately
10% in performance.

We find that RoadFormer cannot beat the other models in all
metrics. To prove the efficiency of our model, we rank all ten
models by each criterion and list the average rank in Table III.
The table shows that our model performs the best on average.

E. Ablation Study

We conducted four ablation experiments to evaluate the
contributions of each component of the RoadFormer model.
The result is shown in Table IV. We removed the cor-
responding modules for the “No-STrans” and “No-TTrans”
experiments. For "No-Score”, we skipped the concatenation
steps in Equation 7 and 9 and removed the reconstruction
losses during training. For "No-Road”, we replaced the RAS-
Transformer with the transformer used in STTN. Initially,
we assumed that "No-Road” would outperform RoadFormer
as our graph had too many edges removed. However, the
results in Table IV show that our model cannot achieve its
performance without any of its components. We observed that
the performance drops less in "No-Score” and “No-TTrans”
than in "No-Road” and “No-STrans”. This may be because
the number of timestamps in the input is too small for a
transformer to work.

F. Case Study

We explored several incident cases to examine whether
our importance-score helps identify incidents. One example
is incident #18693 (Fig. 4). The map plots the five-minute
average speed immediately after the validation time and the
importance-scores within the same time slot. Obviously, sen-
sors that detect lower speeds also have higher importance-
scores, while high importance-scores cluster around the in-
cident (red star). However, we also observe that incident-
irrelevant speed drops also lead to high importance-scores. The
model utilizes both the score and the embedded features for
prediction.

Beyond This Task. The other parts of the dataset (i.e., the data
not used in this paper) can be used to increase the prediction
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TABLE II: RMSE, MAE, and sMAPE for duration and impact length prediction of Incident-LA and Incident-SB. This table
lists the performance of nine state-of-the-art baselines and our proposed model. Bolded and blue results indicate the best and

the second.
Method Incident-LA (dur (min)) Incident-LA (len (mile)) Incident-SB (dur (min)) Incident-SB (len (mile))
RMSE | MAE | sMAPE | RMSE | MAE | sMAPE | RMSE | MAE | sMAPE | RMSE | MAE | sMAPE
LASSO 59.773 | 51.776 0.760 8.270 6.794 1.211 58.921 | 51.263 0.757 10.743 8.934 1.112
SVR 60.073 | 50.763 0.743 8.559 6.300 1.299 59.560 | 50.924 0.761 11.632 8.812 1.218
HastGCN 31.719 | 20.372 0.319 8.421 6.402 1.272 35.936 | 25.078 0.381 13.053 9.299 1.350
AGWN 31.934 | 20.720 0.341 10.840 | 6.594 0.874 32.864 | 22.391 0.365 11.730 8.736 0.743
STTN 31.826 | 21.098 0.322 9.644 6.317 0.893 31.235 | 20.631 0.326 12.346 9.025 0.812
STAWnet 31.400 | 20.315 0.318 8.619 6.311 1.310 29.280 | 20.212 0.320 11.994 8.945 1.260
DMSTGCN 31.555 | 20.342 0.319 10.638 | 7.784 0.880 29.810 | 20.263 0.312 12.929 9.846 0.791
Graph WaveNet 31.880 | 20.415 0.320 10.489 | 7.672 0.861 30.765 | 20.455 0.324 14.093 | 10.807 0.914
AGCRN 31.253 | 20.363 0.319 8.662 6.212 0.899 30.905 | 20.652 0.324 12.808 9.093 1.172
RoadFormer (ours) | 31.413 | 20.310 0.318 9.494 6.226 1.477 29.726 | 20.140 0.319 11.731 8.818 1.235

TABLE III: Average rank of baseline and RoadFormer performance. Abbreviated model names are used due to the limited
space. The smaller the number, the higher the average rank. Bolded and blue results indicate the best and the second.

Model | RoadFormer | STTN | STAW. | DMST.

AGCRN | AGWN | G.W. | LASSO | Hast. | SVR

Rank 3.58 3.75 4.08 5.25

5.25 5.75 6.67 6.83 692 | 6.92

TABLE IV: RMSE, MAE, and sMAPE for Duration and Impact Length Prediction of Incident-LA and Incident-SB. The results
of the ablation study include our model without the RAS-Transformer (No-STrans), our model without the T-Transformer (No-
TTrans), our model without the road anchors (No-Road), and our model without the importance-score (No-Score).

Method Incident-LA (dur (min)) Incident-LA (len (mile)) Incident-SB (dur (min)) Incident-SB (len (mile))
RMSE | MAE | sMAPE | RMSE | MAE | sMAPE | RMSE | MAE | sMAPE | RMSE | MAE | sMAPE

No-STrans 31.245 | 20.320 0.319 9.608 6.251 1.503 28.793 | 21.240 0.338 11.922 | 8.877 1.255

No-TTrans 31.674 | 20.371 0.319 9.496 6.215 1.570 32.024 | 27.265 0.422 12.432 | 8.903 1.344

No-Road 31.611 | 20.351 0.319 9.909 6.345 1.616 28.568 | 20.928 0.333 13.240 | 9.286 1.496

No-Score 31.846 | 20.321 0.319 9.496 6.215 1.473 30.000 | 20.236 0.320 14.000 | 9.743 1.688

RoadFormer (ours) | 31.413 | 20.310 0.318 9.494 6.226 1.477 29.726 | 20.140 0.319 11.731 | 8.818 1.235
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Fig. 4: Case study of incident #18693 on the Freeway I-10.
This is the map of an incident and the surrounding traffic loop
sensors on I-10 in the Incident-LA dataset. The red star indi-
cates the location of the accident, and the yellow—green—blue
dots are sensors colored according to speed measurements.
The orange-red ”X”s indicate the importance-scores assigned
by RoadFormer.

accuracy. We examined simple methods of merging the aux-
iliary information into the traffic network, such as adding an
accident classification task, using road and sensor position for
position encoding, and embedding accident metadata. While

none of those methods worked, all of these attempts are also
uploaded to our GitHub repository ° for others to investigate.
In the future, we will explore more about the relationship
between incident impact prediction and related tasks, such
as traffic flow/congestion propagation prediction. Additionally,
we will explore additional sources of data that could enhance
incident impact prediction and will continuously update our
datasets accordingly.

VI. CONCLUSION

In this paper, we present a novel definition of TII prediction
tasks within the context of spatiotemporal data mining and
introduce two enhanced traffic incident impact datasets. We
design a new transformer-based TII prediction model, which
contains a novel road-anchored spatial transformer encoder
and an importance-score temporal transformer decoder to
assist in identifying measurements affected by the accidents.
We evaluated the performance of two conventional mod-
els and six deep graph traffic forecasting models on our
datasets. The experiments show that RoadFormer outperforms
the other models. Moreover, the ablation studies show that the
road-anchored attention strategy outperforms general attention
layers, and the case study shows that the importance-score
transformer can identify incident-relevant sensors.

9https://github.com/styxsys0927/RoadFormer.git
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