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1 INTRODUCTION

Deep learning’s performance in various machine learning tasks [1–6] has been extensively rec-
ognized in recent decades, with amazing success on Euclidean data. In recent decades, a slew of
new applications have emerged in which effective information analysis boils down to the non-
Euclidean geometry of data represented by a graph, such as social networks, transportation net-
works, spread of epidemic disease, brain’s neuronal networks, gene data on biological regulatory
networks, telecommunication networks, and knowledge graph. Previous deep learning algorithms,
such as convolutional and recurrent neural networks, could not handle such non-Euclidean prob-
lems on graph-structured data. Modeling data using a graph is difficult, because graph data is
irregular, i.e., each graph has a different number of nodes, and each node in a graph has a var-
ied number of neighbors, making some operations like convolutions inapplicable to the network
structure.

There has recently been a surge in growing interest in applying deep learning to graph data.
Inspired by deep learning’s success, principles from deep learning models are used to handle the
graph’s inherent complexity. This growing trend has piqued the interest of the machine learn-
ing community, and a huge number of graph neural networks (GNN) models have been pro-
posed based on diverse theories [7–12] and grouped into coarse-grained groupings such as the
spectral [13–17] and spatial [10–12] domains. GNNs have seen rising popularity recently for
learning graph representations and quickly spread out to many application domains, such as
physics [18, 19], chemistry [20, 21], knowledge graph [22–25], recommender systems [26–29], com-
puter vision [30–32], natural language processing [33–35], combinatorial optimization [36–38],
traffic network [39–42], program representation [43–45], social network [26, 46, 47]. However,
current research in methodology has not translated into a clear understanding of the mechanisms
involved, nor has it given us insight into GNNs’ effectiveness or physical meaning. As a result, sev-
eral consequences will occur: (1) There is no underlying principle that connects all GNNs, which
also limits their growth. (2) In high-stakes applications such as drug development, GNN models
may carry potentially hazardous unknowns, since they are black boxes. Consequently, the neces-
sity of dissecting GNNs is highlighted, thereby driving academics to hunt for a more universal
framework. The main problem is that existing GNN models use a variety of techniques, including
random walks [48–50], PageRank [51–54], attention models [12, 55, 56], low-pass filters [57, 58],
and message forwarding [59, 60]. Some preliminary research can only explain a few GNNs meth-
ods [59, 61, 62], leaving the majority of GNN unaccounted for. Previous GNNs surveys have dealt
mostly with classifying several existing models into multiple categories and expanding on each
category individually, with no regard to the interrelationships between them [13–17].

This research1 aims to provide a coherent framework for generalizing GNNs by bridging the di-
vide between seemingly unrelated works in the spatial and spectral domains, as well as by linking
methods within each domain. The study will build a unified theoretical framework that encom-
passes diverse GNNs. Our research is novel in that it connects disparate GNN models, allowing for
direct rethinking and comparison of all GNN models.

1A short version is available at Reference [63].
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1.1 Graph Neural Networks in Spatial and Spectral Domain

Over the past several years, GNNs have gained a lot of attention. However, the existence of numer-
ous GNNs complicates model selection, because they are not easily understood within the same
framework. Specifically, one uses spectral theory to implement early GNNs [9, 64], whereas spatial
theory is used to propose others [10, 65]. The mismatch inherent to spectral and spatial approaches
means that direct comparisons are difficult. Even in each area, there are numerous models, which
makes it difficult to examine their strengths and weaknesses.

To untangle the mess, we present a unified framework that connects the spatial and spectral
domains and reveals their intricate relationship. Furthermore, both domains’ subcategories are
proven to have a hierarchical link. The focus on a unified framework adds to the knowledge of
how GNNs operate. The goal of this research is to use a combination of spectral graph theory and
approximation theory to investigate the relationship between important categories, such as spatial-
and spectral-based approaches. We give a detailed analysis of GNNs’ current research findings in
this article, as well as a discussion of trending topics such as over-smoothing. Many well-known
GNNs will be used to demonstrate the universality of our architecture. This article’s main motiva-
tion is twofold: (1) Connecting the spectral and spatial domains. The fundamental concepts,
principles, and physical implications of spectral- and spatial-based GNNs are significantly differ-
ent due to their distinct features. As a result, we present an overview of the fundamental principles
and properties of spectral- and spatial-based GNNs to help people better grasp the problems, poten-
tial, and necessity of GNNs. Formally, a rigorous equivalence is established, indicating that spatial
connection function is comparable to spectral filtering; (2) Dissecting spectral and spatial do-

mains, respectively. In spectral techniques, filtering functions on eigenvalues are examined, and
the filtering function choice can be matched with various tactics in approximation theory; while
spatial methodologies are used to explore attribute aggregation, which may be understood from
the size and direction within a predetermined region.

The structure of the article is summarized as follows: Basic concepts, distinctive principles, and
properties of graph neural networks are covered in Section 2, as well as ways for encoding the
graph, spectral-based GNNs, spatial-based GNNs, and essential fundamentals. The proposed frame-
work is summarized in Section 3, which emphasizes the relevance of hierarchy. From Section 4
through Section 5, we explore exemplary GNN models in each domain using our proposed taxon-
omy structure. In Section 6, we go over the advantages and disadvantages of each domain in detail,
as well as practical guidance on GNN model selection. Section 7 also includes a case study of our
techniques, demonstrating our proposed framework with current and relevant GNNs concerns.

1.2 Related Surveys and Our Contributions

Existing works on GNNs can be categorized into three groups:

— Group 1 (Comprehensive Surveys): Most surveys catalog new GNN research into distinct classes,

but they generally lack a unified framework [15–17, 66, 67].

— Group 2 (Theoretical Perspectives): The surveys undertaken in this context investigate GNNs from

certain perspectives, however, their reach is frequently constrained [60, 68–71].

— Group 3 (Post Hoc Explanation): This methodology comprehends GNNs through the utilization of

post hoc analysis, which provides valuable insights but poses challenges in terms of validation [72–75].

Our research aims to provide a more interpretable and theoretically grounded understanding
of GNNs. Previous surveys either categorize several disparate groups or only address a few GNNs
using a certain methodology. Following the overall goals of our framework, we want to create
one framework that unifies GNNs across the spatial and spectral domains as well as within each
domain via theoretical support. It should be noted that the majority of the work presented is related
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to Graph Convolution Networks (GCN) [8], which is the most common type of GNNs, and that
many other varieties of GNNs are still based on GCN. As a result, we do not differentiate between
GNNs and GCN in this context and refer to GNNs in the following sections.

2 PROBLEM SETUP AND PRELIMINARY

Table 1. Commonly Used Notations

Notations Descriptions

G A graph.

V The set of nodes in a graph.

E The set of edges in a graph.

A, Ã The adjacency matrix and its normalization.

L, L̃ The graph Laplacian matrix and its normalization.

v A node v ∈ V .

ei j An edge ei j ∈ E .

λi ∈ Λ Eigenvalue(s).

U,Uᵀ Eigenvector matrix and its transpose.

Ui ∈ U, uᵀ
i ∈ Uᵀ Single eigenvector and its transpose.

D The degree matrix of A and Dii =
∑n

j=1 Ai j .

X ∈ RN×d The feature matrix of a graph.

Z ∈ RN×b New node feature matrix.

H ∈ RN×b The node hidden feature matrix.

hv ∈ Rb The hidden feature vector of node v .
N node number

b dimension size of hidden feature

� Element-wise product.

Θ,θ Learnable model parameters.

P(·),Q(·) Polynomial function.

N(v) Directed neighbors of node v

We enumerate all the notations uti-
lized in this survey within Table 1.
Furthermore, we will discuss the fun-
damental concepts, necessary pre-
liminaries, and the problem setup
for learning node-level representa-
tion, which is the major task in the
GNN literature. A simple graph is de-
fined as G = (V,E), where V is a
set of n nodes and E represents edges.
An entry vi ∈ V denotes a node, and
ei, j = {vi ,vj } ∈ E indicates an edge
between nodes i and j. The adjacency
matrix A ∈ RN×N is defined by if
there is a link between node i and j,
Ai, j = 1, and else 0. Node features

X ∈ RN×F is a matrix with each entry
xi ∈ X representing the feature vector
on node i . Another popular graph ma-
trix is the graph Laplacian, which is
defined as L = D−A ∈ RN×N , where
D is the degree matrix. Due to its generalization ability [76], the symmetric normalized Laplacian

is often used, which is defined as L̃ = D− 1
2 L D− 1

2 . Another option is random walk normalization:

L̃ = D−1 L. Note that normalization could also be applied to the adjacency matrix, and their rela-

tionship is L̃ = I− Ã. Most GNNs focus on node-level embeddings, learning how a graph signal is
modified by a graph topology, and outputting a filtered feature as:

f : G,X → Z, (1)

where we aim to find a mapping that can integrate graph structure and original node features,
generating a update node representation Z.G represents the graph connectivity, and many options
are available as listed in Table 2, and most popular are symmetric normalized graph matrices. In
this survey, we use the graph Laplacian, adjacency matrix and their modifications described in
Table 2 to represent a graph. So, yet, no experimental or theoretical evidence has been shown that
any filter has a consistent advantage [77]. This survey is investigating two specific groups of GNNs,
namely, spectral- and spatial-based GNNs, which are defined as below:

Definition 2.1 (Spatial Method). By integrating graph connectivity G and node features X, the
updated node representations (Z) are defined as:

Z = f (G) · X, (2)

where G is often implemented with A or L in existing works. Therefore, spatial methods focus on
finding a node aggregation function f (·) that learns a proper aggregation with node features X

to obtain a updated node embedding Z.
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Table 2. Representations for Graph Topology

Notations Descriptions

A Adjacency matrix

L Graph Laplacian

Ã = A+ I Adjacency with self loop

D−1 A Random walk row normalized adjacency

A D−1 Random walk column normalized adjacency

D−1/2 A D−1/2 Symmetric normalized adjacency

D̃
−1

Ã Left renormalized adjacency, D̃ii =
∑

j Ãi j

ÃD̃
−1

Right renormalized

D̃
−1/2

ÃD̃
−1/2

Symmetric renormalized

(D̃−1
Ã)k Powers of left renormalized adjacency

(ÃD̃
−1)k Powers of right renormalized adjacency

Before introducing another definition, the
necessary preliminary background is offered:
(1) graph Fourier transform: The graph
Laplacian L can be diagonalized [78, 79] as

L̃ = U Λ Uᵀ, where Λ is the diagonal matrix
whose diagonal elements are the correspond-
ing eigenvalues (i.e., Λii = λi ), and U repre-
sents eigenvectors. Further, the graph Fourier

transform of a signal X is defined as X̂ =

Uᵀ X ∈ RN×N and its inverse as X = U X̂. (2)

spectral convolution: According to the Con-
volution Theorem (i.e., Fourier transform of a
convolution of two signals is the element-wise
product of their Fourier transforms) [80], the
convolution is defined in the Fourier domain as:

f1 ∗ f2 = U [(Uᵀ f1) � (Uᵀ f2)] ,
where � is the element-wise product, and f1/f2 are two signals defined on the spatial domain.

Definition 2.2 (Spectral Method). A node signal f2 = X is filtered by spectral function g = Uᵀ f1
as:

g ∗X = U [g(Λ) � (Uᵀ X)] = U diag(g(Λ))Uᵀ X, (3)

where g is known as frequency response function. If g is polynomial, rational, or exponential
function, then we can reduce the equation above to:

g ∗X = g(L̃)X . (4)

In short, the objective of spectral methods is to learn a frequency response function g(·).

The goal of both methods is to learn how to approximate node aggregation or a frequency re-
sponse function using the data. A great deal of approximation techniques are utilized, and thus
f or д can be efficiently estimated. Approximation theory is a branch of mathematics dedicated
to discovering and quantifying the errors caused when functions are approximated using smaller
functions. Despite the fact that polynomials have a more convenient form than rational functions
and are more popular due to its efficiency, rational functions are better at approximating func-
tions at singularities and on unbounded domains. The basic characteristics of rational functions
are outlined in complex analytic literature [81–91]. As an important polynomial approximation,
Chebyshev approximation is first introduced as spectral filtering for graph convolution: A real
symmetric graph Laplacian L can be decomposed as L = U Λ U−1 = U Λ Uᵀ. Chebyshev approx-
imation on spectral filter g is applied [9, 64] so it can be approximated with a polynomials with
order k:

g ∗X =U g(Λ)Uᵀ X

≈U
∑

k

θkTk (Λ̃)Uᵀ X

(
Λ̃ =

2

λmax
Λ− IN

)
=

∑
k

θkTk (L̃)x (U Λk Uᵀ = (U Λ Uᵀ)k )

Another graph convolutional network [8] further simplifies it by reducing the order to 1:
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Table 3. Chronological List of Notable GNNs in Spatial and Spectral Domains

Spatial Spectral

Before 2015 ParWalk [92], DeepWalk [48],
LINE [93]

Spectral GNN [7], ISGNN [94],
Neural graph fingerprints [95]

2016 DCNN [11], Molecular Graph
Convolutions [96],
PATCHY-SAN [97]

GCN [8], ChebNet [9]

2017 MPNN [59], PGCN [98],
GraphSAGE [10]

MoNet [13]

2018 GIN [61], Adapative GCN [99], Fast
GCN [100] JKNet [101], Large Scale
GCN [102]

RationalNet[103], AR [104],
CayleyNet [105]

2019 SGCN [106], DeepGCN [107],
MixHop [108], PPAP [53]

ARMA [109], GDC [110],
EigenPool [111], GWNN [112],
Stable GCNN[113]

2020 SIGN [114], Spline GNN [115],
UaGGP [116], GraLSP [117],
GraphSAINT [118], DropEdge [119],
BGNN[120], ALaGNN[121]
Continuous GNN [122],
GCNII [123], PPRGo [124],
DAGNN [125], H2GCN [126]

GraphZoom [127]

2021 ADC [128], UGCN [129], DGC [130],
E(n)GNN [131], GRAND [132],
C&S [133], LGNN [134]

Interpretable Spectral Filter [135],
Expressive Spectral
Perspective [136], S2GC [137],
BernNet [138]

2022 GINR[139], Adaptive SGC [140],
PGGNN [141], DIMP [142]

AGWN [143], ChebNetII [144],
JacobiConv [145], SpecGNN [146],
G2CN [147], PGNN [148],
ChebGibbsNet [149],
SpecFormer[150], SIGN [151],
Spectral Density [152]

2023 [153], [154], Low Rank GNN [155],
Auto-HeG [156], [157]

DSF [158],
F-SEGA [159], [160], [161]

g ∗X ≈ θ0 IN x + θ1L̃ X (expand to 1st order)

= θ0 IN x + θ1

(
2

λmax
L− IN

)
X

(
L̃= 2

λmax
L− IN)

)
= θ0 IN x + θ1(L− IN)X (λmax=2)

= θ0 IN x − θ1 D̃ A D̃ X (L=IN − D̃ A D̃)

= θ0(IN + D̃ A D̃)X (θ0=−θ1)

= θ0(D̃
− 1

2 ÃD̃
− 1

2 )x (Ã=A+ IN,D̃ii=
∑

j Ai j ).

As a result, θ0 is the only parameter to learn. The learnable parameters in many different GNNs
can vary based on the model design.

3 FRAMEWORK OVERVIEW

The development of GNNs is briefly discussed below with representative studies before we in-
troduce our proposed theoretical framework. Table 3 depicts many sample models that focus on
node-level graph convolution. The spectral perspective was previously explored (SGWT [64]),
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and it serves as the technical foundation for all subsequent spectral methods, including spectral
convolution and approximation. Researchers continue to add to this thread, demonstrating that
spectral methods have the ability to handle graphs (SGNN [7], ISGNN [94], ChebNet [9]). Fur-
thermore, GCN [8] and GraphSAGE [10] create effective training methodologies, gaining con-
siderable attention from various communities. After that, spectral techniques development stag-
nated, with the exception of a few publications on rational filtering (RationalNet [103], AR [104],
ARMA [109]). Meanwhile, focus shifts to the spatial domain, which has dominated GNNs to this
point. Random walks (ParWalk [92], DeepWalk [48], LINE [93]) and CNN (DCNN [11]) were used
in early spatial approaches. Following that, MPNN [59] solidified the message-passing mechanism
in spatial techniques. High-order polynomial approximation has been studied [61, 106, 110, 114],
but only within the context of ChebNet or DCNN. It is worth noting that while numerous
publications described their suggested methods from both spatial and spectral perspectives,
only a few GNNs are covered [13, 110]. Until recently, spectral research has demonstrated a
resurgence.

In this survey, we provide a framework to fully comprehend spectral methods from a spatial
perspective and vice versa. A cross-domain perspective is used to integrate spatial and spectral
techniques into a coherent framework. As shown in Figure 1, the proposed framework divides
GNNs into two domains: spatial (A-0) and spectral (B-0), each of which is further separated into
three subcategories (A-1/A-2/A-3 and B-1/B-2/B-3). A-0 is separated into linear (A-1), polynomial
(A-2), and rational (A-3) aggregations based on the types of neighbor aggregation (i.e., f in
Definition 2.1). Operations on first-order neighbors only are considered in linear aggregation
(A-1), whereas high-order neighbors are incorporated in polynomial aggregation (A-2). In addition,
rational aggregation (A-3) includes self-aggregation. According to the types of approximation
techniques, the spectral methods are divided into linear (B-1), polynomial (B-2), and rational
(B-3) approximation, depending on the types of frequency filtering (i.e., g in Definition 2.2). In
Sections 4 and 5, each category and subcategory will be explained in detail with examples.

3.1 Inside the Spatial and Spectral Domain

The hierarchical link between the spatial and spectral domains is depicted in this subsection.
Spatial-based techniques can be divided into three types, with specialization and generalization
relationships existing:

(A-1) Linear Aggregation � (A-2) Polynomial Aggregation � (A-3) Rational Aggregation,

where it is a generalization from left to right, and specialization from right to left. Specifically,
Linear Aggregation (A-1) comprises all algorithms for learning a linear function among neigh-
bors in the first-order. Higher-order neighbors are included in Polynomial Aggregation (A-2), and
the order number is defined by the polynomials. Additionally, Rational Aggregation (A-3) utilizes
self-aggregation, since the inclusion of higher-order neighbors causes linear aggregation (A-1) to
transform into polynomial aggregation (A-2), and polynomial aggregation (A-2) to transform into
rational aggregation (A-3) if self-aggregation is added. The approaches falling under the general
category of spectral analysis can be grouped into three distinct groups:

(B-1) Linear Approximation � (B-2) Polynomial Approximation � (B-3) Rational Approximation,

which includes left-to-right generalization and right-to-left specialization. Concretely, (B-1) out-
lines all models that aggregate frequency components using a linear function, while (B-2) uses
polynomial approximation, and (B-3) applies rational approximation. Therefore, (B-1) can be gen-
eralized as (B-2) if replacing linear approximation with polynomial approximation, and (B-2) is
generalized as (B-3) if replacing polynomial approximation with rational approximation.

ACM Computing Surveys, Vol. 56, No. 5, Article 126. Publication date: December 2023.
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Fig. 1. Illustration of major graph neural operations and their relationship. Spatial and spectral methods are

divided into three groups, respectively. Groups A-1, A-2, and A-3 are strongly correlated by generalization

and specialization, so are groups B-1, B-3, and B-3. The equivalence among them is marked in the same color.

3.2 Between the Spatial and Spectral Domain

In this section, we go through the link between the spatial and spectral domains over the border.
There is also equivalency by modifying the analytical form of these subcategories, as shown below.
Linear Aggregation (A-1) and Linear Approximation (B-1) are the initial equivalences:

(A-1) Linear Aggregation ⇔ (B-1) Linear Approximation,

which means that adjusting weights on neighbors in linear aggregation equates to adjusting
weights on frequency components in linear approximation using a linear function. Linear Ag-
gregation (A-1) and Linear Approximation (B-1) have the same linear function and can seamlessly
convert to each other in closed form. The main difference between them is that Linear Aggrega-
tion (A-1) recovers the signal as a linear function of the frequency component, whereas Linear
Approximation (B-1) models the target signal as a linear function of neighbor nodes. Both Lin-
ear Aggregation (A-1) and Linear Approximation (B-1) aggregate the representations of neigh-
bors by tweaking the weights of each neighbor or use a linear filter on eigenvalues with a
negative slope, i.e., g(Λ) = −Λ+a. Because the low-frequency components are given a higher
weight by д than their original values, this is referred to as low-pass filtering (i.e., eigenvalues).
This group’s main advantages are (1) its low computational cost and (2) the large number of
real-world scenarios that are subject to the homophily assumption (i.e., neighbors are similar).
The fundamental disadvantage is that not every network guarantees homophily. Polynomial Ag-
gregation (A-2) and Polynomial Approximation (B-2) are identical in terms of actual operation,
i.e.,

(A-2) Polynomial Aggregation ⇔ (B-2) Polynomial Approximation.

This means that in polynomial aggregation, aggregating higher orders of neighbors can be ex-
pressed as the sum of different orders of frequency components in polynomial approximation.
Both use higher-order neighbors in addition to first-order neighbors, increasing the capacity to
simulate a more complex relationship among the neighbors. It is theoretically more powerful than
(A-1)/(B-1) from a spectral standpoint, because (A-2)/(B-2) is a polynomial approximation as a
spectral filter, whereas (A-1)/(B-1) is linear regression. As a result, one flaw is the cost of border
neighborhood, which leads to higher computational complexity than (A-1)/(B-1). Another flaw of

ACM Computing Surveys, Vol. 56, No. 5, Article 126. Publication date: December 2023.



Bridging the Gap between Spatial and Spectral Domains 126:9

Table 4. Structure of Sections 4 and 5

Section 4 (A-0)

Spatial: function of adjacency matrix

Section 5 (B-0)

Spectral: function of eigenvalues

Linear l(·)
Section 4.1 (A-1)

l(A) = a1A + a0A
0 = a1A + a0I

Section 5.1 (B-1)

l(Λ) = a1Λ + a0Λ0 = a1Λ + a0

Polynomial P(·)
Section 4.2 (A-2)

P(A) = amAm + · · · + akA
k + · · · + a0A

0

Section 5.2 (B-2)

P(Λ) = amΛm + · · · + ak Λk + · · · + a0Λ0

Rational P(·)
Q(·)

Section 4.3 (A-3)
P(A)
Q(A) =

am Am+· · ·+ak Ak+· · ·+a0A0

am Am+· · ·+ak Ak+· · ·+a0A0

Section 5.3 (B-3)
P(Λ)
Q(Λ) =

am Λm+· · ·+ak Λk+· · ·+a0Λ0

am Λm+· · ·+ak Λk+· · ·+a0Λ0

them is that if the order is set too large, then it will over-smooth (i.e., all nodes will look the same),
and there is no golden rule for order size because it is based on data. Note that K-layer (A-1) or (B-1)
is equivalent to K-order of (A-2)/(B-2), hence stacking K-layer (A-1) or (B-1) causes over-smoothing
(B-1). Similarly, the last equivalence relationship is

(A-3) Rational Aggregation ⇔ (B-3) Rational Approximation,

in which rational aggregation defines a label aggregation with self-aggregation, while rational ap-
proximation adjusts filter function with rational approximation. Both alleviate the over-smoothing
issue by introducing self-aggregation, which limits the intensity of uni-directional aggregation in
the spatial domain. From a spectral perspective, this advantage can be interpreted as the superior-
ity of rational approximation (A-3/B-3) over polynomial approximation (A-2/B-2). In particular, the
rational approximation is more powerful and precise, particularly when estimating some abrupt
signals like discontinuity [82, 84–87, 89, 90].

As a result, we may summarize the advantages and disadvantages of each combination as il-
lustrated in Figure 2. The category selection is based on the data complexity and the efficiency
required, as there is a tradeoff between computational efficiency and generalization capability.

Fig. 2. Category and subcategory comparison.

Table 4 shows the structure of
Sections 4 and 5, where we
will discuss details of these two
threads, respectively, and ex-
emplify using several represen-
tative graph neural networks.
The second column denotes
spatial perspective (Section 4,
A-0), which can treat popular GNNs as learning a function of adjacency matrix, or node aggre-

gation function. Similarly, the third column means spectral view (Section 5, B-0), which sees GNN
as learning a function of eigenvalues or frequency response functions. The cell at the intersection
of the second row and second column means that this category of GNNs can be treated as a linear
function of adjacency matrix, or, say, its node aggregation function is linear. The other intersection
cells follow a similar schema. Note that categories within the same row have the same format and
function. For instance, in the second row, A-1 and B-1 share the format of a linear function, but
their parameters need not be identical.
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4 SPATIAL-BASED GNNS (A-0)

In the current literature, spatial approaches such as self-loop, normalization, high-order neighbors,
aggregation, and node combination are often explored. We established a new taxonomy for spatial-
based GNNs based on these operations, dividing them into three separate groupings as below.

4.1 Linear Aggregation (A-1)

A lot of research has gone into understanding the aggregation among first-order neighbors (i.e.,
direct neighbors) [10, 12, 48, 59, 61, 162]. The supervisory signal patterns are revealed by altering
the weights for the node and its first-order neighbors. The revised node embeddings, Z(vi ), can be
represented in the following way:

Z(vi ) =

self node︷�������︸︸�������︷
Φ(vi ) h(vi )+

neighbors’ aggregation︷�������������������︸︸�������������������︷∑
uj ∈N(vi )

Ψ(uj ) h(uj ), (5)

where uj denotes a neighbor of node vi , h(·) is their representations, and Φ/Ψ indicate the weight
functions. The first item on the right-hand side denotes the weighted representation of node vi ,
while the second represents the update from its neighbors. By applying random walk normal-
ization (i.e., dividing neighbors by degree of the current node), Equation (5) and its symmetric
normalization can be written as:

Z(vi ) = Φ(vi ) h(vi ) +
∑

uj ∈N(vi )
Ψ(uj )

h(uj )
di
, Z̃(vi ) = Φ(vi ) h(vi ) +

∑
uj ∈N(vi )

Ψ(uj )
h(uj )√
didj

, (6)

where di represents the degree of nodevi . Normalization has better generalization capacity, which
is not only due to some implicit evidence but also because of a theoretical proof on performance
improvement [163]. In a simplified configuration, weights for all the neighbors are the same and
is a scalar valueψ , while the weight for self node ϕ is another scalar value. Therefore, they can be
rewritten in matrix form as:

Z = ϕ X+ψ D−1 A X = (ϕ I+ψ D−1 A)X, Z̃ = ϕ X+ψ D- 1
2 A D- 1

2 X = (ϕ I+ψ D- 1
2 A D- 1

2 )X . (7)

Equation (7) can be generalized as an identical form:

Z = (ϕ I+ψ Ã)X, (8)

where Ã denotes normalized A, which is implemented by random walk or symmetric normaliza-
tion. As shown in Figure 3, the new representation of the current node (in red) is updated as the
sum of the previous representations of itself and its neighbors. (A-1) may adjust the weights of the
neighbors. The following are a few state-of-the-art approaches that were chosen to demonstrate
this schema:

4.1.1 Graph Convolutional Network (GCN). As the one state-of-the-art, GCN [8] adds a self-
loop to nodes, and applies a renormalization trick that changes degree matrix from Dii =

∑
j Ai j

to D̂ii =
∑

j (A+ I)i j . Specifically, GCN can be written as:

Z = D̂
− 1

2 ÂD̂
− 1

2 X = D̂
− 1

2 (I+A)D̂− 1
2 X = (I+ Ã)X, (9)

where Â = A+ I, and Ã is normalized adjacency matrix with self-loop. Therefore, Equation (9) is
equivalent to Equation (8) when setting ϕ = 0 and ψ = 1 with the renormalization trick. Besides,
GCN takes the sum of each node and average of its neighbors as new node embeddings. Note that
the normalization of GCN is different from the others, but the physical meaning is the same.
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4.1.2 GraphSAGE. Computing intermediate representations of each node and its neighbors,
GraphSAGE [10] applies an aggregation among its neighbors. Take mean aggregator as example,
it averages a node with its neighbors, i.e.,

Z(vi ) = MEAN
(
{h(vi )} ∪

{
h(uj ),∀uj ∈ N(vi )

})
, (10)

where h indicates the intermediate representation, and N denotes the neighbor nodes. Equa-
tion (10) can be written in matrix form after implementing MEAN using symmetric normalization:

Z = D- 1
2 (I+A)D- 1

2 X = (I+ Ã)X, (11)

which is equivalent to Equation (8) with ϕ = 1 and ψ = 1. Note that the key difference between
GCN and GraphSAGE is the normalization strategy: The former is symmetric normalization with
renormalization trick, and the latter is random walk normalization.

Fig. 3. A-1: the red node updates itself with neighbors.

4.1.3 Graph Isomorphism

Network (GIN). Inspired by the
Weisfeiler-Lehman (WL) test,
GIN [61] develops conditions to
maximize the power of GNNs,
proposing a simple architecture,
Graph Isomorphism Network. With
strong theoretical support, GIN
generalizes the WL test and updates
node representations as:

Z = (1 + ϵ) · h(v) +
∑
uj

∈ N(vi ) h(uj ) = [(1 + ϵ) I+A]X, (12)

which is equivalent to Equation (8) with ϕ = 1+ ϵ andψ = 1. Note that GIN does not perform any
normalization.

4.1.4 Graph Attention Model (GAT). GAT [12] applies attention mechanism by adjusting neigh-
bors’ weights, instead of using uniform weights in many related works:

Z = (Watt ⊗ A)X, (13)

where Watt ∈ RN×N is a matrix, ⊗ denotes element-wise multiplication, and calculated by a for-
ward neural network Watt (i, j) = f (hi , hj ) with a pair of node representations as input. GAT
can be treated as learning dynamic weight on the neighbors, since their weights are not uniform.
MoNet [13] is similar to GAT, since its update follows:

Z(v) =
∑

u ∈N(v)
w j (u(hi , hj )) hj , (14)

where u is a d-dimensional vector of pseudo-coordinates u(x ,y), and

w j (u) = exp

(
−1

2
(u − μ j )
Σ−1

j (u − μ j )
)
, (15)

where μ j are learnable d × d and d × 1 covariance matrix and mean vector of a Gaussian kernel,
respectively. LetWMonet = w(u(·)) as a weight function of a pair of node representations represen-
tation, then it is also an attention model:

Z = (WMoN et ⊗ A)X . (16)

These works do not consider updating nodes with their original representations, i.e., ϕ = 0 andψ
is replaced with matrix parameterW in Equation (8). However, it is easy to extend them with self
node.
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4.2 Polynomial Aggregation (A-2)

Fig. 4. A-2: This red node updates its representation with its first-

and second-order neighbors to update itself.

Several researches use higher or-
ders of neighbors to integrate deeper
structural information [9, 11, 49, 93,
106], because direct neighbors are
not always enough to describe a
node’s surroundings. Excessive or-
der, however, generally averages all
node representations, resulting in
over-smoothing and a loss of em-
phasis on the immediate neighbor-
hood [104]. Many models are moti-
vated by this to fine-tune the aggregation strategy based on different orders of neighbors. As a
result, adequate constraint and order flexibility are essential for node representation. Challenging
signals, such as Gabor-like filters, have been shown to have a high order of neighbors [108].

Define the shortest distance between node i and j as dG (i, j), and ∂N(i,τ ) to be the set of nodes
j that satisfies dG (i, j) = τ , i.e., τ -order neighbors. Formally, this type of work can be written as:

Z(vi ) = Φ(vi ) h(vi ) +

1st-order neighbor︷��������������������������︸︸��������������������������︷∑
uj ∈N(vi ,τ=1)

Ψ(τ=1) h(uj )+ · · · +

kth order neighbor︷��������������������������︸︸��������������������������︷∑
uj ∈N(vi ,τ=k)

Ψ(τ=k) h(uj )+ · · · , (17)

where Ψ(τ ) indicates a scalar parameter for all τ -order neighbors. Setting the same order neighbors
to share the same weights, Equation (17) can be rewritten in matrix form:

Z =

(
ϕ I+

k∑
j=1

ψj Aj

)
X = Pk (A)X, (18)

where Pk (·) is a polynomial function with order number k. Applying symmetric normalization,
Equation (18) can be rewritten in matrix form as:

Z =

(
ϕ I+

k∑
j=1

ψi (D- 1
2 A D- 1

2 )j

)
X =

(
ϕ I+

k∑
i=1

ψi Ã
i

)
X =

(∑
i=0

ψi Ã
i

)
X = Pk (Ã)X, (19)

where ϕ = ψ0 due to the fact that I = Ã
0
, and A could also be normalized by random walk nor-

malization: Ã = D−1 A. As shown in Figure 4, the new representation of the current node (in red)
is updated as the sum of the previous representations of itself, its first- and second-order neigh-
bors. Note that the weights among those representations are learnable. Several existing works are
analyzed below, showing that they are variants of Equation (18) or (19).

4.2.1 ChebNet. To bridge the gap, spectral convolutional operation is generalized, which re-
quires expensive steps of spectral decomposition and matrix multiplication [94, 164]. Introducing
truncated Chebyshev polynomial for estimating wavelet in graph signal processing, ChebNet [9]
embeds a novel neural network layer for the convolution operator. Specifically, ChebNet can be
written as:

K−1∑
k=0

θkTk (L̃)X = (θ̃0 I+θ̃1L̃ + θ̃2L̃
2
+ · · · )X, (20)
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where Tk (·) denotes the Chebyshev polynomial and θk is the Chebyshev coefficient. θ̃ is the coef-

ficient after expansion and reorganization. Since L̃ = I− Ã, we have:

K−1∑
k=0

θkTk (L̃)X = [θ̃0 I+ θ̃1(I− Ã) + θ̃2(I− Ã)2 + · · · ]X =

(
ϕ I+

k∑
i=1

ψi Ã
i

)
X = Pk (Ã)X, (21)

which is exactly Equation (19). The predefined K is the order number of Chebyshev polynomial,
and a larger K means higher approximation accuracy in estimating the function of eigenvalues.
Equation (21) shows that K also can be explained as the highest order of the neighbors.

4.2.2 DeepWalk. Applying random walk, DeepWalk [48] first draws a group of random paths
from a graph and applies a skip-gram algorithm to extract node features. Assuming the number
of random walks is sufficient, the transition probability on a graph can be represented as:

Ã = D−1 A . (22)

Let the window size of skip-gram be 2t + 1 and the current node is the (t + 1)-th one along each
sampled random walk path, so the farthest neighbor current node can reach is the first one and
the last one. A node and its neighbors are likely to appear in the same random walk path, and the
neighbors follow the transition probability (Equation (22)) to appear in the same path. Therefore,
the updated representation is as follows:

Z =
1

t + 1
(I+ Ã+ Ã

2
+ · · · + Ã

t )X =
1

t + 1
Pk (Ã)X, (23)

where I means that DeepWalk always considers previous representation of the current node as

one element, Ã represents the direct neighbors’ transition probability, and Ã
2

denotes that of the
second-order neighbors. It will have at most t-order neighbors, depending on the predefined length
of the random walk (i.e., 2t + 1).

4.2.3 Diffusion Convolutional Neural Networks (DCNN). DCNN [11] uses a degree-normalized

transition matrix (i.e., renormalized adjacency matrix: Ã = D̃ A) as graph representation and per-
forms node embedding update as:

Z =W � Ã
∗

X = [w1,w2,w3, . . . ,wk ]ᵀ � [Ã, Ã2
, Ã

3
. . . , Ã

k ]ᵀ X, (24)

where Ã
∗

denotes a tensor containing the power series of Ã, and the � operator represents element-
wise multiplication. It can be transformed as:

Z = (w1 Ã+w2 Ã
2
+w3 Ã

3
+ · · ·wk Ã

k )X = Pk (Ã)X . (25)

4.2.4 Scalable Inception Graph Neural Networks (SIGN). By generalizing GCN [8], GAT [12],
and SGC [106], SIGN [114] constructs a set of linear diffusion operators along with non-linearity.
For node-wise classification tasks, SIGN has the form:

Z = σ ([XΘ0,A1XΘ1, . . . ,Ar XΘr ]) ,
Y = ξ (ZΩ), (26)

where [·, ·, . . . , ] is concatenation, and r denotes the power number. SIGN can be rewritten as:

Z = [XΘ0,A1XΘ1, . . . ,Ar XΘr ] Ω = ω0σ (XΘ0) + ω1σ (A1XΘ1), . . . ,ωrσ (Ar XΘr ), (27)
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where σ (Ar XΘr ) could be treated as refined representation of each order of label aggregation

by non-linear function σ and fully connected layer Ω, i.e., �Ar X. Replacing A with normalized
adjacency matrix, it can be rewritten as:

Ẑ = ω0
�̃
A

0
X + ω1

�̃
A

1
X, . . . ,ωr

�̃
A

r
X =

∑
r

ωr
�̃
A

r
X = �P(Ã)X. (28)

4.2.5 Graph Diffusion Convolution (GDC). GDC [110] defines a generalized graph diffusion via
the diffusion matrix:

Z =

∞∑
k=0

θkT
k , (29)

where θk are the weighting coefficients with
∑∞

k=0 θk = 1,θk ∈ [0, 1],T is a generalized undirected

transition matrix that includes the random walk transition matrixTrw = A D−1, and the symmetric

transition matrix Tsym = D- 1
2 A D- 1

2 . In the general case, it can be written as :

Z =

∞∑
k=0

θk Ã
k
= P(Ã). (30)

4.2.6 Node2Vec. Node2Vec [49] defines a second-order random walk to control the balance
between BFS (breadth-first search) and DFS (depth-first search). Consider a random walk
that traversed an edge between node t and v , denoted as (t , v), and now it resides at node v . Then,
the transition probabilities to next stop x from node t is defined as:

P(t → x) =
⎧⎪⎪⎨⎪⎪⎩

1
p if d(t ,x) = 0, return to the source

1 if d(t ,x) = 1, BSF
1
q if d(t ,x) = 2, DFS,

(31)

where d(t ,x) denotes the shortest path between nodes t and x . d(t ,x) = 0 indicates a second-order
random walk returns to its source node, (i.e., t → v → t ), while d(t ,x) = 1 means that this walk
goes to a BFS node, and d(t ,x) = 2 to a DFS node. The parameters p and q control the distribution
of the three cases. Assuming the random walk is sufficiently sampled, Node2Vec can be rewritten
in matrix form:

Z =

������
1

p
·

source︷︸︸︷
I +

BFS︷︸︸︷
Ã +

1

q

DFS︷����︸︸����︷
(Ã2 − Ã)

������
X, (32)

which can be transformed and reorganized as:

Z =

[
1

p
I+

(
1 − 1

q

)
Ã+

1

q
Ã

2
]

X = Pk=2(Ã)X, (33)

where transition probabilities Ã = D-1 A is random walk normalized adjacency matrix.

4.2.7 LINE [165]/SDNE [166]. These two models consider first-order and second-order neigh-
bors as the constraints for learning node embeddings. First-order: The nodes representation is
forced to be similar to its neighbors, which is equivalent to:

Z = Ã X . (34)

Second-order: The pair of nodes is forced to be similar if their neighbors are similar, which is equiv-
alent to make second-order neighbors similar, therefore, we can get the second-order connectivity
by taking the power of the original adjacency:

Z = Ã
2

X . (35)
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Then the final learned node embeddings are formulated as:

Z = Ã X+α Ã
2

X = Pk=2(Ã)X . (36)

Since LINE uses concatenation between the representations constrained by first and second-
order, α = 1; for SDNE, α is pre-defined.

4.2.8 Simple Graph Convolution (SGC). To reduce the computational overhead, SGC [106] re-
moves non-linear function between neighboring graph convolution layers and combines graph
aggregation in one single layer:

Z = Ã
k

X, (37)

where Ã is renormalized adjacency matrix, i.e., Ã = D̃- 1
2 A D̃- 1

2 , where D̃- 1
2 is degree matrix with

self loop. Therefore, it can be easily rewritten as:

Z = (0 · I+ 0 · Ã+ 0 · Ã
2
+ · · · + 1 · Ã

k )X = Pk (Ã)X, (38)

which only has the highest-order term.

4.3 Rational Aggregation (A-3)

Most works merely consider label propagation from the node to its neighbors (i.e., gathering in-
formation from its neighbors) but ignore self-aggregation. Self-aggregation means that labels or
attributes can be propagated back to themselves or restart propagating with a certain probabil-
ity. This reverse behavior can avoid over-smoothing issue [53]. Note that Polynomial Aggregation
(A-2) may manually change the order number to relieve the over-smoothing issue, but Rational
Aggregation (A-3) can do so automatically. Theoretically, rational function approximation is more
effective than polynomial and has been researched in machine learning problems [86, 167, 168].
Several works use a rational function on the adjacency matrix to perform self-aggregation, either
explicitly or implicitly [53, 103, 105, 109, 169–172]. Because generic label propagation is achieved
by multiplying the graph Laplacian, self-aggregation may be achieved by multiplying the inverse
graph Laplacian as follows:

Z = Pm(Ã)Qn(Ã)−1 X =
Pm(Ã)
Qn(Ã)

X, (39)

where P and Q are two different polynomial functions, and the bias of Q is often set to 1 to nor-
malize the coefficients. As shown in Figure 5, the new representations of the current node (in red)
are updated as the previous one with probability P, and as that of neighbors with probability (1-P).
The difference of A-3 beyond A-2 is that A-3 can avoid over-smoothing issue in an automatic man-
ner [104, 173]. Over-smoothing issue happens when GNNs go deep, which would drive node fea-
tures to a stationary point and average all the information from raw node representations. Graph
convolution can be described as an optimization problem [57, 67, 170, 173], e.g., (1) minimizing the
supervised loss and (2) keeping the local neighborhood similar:

Z = arg min
Z

{ ‖ Z−Y ‖2
2︸����︷︷����︸

(1) supervised loss

+ α Tr
(
Z
 L Z

)︸����������︷︷����������︸
(2) neighborhood regularization

}, (40)

where α is the controlling weight between the two constraints. The problem has analytical
solution:

Z = (I+α L̃)−1Y = ((1 + α) I− Ã)Y . (41)
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Fig. 5. A-3: The red nodes (red) update its representation with

self-loop and neighbors. In A-3, the ratio of the original represen-

tation remains stable, whereas A-1 does not control the ratio.

However, because alpha increases
with the number of times graph con-
volution is done, it is prone to over-
smoothing. Over-smoothing is ad-
dressed in a variety of ways [101, 114,
119, 123, 174], including Rational Ag-
gregation (A-3), which does so by re-
taining a portion of the original rep-
resentation no matter how many iter-
ations it does, greatly reducing over-
smoothing.

4.3.1 Auto-regressive. Label propagation (LP) [175–177] is a widely used methodology for
graph-based learning. The objective of LP is two-fold: one is to extract embeddings that match
with the node label, the other is to become similar to neighboring vertices. The label can be treated
as part of node attributes, so we have:

Z = (I+α L̃)−1 X =
I

I+α(I− Ã)
X =

I

(1 + α) I−α Ã
X, (42)

which is the closed-form solution and also equivalent to the form of Equation (39), i.e., P = I and

Q = (1 + α) I−α Ã.

4.3.2 Personalized PageRank (PPNP). Obtaining node’s representation via teleport (restart),
PPNP [51, 53, 178] keeps the original representation (self-aggregation) X with probability α . There-
fore, 1-α is the probability of performing the normal label propagation:

Z = α
(
I−(1 − α) Ã

)−1
X =

α

I−(1 − α) Ã
X, (43)

where Ã = D-1 A is random walk normalized adjacency matrix with self-loop. Equation (43) is
with a rational function whose numerator is a constant.

4.3.3 ARMA Filter. ARMA [109] filter approximates any desired filter response function with
updates as:

Z =
b

I−a Ã
X . (44)

Note that ARMA filter is an unnormalized version of PPNP. When a + b = 1, ARMA becomes PPNP.

4.3.4 ParWalks. A partially absorbing random walk is a second-order Markov chain with par-
tial absorption at each state. Reference [92] shows that with proper absorption, the absorption
probabilities can well capture the global graph structure. Note that the concept “absorption” in Ref-
erence [92] is similar to “teleport” or “restart” in PPNP [53]. ParWalks defines the aggregation as:

pi j =

⎧⎪⎪⎨⎪⎪⎩
αi

αi+di
, i = j

wi j

αi+di
, i � j,

(45)

where α is defined as a variable to control the level of absorption,wi j and di indicate non-negative
matrix of pairwise affinities between vertex i and j, and degree of vertex i , respectively.

Z =
α I

α + L̃
X =

α

α I+ I− Ã
X, (46)

where α is redefined as a regularizer in the original paper [92]. When α = 1, all nodes follow
the same absorbing behavior. Otherwise, each node has an independent absorbing policy. Also,
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ParWalks model is equivalent to ARMA filter (a = b = 1
2 ) when α = 1 and with normalized

Laplacian:

Z =
I

I+ L̃
X =

I

I+(I− Ã)
X =

1
2 I

I− 1
2 Ã

X . (47)

The author also discussed the over-smoothing issue: When Λ = I and as α → 0, a ParWalk
would converge to the constant distribution 1/n, regardless of the starting vertex.

4.3.5 RationalNet. To leverage higher order of neighbors, RationalNet [103] proposes a general
rational function with a predefined order number, and it is optimized by Remez algorithm. The
analytic form is exactly Equation (39). The major difference beyond PPNP or ARMA filter is that
RationalNet generalized them, and the order can be any number.

Remark: The optimization towards rational aggregation (A-3) is exactly the same as the residual

learning that was first and widely used in image recognition [179]. As shown in the work PPAP [48],
the author proposed an iterative algorithm called APPAP, which is

Z(k+1) = (1 − α)ÃZ(k) +α Z0 =

F (x ) where x=Z(0)︷�������������������︸︸�������������������︷
k∑
i

α(1 − α)iÃi Z(0) +

identity x︷︸︸︷
α Z0 , (48)

where Zk means the intermediate representations at kth layer. This format is exactly the same
as residual learning, as illustrated in Figure 6: sum of multiple graph convolutions serves as F (x),
and each time identify input will be added. The difference is that Equation (48) has normalized the
weights ((1−α)+α = 1). Because the matrix inversion in Rational Aggregation is computationally
costly, iterative methods are commonly used to efficiently determine the matrix inversion [53,
105, 109]. We only demonstrate one iteration of Auto-Regression, PPNP, ARMA, and ParWalks.

Fig. 6. Left: Residual Learning x ′ = F (x) + x ; Right:

Rational Aggregation: x ′ = F (x) + x

Multiple iterations will result in a more sophis-
ticated rational function. The main distinction
between rational and polynomial aggregation is
whether or not the inverse graph Laplacian poly-
nomial exists. In each cycle of rational aggrega-
tion, a fixed ratio for the original representation
is always reserved, whereas polynomial aggrega-
tion does not. However, calculating the inverse
of the graph Laplacian is expensive, making iter-
ative fashion a key object in online learning al-
gorithms [180]. Utilizing the concept of conduc-
tance, where f represents a heat distribution across the vertices, L(f ) signifies the flux induced
by f throughout the graph. Consequently, in accordance with the representer theorem [181, 182],
f (Vi ) = L−1(L(f )) can represent an operation that reconstructs the heat distribution f from this
flux. Thus, when L sends a heat distribution f over each node to flux through each vertex, L−1 sends
some of the fluxes over the graph back to the original heat distribution (i.e., keeps part of fluxes
itself). Going back to the graph learning application, we first translate our updated “heat distri-
bution” to flux through all of those nodes by calculating P(L(f )). Mth degree of P(·) means that
each vertex can update Mth neighbors at most. Then, using another updated flux in the reverse
direction, Q(L(f ))−1 will adjust or reduce flux within N th neighbors. Polynomial aggregation with
more layers or a higher degree tends to involve more neighbors, increasing capacity. When utiliz-
ing too many layers or degrees, over-smoothing is almost always unavoidable (e.g., all nodes are
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Table 5. Summary of Representative GNNs

(A-1) linear function of A (B-1) linear function of Λ

GCN I+ Ã 2 − Λ

GraphSAGE D̂
−1
+ Ã 2 − Λ

GIN (1 + ϵ) I+A 2 + ϵ − Λ

(A-2) polynomial function of A (B-2) polynomial function of Λ

ChebNet ϕI +
∑k

i=1ψi Ã
i θ̃0 · 1 + θ̃1Λ + θ̃2Λ2 + · · ·

DeepWalk 1
t+1

(
I + Ã + Ã2 + · · · + Ãt

)
1

t+1

[
· · · +

(
(−1)t−1 +

(
1
t

)
(−1)t−1

)
+ · · ·

]
DCNN ψ1Ã +ψ2Ã2 +ψ3Ã3 + · · · θ1Λ + θ2Λ2 + θ3Λ3 + · · ·
GDC ψ1Ã +ψ2Ã2 +ψ3Ã3 + · · · θ1Λ + θ2Λ2 + θ3Λ3 + · · ·
Node2Vec 1

p
I +

(
1 − 1

q

)
Ã + 1

q
Ã2

(
1 + 1

p

)
−

(
1 + 1

q

)
Λ + 1

q
Λ2

LINE/SDNE ψ1Ã +ψ2Ã2 θ1Λ + θ2Λ2

SGC 0 · I + 0 · Ã + 0 · Ã2 + · · · + 1 · ÃK

(
K
0

)
+

(
K
1

)
Λ1 +

(
K
2

)
Λ2 + · · · + Λn

(A-3) rational function of A (B-3) rational function of Λ

Auto-Regress I

(1+α ) I−α Ã

1
1+α (1−Λ)

PPNP α

I−(1−α ) Ã

α
α I+(1−α )Λ

ARMA b

(I−a Ã)
b

(1−a+aΛ)

ParWalk α

α I+ I− Ã

β

β+Λ

similar). However, unless all of the layers or degrees are tried, determining the appropriate number
of layers or degrees is difficult. The over-smoothing problem is largely overcome by the “sending
back” (i.e., teleport) behavior of rational aggregation, in which the out-degree flux is restrained
even if excesses of graph convolutional layers or approximation degrees are added [53].

Three groups of spatial methods introduced above (i.e., A-1, A-2, A-3) are strongly connected
under generalization and specialization relationship, as shown in Figure 1. Generalization: By
adding more neighbors of higher rank, Linear Aggregation (A-1) can be expanded to Polynomial
Aggregation (A-2). By adding reverse aggregation, Polynomial Aggregation (A-2) can be advanced
to Rational Aggregation (A-3); Specialization: Linear Aggregation (A-1) is a special case of Poly-
nomial Aggregation where the order is set to 1. (A-2). Rational Aggregation (A-3) degenerates into
Polynomial Aggregation when reverse aggregation is removed (A-2).

5 SPECTRAL-BASED GNNS (B-0)

The use of eigen-decomposition and analysis of the weight-adjusting function (i.e., frequency fil-
ter function or frequency response function) on eigenvalues of graph matrices are both parts of
graph spectral theory. In spectral-based GNNs (B-0), weights are applied to frequency components
(eigenvectors) to recover the target signal using the filter’s output. Accordingly, we propose a new
taxonomy for graph neural networks, dividing spectral-based GNNs into three subgroups, depend-
ing on the types of response filtering functions. In addition, the same set of representative models
discussed in Section 4 will be analyzed under spectral view. To facilitate comprehension of the anal-
ysis, their spatial and spectral analytical forms are listed in Table 5. The detailed transformation
of equations in category B-0 is deferred to the Appendix.
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5.1 Linear Approximation (B-1)

Fig. 7. Illustration of B-1: A linear function д of the eigenvalues.

Changing the weights of fre-
quency components in the spec-
trum domain has been the sub-
ject of several research. The fil-
ter function’s objective is to suit
the intended output by adjust-
ing eigenvalues. Many of them
have been shown to be low-
pass filters [170], which implies
that only low-frequency compo-
nents are highlighted, i.e., the
first few eigenvalues are increased, while the rest are decreased. There are several studies that
may be understood as changing frequency component weights during aggregation. A linear g

function is used in particular:

Z =

(
l∑

i=0

θiλi ui uᵀ
i

)
X = U gθ (Λ)Uᵀ X, (49)

where ui is the ith eigenvector, and g is frequency filter function or frequency response function

controlled by parametersθ , with selected l lowest frequency components. The goal of g is to change
the weights of eigenvalues to fit the target output. As shown in Figure 7, B-1 updates the weights
of eigenvectors (u1, u2, u2 . . .) as gθ (λ), which is a linear function. Several state-of-the-art methods
introduced in Section 4 are analyzed to provide a better understanding of this scheme.

Remark: The aforementioned methods apply linear low-pass filtering, and the only difference
among them is that the bias is different (i.e., 2 for GCN, 2 for GraphSAGE, and 2+ϵ for GIN). There-
fore, we study the influence of bias on the filter function and define a metric:

w(λi ) =
|bias − λi |∑
j |bias − λj |

, (50)

which indicates the overall proportion change of each eigenvalue after applying the response func-
tion. A large adjusted value means that the filtering will enlarge the influence of the corresponding
eigenvector. The range of the eigenvalue is in [0, 2) for the normalized Laplacian matrix [183]. If
let bias be larger than or equal to 2, then we have:

w(λi ) =
bias − λi

N · bias −
∑

j λj
=

slope︷���������������︸︸���������������︷
−1

N · bias −
∑

j λj
λi +

intercept︷���������������︸︸���������������︷
bias

N · bias −
∑

j λj
, (51)

when bias ≥ 2, the slope is negative, which means that the filter function is low-pass filtering:
As the bias increases, the slope becomes larger, and larger weights are assigned to low-frequency
spectral components. Therefore, the bias of all studies in this subsection is larger or equal to 2.

5.2 Order of Approximation (B-2)

Considering higher order of frequency, filter function can approximate any smooth filter function,
because it is equivalent to applying the polynomial approximation. Therefore, introducing higher-
order of frequencies boosts the representation power of filter function in simulating spectral signal.
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Formally, this type of work can be written as:

Z =

(
l∑

i=0

k∑
j=0

θ jλ
j
i ui uᵀ

i

)
X = U Pθ (Λ)Uᵀ X, (52)

where g(·) = Pθ (·) is a polynomial function. As shown in Figure 8, B-2 updates the weights of
eigenvectors (u1, u2, . . .) as Pθ (λ), which is a polynomial function.

Remark: Polynomial approximation, in theory, gets more accurate as the order grows [81–85].
It is worth noting that Linear Approximation (B-1) can be thought of as a polynomial approxi-
mation of order 1. We look into polynomial approximation on the siдn(x) function, comparing
and contrasting all of the cases in Polynomial Approximation (B-2). Because it is difficult for any
straight line to suit a jump signal, as shown in Figure 9(a), linear functions cannot accurately ap-
proximate siдn(x). The situation improves dramatically when polynomial approximation is used,
as demonstrated in Figure 9(b).

Fig. 8. Illustration of B-2: A polynomial function P of the eigenvalues.

The variance will be greatly
decreased if the order of
the polynomial function is
increased (Figure 9(c)). To
recapitulate, higher-order
polynomial approximation is
more accurate than lower-order
polynomial approximation,
but it comes at the expense of
increased computational com-
plexity. Node2Vec/LINE/SDNE
with an order of 2 have lesser approximation power than those with more than 2 layers/orders,
because the latter’s order is predefined and can be as large as possible (e.g., ChebNet [9],
DeepWalk [48], Diffusion CNN [11], Simple Graph Convolution [106]).

Fig. 9. Approximation for siдn(x) (in black): (a) linear approximation (b) polynomial approximation with low

orders, (c) polynomial approximation with high orders.

5.3 Approximation Type (B-3)

Despite its widespread use and experimental success, polynomial approximation only works when
applied to a smooth spectral signal. Real-world signals, however, cannot be guaranteed to be
smooth. As a result, the rational approximation is employed to improve the accuracy of non-
smooth signal modeling. An example of a rational kernel-based technique is as follows:

Z =

(
l∑
i

∑k
j=0 θ jλ

j
i∑n

m=1 ϕmλm
i + 1

ui uᵀ
i

)
X = U

Pθ (Λ)
Qϕ (Λ)

Uᵀ X, (53)

where g(·) = Pθ (·)
Qϕ (·)

is a rational function, and P,Q are independent polynomial functions. Spectral

methods process graph as a signal in the frequency domain. As shown in Figure 10, B-3 updates
the weights of eigenvectors (u1, u2, . . .) as gθ (λ), which is a rational function.
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Fig. 10. Illustration of B-3: A rational function of the eigenvalues.

Fig. 11. Rational (rat) and polynomial (poly) approximation for several functions with discontinuity (func).

From left to right:
√
|x − 0.5|; |x−0.5|; x

10 |x−0.5 |+1 ;max(0.5, sin(x+x2))− x
20 . Figures are from Reference [103].

Remark: When the function to approximate contains discontinuities, rational function has over-
whelming advantage over the polynomials or linear functions. Figure 11 illustrates the difference
between rational and polynomial approximation. Theoretically, rational approximation only needs
exponentially less orders than that of polynomial functions [103].

6 THEORETICAL ANALYSIS

In terms of volume, spatial-based approaches outnumber spectrum-based methods in the litera-
ture [15–17, 66, 184], owing to the following reasons: (1) Spectral-based methods have a much
higher computing overhead than spatial-based methods, and spectral methods are less intuitive
than spatial methods. (2) Spatial-based approaches are convenient for model construction and scal-
ability. However, from a spatial and spectral perspective, there is a tradeoff; neither has a major
advantage over the other. This section outlines numerous viewpoints that demonstrate the merits
and limitations of such views.

6.1 Uncertainty Principle: Global vs. Local Perspectives

Spectral-based approaches decompose data into orthogonal frequency components and examine
graph filtering from the spectral domain with a global perspective. Each frequency indicates a
global basis: Low-frequency components emphasize local weights with little variation, whereas
high-frequency components are linked to significant variance in neighborhood. In other words,
the Laplacian spectrum reflects topological properties: The first few eigenvalues are related with
substantial community structure, while the last few eigenvalues indicate the graph’s bipartiteness
[185, 186]. A typical low-pass filtering function for eigenvalues is shown on the left of Figure 12,
which raises small eigenvalues while decreasing adjusted values for large eigenvalues. Only
low-frequency components are maintained in this scenario, and neighbors have little variance.

Filtering patterns from the local neighborhood are characterized by spatial-based approaches.
Most GNNs assume homophily among neighbors, so signals traversing across the neighborhood
are smooth or with little variation, which is exactly the same concept as low-pass filtering. The
relationship between low-pass filtering in the spectral domain (left) and its effects in the spatial
domain (middle and right) is depicted in Figure 12 [186]. It appears at first glance that global and
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Fig. 12. Connection between the spatial and spectral perspective.

local viewpoints differ greatly, but on closer inspection, they depict the same signal in very dif-
ferent ways: Filtering in the spectral domain that does low-pass/high-pass filtering is analogous
to learning which neighbors are similar/dissimilar. While it is true that the two types of observa-
tions yield similar results, this does not entail that they are identical. It is impossible to know an
unknown quantity’s value with absolute confidence in quantum mechanics because of the Heisen-
berg’s uncertainty principle [187]. Specifically,

Δ2
t Δ2

ω ≥ 1

4
, (54)

where Δt and Δω denote time spread and frequency spread, respectively. Signal concentration can
also be impacted by the concentration of time and frequency. A graph representing the tradeoff
between a signal’s localization on a graph and in its spectral domain is created, which is influ-
enced by the uncertainty principle of quantum mechanics [188]. A lower bound on the product of
the two spreads is obtained by quantifying the spreads in the vertex and the spectral domain of
a graph signal x . This result suggests that applying spatial-based GNNs results in accuracy loss
in the spectral domain, while using spectral-based GNNs results in accuracy loss in the spatial
domain. In sum: (1) Global and local perspectives are strong connected: Global observation
is the process of generalizing details in local settings, while localized understanding provides de-
tails of the global picture. (2) Global and local perspectives outperform each other in their

own domains: Clear local context tends to muddy the big picture, but a focus on global context
diminishes the smaller picture. GNNs are able to expand the range of options with the addition of
other preexisting works, which bridge the gap between global and local views or between spectral
and spatial information, to improve the expressive potential of GNNs [58, 189–193]. According
to the information above, we can state that no model can be flawless from a global or local per-
spective; it is only possible to have a proper tradeoff between. As shown in Table 6, four aspects
are compared: Methodology: Spatial approaches describe local regions while working bottom-up
and identify global patterns using a graph frequency approach. However, spectral methods work
top-down, beginning with a graph and ending with a global observation. Computation: To use
spatial approaches, one has to carry out a number of steps on their local region before convergence
is achieved. With spectral approaches, you can get a critical component with a single-step compu-
tation. Space Complexity: The high space complexity of spectral approaches is associated with
the massive memory storage required to load the full graph. If memory is sufficient, then the full
graph can be covered by using spatial methods. However, for a smaller graph, you can choose to
cover it using samplings such as sampling of regions or paths. Stability: To create accurate, con-
sistent results, spatial analysis methods need to apply iterative algorithms, therefore the outcomes
will vary. Eigen-decomposition is a unique feature of spectral approaches if no same eigenvalues.

Guidance of Choosing Spatial and Spectral Methods. The user can choose between spatial
or spectral GNNs, depending on their previously described properties. Distributed and Online
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Table 6. Comparison between the Spatial (A-0) and Spectral (B-0) Methods

Methodology Computation Space Complexity Stability

Spectral Global One-step High Exact

Spatial Local Iterative Low Approximate

Table 7. Comparison on Time Complexity and Expressive Power

Linear (A-1, B-1) Polynomial (A-2, B-2) Rational (A-3, B-3)

Time O(N 2F ) O(NK+1F ) O(NK+1F + N 3)
Expressivity O(1) O(1/K) O(exp−

√
K )

Learning: Spatial method is easily converted to distributed learning [194, 195], whereas spectral
is difficult to transfer. Even if it is possible to approximate spectrum technique using a neural
network model [196] and then use distributed learning on a neural network [197], new nodes and
edges must be retrained from scratch. Alternatively, the spatial technique can effectively manage
online learning with streaming data [198]. Global View: The spectral method may provide a global
perspective that the spatial method lacks. In situations where the group form is not spherical,
the spatial method may disregard this influence and continue to follow the circular shape as a
prospective group [199, 200]. This can be remedied by employing clustering before to the spatial
technique [201]. This also renders spatial methods more locally interpretable and obscures their
global perspective.

6.2 Comparison between Linear, Polynomial, and Rational Methods

Linear methods (A-1 and B-1) have a time complexity of O(N 2F ) due to the matrix multiplication
of A X. Accordingly, polynomial and rational method are analyzed in Table 7 where K is the order
number. To compare their expressive power, the convergence rate on challenging jump signal is
employed as a benchmark [103] (a smooth signal cannot distinguish them). As shown in Table 7,
rational methods (A-3 and B-3) converge exponentially faster than linear methods (A-1/B-1), and
polynomial methods (A-2/B-2) converge linearly faster than linear methods (A-1/B-1). Therefore,
there is a tradeoff between the expressive power and computational efficiency. Linear methods (A-
1/B-1) have the best efficiency but only capture the linear relationship. Rational methods (A-3/B-3)
consume the most considerable overhead but could tackle more challenging signals.

Experiments are undertaken to highlight our theoretical analysis of spatial and spectral ap-
proaches by comparing the differences between the three underlying groups. We chose one typical
technique for linear filter [8], polynomial filter [9], and rational filter [109]. Note that we only dis-
tinguish them in the function of A or Λ, keeping all the other configurations the same. The dataset
includes representative homophily and heterophily datasets [129, 140, 148, 202–204]. The evalua-
tion code is released at https://github.com/XGraph-Team/Spectral-Graph-Survey.

As shown in Figure 13 (Left), there is no significant difference in classification accuracy in the
homophily dataset between the three models, with the exception of ChebNet, which performs
marginally better in PubMed and encounters an out-of-memory error in physics dataset. Cheb-
Net exhibits inferior accuracy on the Computers dataset, whereas GCN is significantly superior.
Figure 13 (right) illustrates that ARMA consistently outperforms the others when performing the
same task on the heterophily dataset, while ChebNet consistently outperforms GCN. This demon-
strates the benefits of the advanced filter function, as theoretically analyzed in Section 3.2. In terms
of runtime, as shown in Figure 14, ChebNet is often beyond log 1, while GCN never goes beyond
log 1. The Rational method involves a higher volume of matrix operations compared to Cheb-Net,
occasionally exceeding the “log 1” threshold. However, its iterative optimization process enables
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Fig. 13. Performance comparison. Left: homophily dataset; Right: heterophily dataset.

Fig. 14. Runtime comparison. Left: homophily dataset; Right: heterophily dataset. (Y-axis is log-based).

it to execute slightly faster than ChebNet. Despite this, the Rational method consistently exhibits
slower performance than GCN. In terms of runtime, as shown in Figure 14, ChebNet frequently
exceeds log 1, whereas GCN never does. Rational method involves more matrix operations than
ChebNet, so it sometimes exceeds log 1. However, due to optimization in implementation (iterative
algorithm), the rational method is slightly faster than ChebNet but consistently slower than GCN.
This verifies our analysis in Section 6.2.

7 EXEMPLIFY THE PROPOSED FRAMEWORK

Over-smoothing and large-scale difficulties are two of the most difficult issues for existing GNNs,
and numerous recent publications have proposed various approaches to address them. We will
show in this section that all of the enhancements are still covered by our framework.

7.1 Sampling Point of View

The sampling mechanism is used as a spatial method for managing large graphs. Subgraph sam-
pling and random walk are popular approaches.

7.1.1 Subgraph Sampling. For an early work, GraphSAGE [10] applies uniform node sampling
for each batch, which is equivalent to subgraph sampling. The likelihood of transfer, therefore, fol-

lows random normalization (i.e., Ã = D−1 A), which makes it part of Linear Aggregation (A-1). In
the majority of follow-up works, the same methodology is used [118]: (1) build a local graph con-
volution for the input graph, (2) sample nodes in each layer, and (3) optimize parameters in graph
convolution. Steps (2) and (3) proceed iteratively to update the weights via stochastic gradient
descent [65, 99, 118, 205–207].

To avoid the recursive neighborhood expansion, FastGCN [65] treats graph convolutions as in-
tegral transformation of embedding functions and proposes Monte Carlo approach to estimate the
integral. FastGCN employs importance sampling independently for each layer and reduces vari-
ance, cutting down the number of sampling nodes to constant size for all layers, exponentially
shrinking the computational cost. FastGCN is proved to be importance sampling, which is better
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than uniform sampling, but still suffers from unstable learning when no neighbors are selected for
one node and activation is zero. To avoid taxing calculation of activation, Stochastic GCN [205]
further uses the historical activation in the previous layer to avoid redundant re-evaluation. With
adaptive sampling, nodes on subsequent layers are sampled to speed up GraphSAGE and Fast-
GCN [99]. Learnable graph convolutional layer (LGCL) [206] selects a fixed number of neigh-
boring nodes for each feature based on value ranking and transforms graph into 1-D data that is
compatible with normal convolution networks. Similarly, A scalable GCN samples a fixed number
of nodes, with different sampling policy called frontier sampling (FS). FS maintains a constant
size frontier set consisting of several vertices, which is randomly popped out with a degree-based
probability distribution [208]. Cluster-GCN [209] samples a community of nodes determined by a
graph clustering algorithm and computes the graph convolution within each community.

7.1.2 Random Walk. To derive node-level representations with word2vec [210–212], various
random walk algorithms are proposed [48, 49, 93, 118, 166, 213]. Paths are viewed as complete
sentences, and nodes are viewed as individual words. Transition probability among nodes approx-
imates to a random walk normalized adjacency matrix if enough random walks or uniform sam-
pling has been performed on the paths.

In the preceding section’s analysis, it was noted that DeepWalk [48] generates multiple random
paths from a graph. This results in a transfer probability for the random walk characterized by

Ã = D−1 A. Let the window size of skip-gram be 2t + 1 and the index of current node is t + 1.

Therefore, the updated representation is Z = 1
t+1 P(Ã)X (Equation (23)). One popular word2vec

configuration, i.e., skip-gram with Negative Sampling (SGNS), assumes a corpus of words w
and their context c. Following the work by Levy and Goldberg [214], SGNS is implicitly factorizing:

log

(
|(w, c)| · |D|

|w | · |c |

)
− logb = AB
,

where A and B denote matrix of current node and its neighbors, respectively. |(w, c)|, |w |, |c |,
and D denote the number of times word-context pair (w, c), word w , context c , and corpus size,
respectively; b is the number of negative samples. Accordingly, Reference [69] derived an exact
format as:

log
(
P(Ã)

)
− log(b) = log

(
|E |
T

(
T∑

r=1

(D−1 A)r
)

D−1

)
− log(b),

where |E | andT represent edge number and step size, respectively. Consequently, the matrix desig-
nated for decomposition remains a polynomial of A. Node2Vec [49] defines a second-order random
walk to control the balance between Breadth First Search (BFS) and Depth First Search (DFS).
Assuming the random walk is sufficiently sampled, Node2Vec’s second order can be rewritten to
decompose matrix [69]:

log
(
P(Ã)

)
− log(b) = log

����
1

2T

∑T
r=1

(∑
u Xw,u Ã

r

c,w,u +
∑

u Xc,u Ã
r

w,c,u

)
(∑

u Xw,u

) (∑
u Xc,u

) ���� − logb,

where Node2Vec is demonstrated to be polynomial methods. LINE [93] and SDNE [166] learn the
node representations within the first- and second-order neighbors, which can be treated as uncon-
strained version of Node2Vec:

log
(
P(Ã)

)
− log(b) = log

(
|E | Ã

)
− logb .

GraphSAINT [118] employs multiple sampling polices but the best one is random walk. Pin-

SAGE [178] improves the efficiency of GraphSAGE [10] by taking the top several neighbors with
highest normalized visit counts.
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Remark: Sampling methods, as a spatial methodology, seek both variance reduction and
efficiency. Subgraph and random walk are equal with enough samples, since they traverse the
entire network with the transition probability associated with graph connection. A-3 and B-3 do
not, however, include any sample methods, mainly due to their higher computational complexity.
Space complexity may be improved when sampling methods are used, but there is no guarantee
that the time complexity will be much reduced because the enormous number of steps may be
needed before convergence.

7.2 Over-smoothing Point of View

When a node’s neighbors are highly dissimilar and when a node’s embedding is already simi-
lar to its neighbors, neighborhood aggregation is not advantageous. Most GNNs perform poorly
when stacking many layers, which is called the over-smoothing issue. Many related works aim-
ing to solve the over-smoothing issue [101, 107, 119, 123, 125, 173, 193, 215–222] can be reduced
to one category of our proposed framework. H2GCN [193] proposed a method that combines
direct neighbors with higher-order, which is equivalent to Polynomial Aggregation (A-2). Deep
GCN [107, 215, 218] developed a model with a residue module, dense connection, and dilated
aggregation, which learns the weights of all different orders of neighbors. This is equivalent to
Polynomial Aggregation (A-2). GPR [52] generalizes PageRank and found the equivalence of GPR
and Polynomial Approximation (B-2). JKNet [101] also follows the same residue methodology as
Deep GCN. DAGNN [125] stacks multiple layers, which uses different orders of propagation with
the learnable weights, which makes it belong to Polynomial Aggregation (A-2). PairNorm [173]
presents a two-step method that includes centering and re-scaling, which mitigates the over-
smoothing from graph convolution. Therefore, PairNorm is equivalent to Rational Propagation
(A-3), since re-scaling is similar to do propagation and restart at the same time. Reference [216]
designed an adaptive method to dynamically adjust the weights between low-frequency and high-
frequency components, resulting in two peaks in the spectral domain. This could also be modeled
by Rational Aggregation (A-3) with its accuracy in jump signals. DropEdge [119, 219] randomly
drops a certain number of edges to avoid over-smoothing, which can be categorized as Rational
Aggregation (A-3), since dropping edge prevents the propagation and thereby provides a probabil-
ity of keeping the original values of nodes. GCNII [123] applies initial residual, which combines
the smoothed representation with an initial residual connection to the first layer and identity map-

ping, which adds an identity matrix to the weight matrix. Initial residual is a trick that PPAP [53]
uses, which enables itself to retard the over-smoothing by keeping partial previous representa-
tions. Identity mapping further remains one original representation to slow down the spreading of
over-smoothing propagation.

Remark: A-1 lacks state-of-the-art methods, implying it is vulnerable to over-smoothing. Apply-
ing A-1 many times with learnable weights for different ordering equates to A-2. So, A-2 might
balance low (raw representations) and high orders (smoothed representations). However, too many
A-1 operations may result in over-smoothing. So, for A-2, precise order configuration is required.
No matter the number of orders or layers, A-3 reserves a proportion of the final representation as
raw representation, making itself robust to over-smoothing.

7.3 Inverse Problem Point of View

Let us consider a link represented by the variable e , which establishes a connection between two
nodes, denoted as i and j. Graph neural networks (GNNs) can be formally expressed as a func-
tion f : (vi , e) → vj . The function denoted as f , which is equivalent to Equation (19), incorporates
the application of graph convolution and neural networks:

f : (A,Xi ) → X j , (55)
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which implies that the features of node i , denoted as Xi , undergo a smoothing process to become
part of the features of node j, represented as X j .

The reconstruction of graphs [223] poses an inverse problem to that of Equation (55). The issue
at hand is frequently illustrated through a task within the realm of knowledge graphs (KGs),
which is commonly referred to as link completion. The objective can be articulated in the following
manner:

f : (Xi ,X j ) → A, or in single-instance format f : (h, t) → r , (56)

where relation between node i and j is denoted by A, while the head and tail entity vertices con-
nected by relation r are represented by h/t . The semantic similarity-based scoring function is a
prevalent approach in KGs for assessing the veracity of facts by means of semantic matching, as
reported by Reference [224]. The conventional method involves utilizing a broad multiplicative
structure, denoted as h
 A ≈ t
, in which the function A is dependent on the relationship r . This
formulation exhibits a high degree of consistency with the graph convolution operator. It is worth
noting that empirical evidence indicates that multiplicative models (h
 A ≈ t
) outperform addi-
tive models (h + r ≈ t ) in the context of KGs [225, 226].

Instead of allowing the usage of arbitrary linear maps represented by random matrices A to de-
pict relations, a particular collection of matrices has been investigated for linear maps that demon-
strate favorable characteristics. A theoretical analysis posits that normal matrices possess desirable
theoretical properties that are commonly sought in relational modeling [227]. The diagonalization
of these entities can be achieved through unitary means, thereby enabling their analysis through
the spectral theorem as described in Reference [228]. The Graph Laplacian matrix is a normal ma-
trix that is utilized to characterize the feature-wise relationship or covariance of entities, as per
its definition. This matrix can elucidate the physical significance of the learned A. The aim of link
completion is to establish the feature-wise relationship (A) between training pairs of (h, t) by uti-
lizing fundamental statistical measures such as covariance. Following this, an objective function is
optimized to precisely match the training data, i.e., min Δ(h
P(A), t), where Δ denotes a difference
metric function between h
P(A) and t . The degree of inconsistency can be mathematically repre-
sented as < h
P(A), t >= h
P(A)t , which bears a resemblance to the notion of Dirichlet energy
of a signal across a graph framework. Assuming similarity between h and t , and their smoothness
over a function of feature-wise graph Laplacian P(A), it is expected that the value of h
P(A)t will
be minimized. Otherwise, the magnitude of the value will be significant. As demonstrated in Ref-
erence [226], the diagonal matrix A can be utilized to detect features that display no covariance,
thereby signifying the independence of all features during the learning phase. Rewrite the above-
mentioned link completion task in matrix format (suppose multiple pairs of (h, t)), and we have
feature-level graph convolution:

N×d︷︸︸︷
H

d×d︷︸︸︷
P(A) →

N×d︷︸︸︷
T , (57)

where N is used to denote the number of instances, whereas d is used to represent the number
of features. Thus, the aforementioned equation, denoted as Equation (57), converts the given
dimension d of H into d dimensions of T . Given that matrix A is normal, it is possible to consider
matrix P as a filter function applied to its eigenvalues, as previously discussed. Existing studies
on knowledge graphs have observed that P is modeled as a linear function (e.g., References
[229, 230]) with the form of (A-1/B-1), or as a polynomial function (e.g., Reference [231]) with the
form of (A-2/B-2). Furthermore, GNN functions as a nascent encoder for entity graph and employs
prevalent GNN models in KGs [230, 232–234]. Performing graph convolution at the entity-level
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can be accomplished through a standard GNN scheme, which is straightforward to implement:

N×N︷︸︸︷
P(A)

N×d︷︸︸︷
H →

N×d︷︸︸︷
T , (58)

where the convolution of H is performed by P(A) at the entity level, whereby each node is
averaged by its neighbors. It is worth noting that Equations (57) and (58) operate at distinct levels,
with the latter typically utilized for node classification as opposed to link prediction.

8 LIMIT, OPEN CHALLENGES, AND CONCLUSION

Theoretical Understanding - Most recent research has examined spatial and spectral ap-
proaches individually, and even from a theoretical standpoint. [61, 145, 235]. However, it is unclear
how these two distinct interpretations can be connected. This survey demonstrates that the the-
oretical advantage of rational function over the others may be proved, It is still unclear how the
learning approach can be optimally structured to execute this advantage. Using the partial differen-
tial equation [236], in which the diffusion equation and wave equation are analogous to polynomial
and rational filters, provides an alternative viewpoint to integrate spatial and spectral views.

Directed Graph - Most contemporary work, especially spectral methods, only handle undirected
graphs, due to symmetric graph matrix is readily available with off-the-shelf techniques. Many re-
lated works integrate or sum up asymmetric adjacency matrices from bi-direction into symmetric
matrix, which avoids decomposing asymmetric matrix directly. It is possible to decompose asym-
metric matrix by some techniques such as the Jordan norm [237]; asymmetric matrices can be used
to express properties such as graph and filter complexity. Directed graphs and their decomposition
can also be achievable in a certain type of geometric space called a graph manifold. As shown in
Section 2.4 of Reference [238], spectral filters can be defined on directed graphs represented by
non-symmetric adjacency matrices with Hermitian transpose.

Dynamic Graph - The existing work model with GNNs and RNNs is built using graph convo-
lutional networks and recurrent neural networks, which lack transparency. Due to the limited
expressive power of RNNs, the task is constrained to prediction, and it is unable to perform long-
term sequence processing well. Graph dynamics has a large number of valuable tasks, such as
inferring the structure of a graph, constructing a joint dynamic of structure and attributes, and
exploring the connection between structure and mass flow. It is possible to use graph spectra to
detect the patterns in dynamics of graph [239–241]. Due to the challenge of the long-dependency
of a path, the spectral method can also provide a potential way to model trajectory prediction, as
the spectra of trajectory implicitly reveal its relationship with the whole graph [242].

Higher-order Interaction and Combinatorial Optimization - Most current work falls into the
first-order relationship at the node-level, but higher-order interaction is either ignored or implicitly
included. Existing explainable learning also focuses on the neighbors’ identification [243]. Also,
the existing work pays the most attention to neighbors, but remote connection or higher-order
relationship with the other nodes receives little attention. Hypergraphs provide a possibility to
model the combinatorial effect [244–246] Hodge Laplacian [247, 248] and simplicial complex [249–
251] provide more theoretical tools for modeling this combinatorial effect.

Multilayer Network - In real-world biological and engineering systems, units are often inter-
connected across multiple networks. Failure in one network can trigger cascading failures across
systems. Likewise, misinformation spread via social media in cyber-physical systems can lead to
group-level risks like epidemic outbreaks. Such interconnected networks can be represented by
multilayer networks that produce new degrees of freedom via coupling interactions. Such “new
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physics” is prevalent in multilayer systems, but they are still poorly understood [252–255]. Graph
neural network research in this crucial area is scarce [256].

APPENDICES

Details of equation transformation for Section 5 are listed below.

A B-1

A.1 Graph Convolutional Network (GCN)

Rewriting GCN [8] in spectral domain, we have:

Z = Ã X = D- 1
2 (A+ I)D- 1

2 X = D- 1
2 (D− L+ I)D- 1

2 X = (I−D- 1
2 L D- 1

2 + I)X = U(2 − Λ)Uᵀ X, (59)

where Ã = D− 1
2 (A+ I)D− 1

2 is renormalization of Ã. Therefore, the frequency response function is
g(Λ) = 1 − Λ, which is a low-pass filter, i.e., smaller eigenvalues that correspond to low frequency
components are assigned with a larger value.

A.2 GraphSAGE

Considering the MEAN aggregation as example, we can rewrite GraphSAGE [10] in matrix form:

Z = D- 1
2 (I+A)D- 1

2 X = (I+ Ã)X = (2 I− L̃)X = U(2 − Λ)Uᵀ X . (60)

Hence, the frequency response function is g(Λ) = 2−Λ, which is a low-pass filtering. Note that
GraphSAGE’s normalization is different from GCN, which utilizes the renormalization trick.

(I + D−1A)X (61) U
(
1 + ΛP

)
Uᵀ X, (62)

where P = D−1A

A.3 Graph Isomorphism Network (GIN)

A multi-layer neural network has the capability to conform to the normalization scale (i.e., nor-
malization) [8], so GIN [61] can be rewritten as:

Z = D- 1
2 [(1 + ϵ) I+A]D- 1

2 X = D- 1
2 [(2 + ϵ) I− L̃]D- 1

2 X = U(2 + ϵ − Λ)Uᵀ X . (63)

GIN can be seen as a generalization of GCN or GraphSAGE without normalized adjacency matrix
A. The frequency response function is g(Λ) = 2 + ϵ − Λ, which is low-pass.

B B-2

B.1 ChebNet

As analyzed in Equation (21), ChebNet [64] can be written as:

K−1∑
k=0

θkTk (L̃)X = (θ̃0 I+θ̃1L̃ + θ̃2L̃
2
+ · · · )X, (64)

where Tk (·) is the Chebyshev polynomial and θk is the Chebyshev coefficient. θ̃ is the coefficient
after expansion and reorganization. Therefore, we can rewrite it as:

K−1∑
k=0

θkTk (L̃)X = U(θ̃0 · 1 + θ̃1 Λ+θ̃2Λ2 + · · · )Uᵀ X, (65)

where spectral response function is g(Λ) = θ̃0 · 1 + θ̃1 Λ+θ̃2Λ2 + · · · = P(Λ).
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B.2 DeepWalk

Starting from Equation (23), DeepWalk [48] can be rewritten as:

Z =
1

t + 1
(I+ Ã+ Ã

2
+ · · · + Ã

t )X

=
1

t + 1
(I+(I− L̃) + (I− L̃)2 + · · · + (I− L̃)t )X

=
1

t + 1

(
2 I+(−1 − 2 − 3 − · · · ) L̃+(1 + 3 + 6 + · · · ) L̃

2
+ · · ·

(
(−1)t−1 +

(
1

t

)
(−1)t−1

)
L̃

t−1
+(−1)t L̃

t
)

X

= (θ0 I+θ1 L̃+θ2 L̃
2
+ · · · + θt L̃

t )X

= U(θ0 + θ1 Λ+θ2 Λ2 + · · · + θt Λt )Uᵀ X

= U Pk=r (Λ)Uᵀ X,

where g(Λ) = θ0+θ1 Λ+θ2 Λ2 + · · ·+θt Λt , and all parameters θi are determined by the predefined
step size t.

B.3 Scalable Inception Graph Neural Networks (SIGN)

Substituting Ã = I− L̃ in Equation (28), it can be rewritten as:

Ẑ =
∑

r

ωr
!(I− L̃)r X = U !Pk=r (Λ)X Uᵀ . (66)

B.4 Graph Diffusion Convolution (GDC)

Substituting Ã = I− L̃, general case in Equation (30) can be written as:

Z =

∞∑
k=0

θk (I− L̃) = U

∞∑
k=0

θk (1 − Λ)k Uᵀ = U P(Λ)X Uᵀ . (67)

B.5 Diffusion Convolutional Neural Networks (DCNN)

As analyzed in Equation (24), DCNN [11] can be transformed with Ã = I− L̃ as:

Z = P(I− L̃)X = U P(Λ)X Uᵀ, (68)

which is equivalent to ChebNet, and parameters θi are learnable.

B.6 Node2Vec

Node2Vec [49] can be rewritten in matrix form as Equation (32). Then it can be transformed and

reorganized after substituting Ã = I− L̃:

Z =

[(
1 +

1

p

)
I−

(
1 +

1

q

)
L̃+

1

q
L̃

2
]

X = U

[(
1 +

1

p

)
−

(
1 +

1

q

)
Λ+

1

q
Λ2

]
Uᵀ X . (69)

Therefore, Node2Vec’s frequency response function is:

g(Λ) =
(
1 +

1

p

)
−

(
1 +

1

q

)
Λ+

1

q
Λ2, (70)

which integrates a second-order function of Λ with predefined parameters, i.e., p and q.

B.7 LINE/SDNE

As described in Equation (36), LINE [165] and SDNE [166] can be rewritten as:

Z = Ã X+α Ã
2

X = (I− L̃)X+α(I− L̃)2 X = U[(I−Λ) + α(1 − Λ)2]X Uᵀ = U Pk=2(Λ)Uᵀ X, (71)

where response function g(Λ) = Λ+α Λ2 is a polynomial function with order 2.
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B.8 Simple Graph Convolution (SGC)

As analyzed in Equation (38), SGC can be transformed as:

Z = (I− L̃)k X =

[(
k
0

)
I+

(
k
1

)
L̃

1
+

(
k
2

)
L̃

2
+ · · · + L̃

k
]

X

= U

[(
k
0

)
+

(
k
1

)
Λ1 +

(
k
2

)
Λ2 + · · · + Λk

]
Uᵀ X,

where spectral response function is a polynomial function of order k:

g(Λ) =
(
k
0

)
+

(
k
1

)
Λ1 +

(
k
2

)
Λ2 + · · · + Λk .

B.9 Improved GCN (IGCN)

By stacking multiple layers, IGCN [170] is proposed as:

Z = L̃
k

X = U Λk Uᵀ X, (72)

where the spectral response function is a polynomial function with order k.

C B-3

C.1 Auto-regressive Filter

Label propagation (LP) [175–177] is a prevailing methodology for graph-based learning. The
objective of LP is two-fold: one is to extract embeddings that match with the label, the other is
to be similar with neighboring vertices. Label can be treated as part of node attributes, so we can
have:

Z = (I+α L̃)−1 X = U
1

1 + α(1 − Λ) Uᵀ X . (73)

C.2 PPNP

Personalized PageRank (PPNP) [53] can obtain node’s representation via teleport (restart) prob-
ability α , which indicates the ratio of keeping the original representation:

Z =
α

I−(1 − α)(I− L̃)
X = U

α

α + (1 − α)Λ
Uᵀ X, (74)

where Ã = D-1 A is random-walk normalized adjacency matrix with self-loop. Equation (74) is
with a rational function whose numerator is a constant.

C.3 ARMA Filter

Substituting Ã = I− L̃, Equation (44) can be rewritten as:

Z =
b

I−a(I− L̃)
X = U

b

(1 − a) + a Λ
Uᵀ X . (75)

Note that ARMA filter is an unnormalized version of PPNP. When a + b = 1, ARMA filter becomes
PPNP. Therefore, ARMA filter is more generalized than PPNP due to its unnormalization.

C.4 ParWalks

Upon decomposing the graph Laplacian, ParWalks can be expressed as follows:

Z = U
β

β + Λ
X Uᵀ, (76)
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when setting β = α
1−α

, it becomes PPNP:

Z = U

α
1−α

α
1−α + Λ

X Uᵀ = U
α

α + (1 − α)Λ
X Uᵀ . (77)

C.5 RationalNet

Substituting Ã = I− L̃, Equation (39) can be transformed to Equation (53). The frequency response
function is a generalized rational function.
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