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Abstract— Recently a line of research has delved into the
use of graph neural networks (GNNs) for decentralized control
in swarm robotics. However, it has been observed that relying
solely on the states of immediate neighbors is insufficient to
imitate a centralized control policy. To address this limitation,
prior studies proposed incorporating L-hop delayed states into
the computation. While this approach shows promise, it can
lead to a lack of consensus among distant flock members and
the formation of small clusters, consequently failing cohesive
flocking behaviors. Instead, our approach leverages spatiotem-
poral GNN, named STGNN that encompasses both spatial and
temporal expansions. The spatial expansion collects delayed
states from distant neighbors, while the temporal expansion
incorporates previous states from immediate neighbors. The
broader information gathered from both expansions results in
more effective and accurate predictions. We develop an expert
algorithm for controlling a swarm of robots and employ imita-
tion learning to train our decentralized STGNN model based
on the expert algorithm. We simulate the proposed STGNN
approach in various settings, demonstrating its decentralized
capacity to emulate the global expert algorithm. Further, we
implemented our approach to achieve cohesive flocking, leader
following, and obstacle avoidance by a group of Crazyflie
drones. The performance of STGNN underscores its potential
as an effective and reliable approach for achieving cohesive
flocking, leader following, and obstacle avoidance tasks.

I. INTRODUCTION

Flocking is a collective behavior observed in groups of
animals or autonomous agents, such as birds, fish, or artificial
robots, where individuals move together in a coordinated
manner. In a flock, each robot follows simple rules based
on local information to achieve a common group objec-
tive [1]. Multi-robot systems based on flocking models
exhibit self-organization and goal-directed behaviors, making
them suitable for various applications, including automated
parallel delivery, sensor network design, and search and
rescue operations [2]. Flocking is typically modeled as a
consensus or alignment problem, aiming to ensure that all
robots in the group eventually agree on their states [3].
Classical methods such as those proposed by Tanner [4] and
Olfati-Saber [3], define rules and constraints governing the
position, speed, and acceleration of the robots. However,
these methods heavily rely on parameter tuning and are
limited to predefined scenarios. In contrast, learning-based
methods spontaneously explore complex patterns and adapt
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their parameters through training, providing more flexibility
and adaptability compared to classical approaches.
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Fig. 1. Comparison of the state information used by DGNN (top) and
TGNN (bottom): DGNN propagates t − 1 states of robots 2 and 3 along
with robot 1’s current state at t to robot 0. TGNN propagates t− 1 and t
states of robot 1 to robot 0. STGNN merges both state information, resulting
in superior predictive power compared to either method alone.

There are primarily two research directions in learning-
based methods. One approach focuses on imitation learning,
as demonstrated by Tolstaya et al. [5], Kortvelesy et al. [6],
Zhou et al. [7], and Lee et al. [8]. The other approach
involves multi-robot deep reinforcement learning (MADRL),
as explored in the studies of Yan et al. [9] and Xiao et al. [10].
MADRL is particularly useful when labels are unavailable,
but it presents its own set of challenges, including the de-
mand for an extensive volume of training data and limitations
in generalizing to new and unencountered scenarios [11]. In
this work, we choose to utilize imitation learning due to the
availability of an expert policy that has proven to be effective
for our task [4], [5], [12].

Recent research in this direction adopts a graph-based
approach to represent robots and their interactions leveraging
Graph Neural Networks (GNNs) [13], [14] for modeling and
analyzing flock dynamics. This approach shows promise in
addressing flocking tasks by harnessing the power of graph-
based representations and neural networks. Specifically, stud-
ies such as Tolstaya et al. [5], Kortvelesy et al. [6], Zhou et
al. [7], and Lee et al. [8] utilize a technique called “delayed
state” to incorporate the information from the l-step-before
states of a robot’s l-hop neighbors, where l = 1, 2, · · · , L [5].
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Henceforth, we identify this type of model as the “delayed
graph neural network” (DGNN). DGNN enables the learning
of spatially extended representations in the local network.
However, it overlooks the influence of a robot’s historical
states and the historical states of its neighbors, thereby
neglecting the temporal sequence of flock movement. Differ-
ently, the spatial and temporal expansion of STGNN enables
it to gather information from both spatial and temporal
dimensions. We illustrate the distinct information collected
by DGNN and temporal GNN (TGNN), as well as their
combined information by STGNN in Figure 1. With this
insight, we make the following primary contributions:

• Design an STGNN-based imitation learning frame-
work for decentralized flocking control. STGNN en-
ables effective information fusion by integrating delayed
states from distant neighbors and previous states from
immediate neighbors. To the best of our knowledge, we
are the first to design an STGNN-based learning frame-
work for multi-robot flocking with leader following and
obstacle avoidance.

• Develop a centralized expert algorithm for flocking,
with leader following and obstacle avoidance. Finding
an expert algorithm is the key to success in imitation
learning. We develop an expert algorithm that provides
effective control over a large swarm of robots based on
Tanner ’s [4] and Olfati-Saber’s work [3]. To the best
of our knowledge, we are the first to offer a complete
global expert algorithm, capable of flocking with both
leader following and obstacle avoidance.

• Conduct extensive evaluations of STGNN. We com-
prehensively evaluate STGNN by comparing it to
DGNN and TGNN and testing STGNN with varying
history horizons. The results demonstrate STGNN’s
effectiveness and superior performance in completing
complex flocking tasks. Additionally, we implement
STGNN into a group of Crazyflie drones to achieve
flocking with obstacle avoidance.

II. PROBLEM FORMULATION

Consider a collection of N robots that are identical and
possess the same capabilities such as maximum acceleration
Umax, maximum velocity Vmax, and communication range Rc.
Each robot i can be uniquely identified by its position pi and
its velocity vi. The task for our learning model is to compute
the control input ui, i.e., acceleration for each robot, based
on the current state by itself and its neighbors, represented
by the position and velocity (p,v).

In this paper, we aim to solve three problems as a whole:
robot flocking, leader following, and flocking with obstacle
avoidance. Each robot is required to avoid collisions with
other robots, follow and maintain proximity to a virtual
leader, and navigate around obstacles. Specifically, flocking
is to maintain a consistent distance from other robots while
synchronizing their movements. The leader following asks
the robot swarm to track one or more leader(s) during
flocking. We opt for a single virtual leader for the entire
swarm, as the primary objective of flocking is to achieve

consensus, and introducing multiple leaders could potentially
violate this objective. It is important to note that the virtual
leader differs from other robots in that it does not need to
avoid collisions. Instead, it represents a predefined trajectory
known to all robots. Finally, the obstacle avoidance requests
the robot swarm to achieve the two tasks above while
avoiding crashing into obstacles.

III. METHODOLOGY

In this research, we employ imitation learning to train
STGNN. Specifically, we train an expert model whose out-
puts serve as labels for training our STGNN model. The
expert assumes that the strategy provider possesses real-time
information of all robots (i.e., centralized communication),
which is impracticable in reality. In contrast, STGNN consid-
ered real-world scenarios, where each robot makes decisions
by itself with local communication and delayed information
(i.e., decentralized communication). Due to the limited infor-
mation access in decentralized scenarios, STGNN may not
generate strategies as effectively as the expert. Nevertheless,
after being trained with historical and neighboring data and
the output of the expert model, STGNN demonstrates the
capability to generate strategies that approach expert-level
optimization, despite the limited input data.

A. Problem Statement

Denote the robot network at timestamp t as
G(t)(V(t),E(t),X(t)), where V(t) is the set of robots,
E(t) is the set of direct communications between nearby
robots, and X(t) is the set of states for the robots. For an
arbitrary node Vi, its neighborhood N (t)

i at timestamp t
is composed of other robots Vj within its communication
range Rc, i.e., {Vj ∈ N (t)

i |∀Vj , r
(t)
i,j < Rc}. r

(t)
i,j is the

distance between Vi and Vj at t. The problem can then be
summarized as below:

fexpert(X
(t)
i ,V(t),E(t)) → u(t+1), (1)

fSTGNN(X
(t−L)
i ...X

(t)
i ,N (t−L)

i ...N (t)
i ,

E
i,j;Vj∈N (t−L)

i ...N (t)
i

, θ) → u′(t+1),
(2)

θ∗ = argmin
θ

(
∑
Vi∈V

(u(t+1) − u′(t+1))2), (3)

where L is the number of historical states used in STGNN,
θ is the set of trainable parameters of STGNN, and θ∗ is the
optimized parameter set for STGNN.

B. Expert algorithm

Previous researchers recognized the challenge of com-
munication delays in the early stages of robot flocking
studies, leading them to focus on decentralized scenarios.
Consequently, only a limited number of prior algorithms have
been designed to address centralized scenarios in the context
of robot flocking problems. Therefore, to formulate an expert
model for targeting our tasks and considering centralized
scenarios, we propose a novel centralized model to generate
labels for STGNN training.

2597

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 22,2025 at 20:54:47 UTC from IEEE Xplore.  Restrictions apply. 



As introduced in Section II, an expert algorithm should
cover three crucial aspects—flocking, the leader following,
and obstacle avoidance. In this case, the algorithm should
be constrained by both the distances between robots and
the distances between robots and obstacles. Similar to [4],
the regularized update of speed is computed jointly from
the collision avoidance potential and the velocity agreement.
The collision avoidance potential ensures that the distances
between robots exceed a predefined threshold, while the
velocity agreement ensures that robots maintain consistent
behavior in relation to the other robots.

Specifically, consider there exists a control ui of robot
i as the input of the expert algorithm. The algorithm then
generates an update ui following specific rules. ui can be
defined by the combination of these components as in Equa-
tion 4. In Equation 4, cα, cβ , and cγ are positive weighting
parameters. The α- term specifies collision avoidance and
velocity alignment among the robots, while the β- term
specifies collision avoidance and velocity alignment between
robots to obstacles. The γ term is peer-to-peer guidance from
the virtual leader to each robot i.

ui = cαu
α
i + cβu

β
i + cγu

γ
i . (4)

The collision avoidance potential U increases significantly
as the distance ri,j between two robots decreases. This
increment is governed by a reciprocal function that domi-
nates when ri,j approaches zero (Eq. 5). Consequently, Ui,j

captures the fact that beyond a certain distance threshold
(e.g., communication range Rc), no direct interaction exists
between robots in terms of collision avoidance. The velocity
agreement is the velocity difference between robot i and
all the other robots (the first term in Eq. 6). The resulting
control input uα

i (as defined in Eq. 6) is a centralized solution
that takes into account the velocity mismatch among all
robots and the local collision potential. Note that the collision
avoidance implemented by Equation 5 does not guarantee
a minimal distance between robots. Our results show that
the minimal distance decreases when the number of robots
increases.

Ui,j =
1

r2i,j
+ log||ri,j ||2, ||ri,j || ≤ Rc. (5)

uα
i = −

N∑
j=1

(vi − vj)−
N∑
j=1

(∇ri,jUi,j). (6)

To incorporate obstacle avoidance in the model, we follow
Olfati-Saber [3]’s work by introducing an imaginary robot,
i.e., β-robot, which is defined by the projection of a robot i
on the k-th obstacle Ok within its communication distance
Rc, to assist with the obstacle avoidance task. In practice, this
can be achieved by a robot, equipped with sensors, measuring
the relative position and velocity between the closest point
on an obstacle and itself [3]. The control input uβ

i follows
the flocking control (Eq. 6) while focusing on the potential
between robot i and its projection on obstacles. Let po

k

denote the position of the k-th obstacle. Then the position
and velocity of the β-robot, created by projecting the i-th

robot on the k-th obstacle, can be calculated by Equation 7
and Equation 8, respectively.

pi,k = µ ∗ pi + (1− µ)po
k, µ =

rk
||pi − po

k||
. (7)

vi,k = µPvi, P = I − aka
T
k , ak =

(pi − po
k)

||pi − po
k||

. (8)

Define the state of the virtual leader by its position pr and
velocity vr. The leader following control ur can be defined in
Equation 9, where c1, c2 are positive weighting parameters.

uγ
i = −c1(pi − pr)− c2(vi − vr), c1 > 0, c2 =

√
c1. (9)

C. STGNN-based imitation learning

In this section, we present an overview of the STGNN-
based learning model. We begin by describing the strategy
used to construct the model input. Then we discuss the
architecture of the STGNN model, which involves two levels
of state expansion.

a) Local observation: We develop a decentralized so-
lution that only requires local observations of each robot.
Inspired by Tolstaya [5], we define the local state of i-th
robot in Equation 10, which consists of the aggregation from
neighboring robots (α term), local observation of obstacles
(β term), and local observation of the virtual leader (γ term).
The local observation of obstacles is defined as k ∈ N with
ri,k < Rc. ri,k is the distance between robot i and β-robot,
the projection of robot i on the k-th obstacle.

Xα,β,γ
i = [[

∑
j∈N

Xα
i,j ]; [

∑
k∈N

Xβ
i,k]; [X

γ
i ]]. (10)

Instead of directly using the position pi and velocity vi of
robot i as input for our model, we adopt the relative state
to be consistent with the expert algorithm. We define the
relative state for robot i to robot j as Xi,j (Eq. 11). Then
we aggregate the local peer-to-peer relative states into a local
state Xi, which includes Xα

i (Eq. 12) and Xβ
i (Eq. 13).

Xi,j = [vi − vj ,
pi − pj

ri,j
,
pi − pj

r2i,j
]. (11)

Xα
i =

1

N
∑
j∈N

Xα
i,j , j ∈ N if ri,j < Rc. (12)

Xβ
i =

∑
k∈N

Xβ
i,j , k ∈ N if ri,o < Rc. (13)

Notably, our model only requires local state information
defined by Equation 11, which makes our approach decen-
tralized.

b) STGNN: To mimic the control input u generated
by the expert algorithm that uses the global information,
we implement two levels of expansions based on local
observation as illustrated in Figure 2. The first level is spatial
expansion, aiming at extracting information from additional
robots, while the second level is temporal expansion, which
centers on local state evolution. For each expansion, we
extract information on L timestamps. For the timestamp t,
consider an arbitrary node Vi with state X

(t)
i and 1-hop
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neighborhood N (t)
i . A node Vj is Vi’s l-hop neighbor if it

is a 1-hop neighbor of at least one Vi’s l − 1-hop neighbor.
Note that even though we use “l-hop neighbor” to account
for state delays resulting from spatial distances, the state of
one hop further is the same as one timestamp earlier in our
scenario. In other words, the state of a l-hop neighbor j,
X

(l)
j , is equivalent to X

(t−l+1)
j .

In spatial expansion, we merge each node’s current state
X

(t)
i to its l-hop delayed neighbors, where l = 1, 2, ..., L.

Specifically, we first aggregate the delayed states for each
hop, as indicated in Equation 14. Then, X(t)

i is updated with
its neighborhood information as in Equation 15.

X ′(l)
i s =

∑
j∈N (l)

i

X
(l)
j , l = 1, 2, ..., L. (14)

H
(t)
i s = [X

(t)
i ||l=1,...,LX

′(l)
i ]. (15)

The same method is applied to other timestamps l =
t − L, ..., t − 1, but with t − l + 1-hop neighbors. Then,
Hi s = {H(l)

i s , l = t−L, ..., t} are fed into a transformer [15]
for temporal-wise information fusion. The transformer takes
three copies of Hi s and considers them as query, key, and
value separately. The query and key are used to compute
relations between different timestamps and the value is used
to generate temporal-wise fused embeddings:

H ′
i s = σ(

WqHi s(WkHi s)
T

√
d

)WvHi s (16)

where σ is a softmax function and d is the number of features
of His.

The temporal expansion considers the temporal evolution
pattern for local spatial state fusion (i.e., considers only
1-hop neighborhood). Specifically, the spatial data fusion
method is shown in Equations 17 and 18, and the temporal
feature fusion is achieved by a transformer as described in
Equation 16. Consider the output of the temporal expansion
module as H ′

i t, the concatenation of H ′
i s and H ′

i t is
fed to a feed-forward network to generate the final flocking
controls for the robots.

X ′
i t =

∑
j∈N (1)

i

X
(l=1)
j . (17)

Hi t = [X
(t)
i ||X ′(l=1)

i ]. (18)

IV. SIMULATION AND EXPERIMENT

In this section, we discuss the settings of the STGNN-
based learning model, evaluation metrics, simulation results,
and a real robot experiment. A video of our simulation and
experiment is available online. 1

1 https://youtu.be/Hb7Ofe3IvaA
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Fig. 2. STGNN spatial and temporal expansion module with L = 3.
Spatial expansion and temporal expansion operate in parallel. Both spatial
and temporal expanded states are concatenated and passed to the next layer
of the neural network to predict the control input.

A. Settings for STGNN-based learning model

a) Local observation: The local observation (Eq. 10)
denoted as X ∈ R18, is passed through a two-layer multi-
layer perceptron (MLP) with a hidden size of 128 to extract
the local feature embedding H ∈ R128 prior to undergoing
spatial and temporal expansion. Each X from the historical
data follows the same process.

b) STGNN spatial expansion: A single SAGEConv
layer with a hidden size of 128 is used to aggregate local
neighbor information. Then the l-hop neighbor information is
obtained using Equations 14 and 15. The result is a sequence
of L delayed states. A transformer consisting of two encoder
layers, each with a feedforward size of 16 and a head size
of 4, is used to extract the spatial expansion results.

c) STGNN temporal expansion: For each local features
from the history L, a single SAGEConv layer with a hidden
size of 128 is used to aggregate neighbor information (Eq.
15). A transformer consisting of two encoder layers, each
with a feedforward size of 16 and a head size of 4, is used
to extract the temporal expansion results.

d) Action generation: The last output from both spatial
and temporal expansions is concatenated to get the fusion
embedding H ∈ R256. Subsequently, this output undergoes
a two-layer MLP to generate the predicted control signal
û. The ground truth of the training data set is derived by
the expert algorithm (Sec. III-B). L2 loss with the Adam
optimizer is used to train the model.

We trained the STGNN model with N = 20, which
includes three spherical obstacles and one virtual leader. The
size of the swarm is chosen to ensure that spatial expansion
could encompass a significant number of robots. The virtual
leader goes through the obstacles but the robots must avoid
collision with obstacles while following the virtual leader.
The virtual leader moves continuously at a constant speed of
1m/s along the x-axis. The communication range is Rc = 1
m, and the sampling period is Ts = 0.01 s. The initial robot
positions are randomized, following a uniform distribution
within the range of [0, 0.5Rc

√
N ]. The initial velocity is 0
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m/s. The maximum allowed acceleration is Umax = 10 m/s2

and the maximum velocity allowed is Vmax = 10 m/s on
each axis. The safety distance is 0.15 m. If ri,j falls below
0.15 m, the experiment is terminated early. To ensure a valid
initial configuration, ri,j must be greater than 0.15 m. The
training episode has 1200 steps to allow all robots to pass
obstacles and form flocking behavior on the other side. One
trajectory of the expert algorithm used in training is shown
in Figure 3.

We implement our model using PyTorch and the OpenAI
gym framework in Python3.9. The server we use has Intel(R)
Xeon(R) W-2133 CPU @ 3.60GHz, NVIDIA QUADRO
P5000 GPU, and 32 GB RAM. We comprehensively evaluate
our proposed method, STGNN, with L set to 1, 2, 3. The
compared algorithms include DGNN [5], [6], TGNN, and
Olfati-Saber’s decentralized flocking algorithm denoted as
Saber [3].

B. Metrics

1) Completion Rate (C%): the rate of successfully com-
pleted episodes. The episode can be terminated early
if any robot hits obstacles or ri,j falls below 0.15 m.
The higher value is better.

2) Mean Absolute Error (MAE): the mean absolute error
between the expert control u and model prediction û.
The lower value is better.

3) Velocity alignment (V ): the velocity variance of the
swarm at the end of the episode. All robots should
be velocity aligned at the end of the episode thus the
lower value is better.

4) Distance to the leader (τ , Eq. 19): the mean distance
from any robot to the leader is an auxiliary measure.
A large value indicates robots deviate from the leader
and move in different directions, resulting in the failure
of swarm formation. However, a small value indicates
a higher risk of collision within the swarm. Close to
the expert algorithm is better.

τ =
1

nT

n∑
i=1

T∑
t=1

τ ti . (19)

C. Experiment results

We train one model for each setting described in Sec-
tion IV-A. The training consists of 200 epochs with an
initial learning rate of 1e-3. We implement early stopping
and exponential learning rate decay to prevent overfitting.

a) Evaluation on swarm size of 20: In the first set
of experiments, the trained models are tested in the same
environment as the training environment, as described in
Section IV-A. The only difference lies in the initial positions
of the robots, which vary due to random initialization. During
the testing phase, the swarm’s next state is determined by
the model’s prediction û. If an episode is terminated early
due to collision, the failed episode’s metric (MAE, V , τ ) is
not included in the aggregation for reporting. Each model
runs over 20 trials and the mean and standard deviation are
reported in Table I. For STGNN L1, L2, and L3 models, the

results demonstrate consistent improvement as spatial and
temporal expansion increases. By increasing L from 1 to
3 in both spatial and temporal expansion, the completion
rate increases from 0.85 to 1.0, the MAE decreases from
3.03 to 1.71, and the velocity variance also decreases from
0.14 to 0.01. The distance to the leader does not consistently
decrease, but as explained in Section IV-B, a smaller value
indicates a higher risk of collision, so both values of 1.03 and
1.06 are acceptable. When considering DGNN L3 and TGNN
L3, both models exhibit improved performance compared to
STGNN L1, which uses only local neighbor information.
Furthermore, STGNN L3, which is the combination of
DGNN L3 and TGNN L3, leads to further performance en-
hancement. Olfati-Saber’s decentralized solution [3] achieves
a similar success rate as STGNN L1, as both models utilize
only local information. However, the Saber algorithm differs
from our expert algorithm, and its formations tend to have
larger minimal distances, resulting in a larger τ , which is not
directly comparable to the expert algorithm.

In Figure 3, a test trajectory of the expert algorithm is
plotted on the top and the test trajectory of STGNN L3
is plotted at the bottom. The plots illustrate that STGNN
L3 possesses the capability to mimic the expert algorithm’s
control input u and generate similar flocking trajectories for
the robots.

Model C% MAE V τ
Expert 1.00 – 0.00 ± 0.00 0.97 ± 0.01
Saber 0.85 – 0.02 ± 0.02 2.27 ± 0.14

DGNN L3 1.00 2.83 ± 0.29 0.03 ± 0.11 1.08 ± 0.12
TGNN L3 1.00 2.11 ± 0.14 0.02 ± 0.03 1.02 ± 0.05

STGNN L1 0.85 3.03 ± 0.74 0.14 ± 0.34 1.32 ± 0.31
STGNN L2 0.90 2.25 ± 0.19 0.02 ± 0.03 1.03 ± 0.05
STGNN L3 1.00 1.71 ± 0.17 0.01 ± 0.01 1.06 ± 0.06

TABLE I
TEST RESULTS OF N = 20. L DENOTES THE HISTORY LENGTH. STGNN

L3 ACHIEVES THE BEST PERFORMANCE.

b) Evaluation on varying swarm sizes: In the second
set of experiments, we examine the model’s transferability
across various swarm sizes, specifically for N = 30, 40, and
50. We directly employ previously trained models to larger
swarm sizes and conduct 20 trials for each scenario. The
mean and standard deviation for each model and swarm size
are reported in Table II. To facilitate swarm formation after
obstacle avoidance, we increase the maximum episode steps
from 1200 to 1500, 1800, and 2100 for swarm sizes N =
30, 40, and 50, respectively.

STGNN L3 successfully achieves flocking with leader
following and obstacle avoidance through all testing cases
and attains the lowest MAE compared to STGNN models
with shorter history. Velocity alignment is achieved in both
STGNN L2 and STGNN L3. The large τ in STGNN L1
indicates the failure in swarm formation. Our proposed expert
algorithm consistently performs well in terms of success rate,
velocity alignment, and distance to target, demonstrating its
suitability as the ground truth. Furthermore, the performance
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Expert

STGNN L3

Fig. 3. Simulation result of N = 20. Top: the expert model drives 20
robots. Bottom: STGNN with L3 drives 20 robots. The two models are
tested in the same environment with the same initialization.

of STGNN L3 underscores its ability to provide accurate
estimations of the global control inputs using only local
information.

N 30
Model C% MAE V τ
Expert 1.00 – 0.00 ± 0.00 1.17 ± 0.03

DGNN L3 1.00 3.59 ± 0.22 0.11 ± 0.20 1.22 ± 0.16
TGNN L3 0.95 2.89 ± 0.21 0.01 ± 0.00 1.11 ± 0.03

STGNN L1 0.90 4.14 ± 0.32 0.06 ± 0.10 2.87 ± 1.99
STGNN L2 0.90 3.19 ± 0.17 0.01 ± 0.00 1.11 ± 0.05
STGNN L3 1.00 2.69 ± 0.15 0.01 ± 0.01 1.12 ± 0.05

N 40
Model C% MAE V τ
Expert 1.00 – 0.00 ± 0.00 1.29 ± 0.03

DGNN L3 0.95 4.54 ± 0.20 0.62 ± 0.38 1.73 ± 0.28
TGNN L3 1.00 3.99 ± 0.15 0.01 ± 0.00 1.19 ± 0.07

STGNN L1 0.95 5.63 ± 0.21 0.14 ± 0.23 8.87 ± 3.36
STGNN L2 0.90 4.43 ± 0.11 0.01 ± 0.01 1.16 ± 0.04
STGNN L3 1.00 3.88 ± 0.14 0.01 ± 0.01 1.16 ± 0.02

N 50
Model C% MAE V τ
Expert 1.00 – 0.00 ± 0.00 1.39 ± 0.01

DGNN L3 1.00 5.43 ± 0.30 0.89 ± 0.77 2.16 ± 0.59
TGNN L3 1.00 4.90 ± 0.13 0.00 ± 0.00 1.23 ± 0.09

STGNN L1 0.95 6.90 ± 0.20 0.89 ± 1.70 21.61 ± 6.34
STGNN L2 0.95 5.44 ± 0.10 0.01 ± 0.01 1.26 ± 0.09
STGNN L3 1.00 5.00 ± 0.10 0.00 ± 0.00 1.23 ± 0.11

TABLE II
TEST RESULTS FOR N = 30, N = 40, N = 50. STGNN L3 COMPLETES

SIMULATIONS IN ALL SWARM SIZES.

D. Real robot experiment

We further demonstrate the effectiveness of STGNN by
implementing it to achieve flocking behaviors of a group of
Bitcraze Crazyflie 2.1 drones [16]. The drones are controlled
using the Crazyswarm platform [17], which is based on The
Robot Operating System (ROS) [18] and allows Crazyflie

Fig. 4. The plots from top to bottom show an experiment of six drones
starting from random locations, avoiding an obstacle, and achieving flocking.
More experiments can be found in the video attachment.

drones to fly as a swarm in a tight and synchronized
formation. The positions of the drones are obtained using
the LightHouse positioning system. The system utilizes the
SteamVR base stations together with the positioning deck on
the drone to estimate the position of the drones. As shown
in Figure 4, the six drones start with random locations (top),
navigate through and avoid obstacles (middle), and form a
flock on the other side of the obstacle (right). Please refer to
the online video for a more detailed real robot experiment
with 4, 5, and 6 drones (see footnote 1).

V. CONCLUSION AND FUTURE WORK

We demonstrate the effectiveness of STGNN as a decen-
tralized solution for flocking with the leader following and
obstacle avoidance tasks. STGNN overcomes the limitations
of relying solely on local information by integrating pre-
diction capabilities into the model, enabling it to capture
and respond to global swarm dynamics. Our STGNN-based
learning model consistently outperforms the existing decen-
tralized algorithm introduced by Olfati-Saber [3]. Moreover,
the performance of the STGNN model consistently improves
as L increases as shown in Table I. Furthermore, STGNN
outperforms spatial-only models, demonstrating its ability to
utilize both spatial and temporal information for enhanced
flocking control. The design is flexible in terms of L-
hop spatial and temporal expansion, which enables seam-
less adaptation to various swarm sizes and history lengths.
In the future, we plan to investigate the capabilities of
STGNN [19]–[21] in a broader range of multi-agent tasks,
including target tracking [7], [22], path planning [23], [24]
and coverage and exploration [25], [26].
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