DRIVE - Disseminating Resource Information in VEhicular and other mobile peer-to-peer networks

Ouri Wolfson

Bo Xu

University of Illinois at Chicago

wolfson@cs.uic.edu

Enable dramatic improvement of the travel experience – based on information

Real-time information to traveler has not changed much in 40 years

Sensor-networked Transportation

Vehicle sensors:speed, fuel, cameras, airbag, anti-lock brakesInfrastructure sensors:speed detectors on road, parking slots, traffic lights, toll boothWireless Networking:tens Mbps, 50-100 meters (802.11, UWB, Bluetooth, CALM)

December 31, 2007

Safety

- Vehicle in front has a malfunctioning brake light
- Vehicle is about to run a red light
- Patch of ice at milepost 305
- Vehicle 100 meters ahead has suddenly stopped
- Replay accident based on sensor traces
- Infrastructure transmits speed-limit; dependent on vehicle type (works in France)

Application examples (cont.)

- Improve efficiency/convenience/mobility:
 - What is the average speed a mile ahead of me?
 - Are there any accidents ahead?
 - What parking slots are available around me?
 - Taxi cab: what customers around me need service?
 - Customer: What Taxi cabs are available around me?
 - Transfer protection: transfer bus requested to wait for passengers
 - Cab sharing opportunities

Ride sharing – untapped potential

- 4% increase in ridesharing offset 2000 congestion increase
- Example most arriving airport passengers go downtown
- Initial efforts
 - Washington DC "slugging"
 - Illinois ride-sharing program at UIC, Prof. Nelson's lab
- Wireless/short-range Peer-to-Peer communication enables real-time matchmaking
 - Eliminates need for 3rd party mediation, business model

Application examples (cont.)

Beyond transportation:

- Sighting of enemy vehicle in downtown Mosul in last hour?
- Cockroach robots in disaster areas
- Disseminate ticket-availability before a sporting event

Develop product that performs them

Develop standards to build them

Develop a platform for building them

Platform components

- Communication system: Intra-vehicle, vehicle-to-vehicle, and vehicle-to-infrastructure
 - Prototypes: Cartalk, UC Irvine
- Data Management: collect, organize, integrate, model, disseminate, query
- Software tools:
 - Data mining
 - Travel-time prediction
 - Trip planning
 - Regional planning

•••••

Research issues in data management

- Sensor data acquisition, modeling, fusion, dissemination
- Data usage strategies
- Participation incentives
- Remote Querying
- Data Integration of sensor and higher level information (maps, trip plans, ride-sharing profiles)

The players

- Moving/stationary objects with processing and communication power
 - Personal digital assistants (pda's)
 - Computers in vehicles
 - Processors embedded in the infrastructure
- Resources -- examples
 - Gas stations
 - Parking slots
 - Cabs
 - Ride-share partners
 - Malfunctioning brake-light
 - Accident at a time/location

Resource reports are generated by infrastructure or moving objects sensors

Collect, Organize, Disseminate, information about resources

Spatial and Temporal Resources

Spatial resources

- Examples: gas station at 342 State st., patch of ice at milepost 97, Italian restaurant at 300 Morgan St.
- The importance/relevance of information decays with distance
- Possible relevance function: $-\beta \cdot d$

Temporal resources

- Examples: Price of IBM stock at 2pm, DJI average at 10am
- The importance/relevance of information decays with age
- Possible relevance function: $\alpha \cdot t$

Spatio-temporal Resources

Spatio-temporal resources: specific to time and location

- Traffic conditions, available parking spaces, occurrence of car accidents, taxi cab customers, ride-share partners
- The importance/relevance of a resource-availability report decays with age and distance
- Possible relevance function: $-\alpha \cdot t \beta \cdot d$
- Each resource-availability report includes *create-time* and *home-location ---* sensor fusion tool

Relevance-ranked resource-type lists

Moving Object Memory:

Each resource list keeps top K resources

Opportunistic Resource Dissemination (ORD)

- Each vehicle has an *interest profile*:
 - ranked list of resource-types
 - relevance-threshold in each type
- Two vehicles exchange local database information when they encounter each other (i.e. come within transmission range)

 Least relevant resources that do not fit in allocated memory are purged out

Exchanging and purging resources

Cab customers

Ensured by relevance-ranking and limited memory allocation

December 31, 2007

How fast/far a resource is disseminated?

In a pure Mobile Opportunistic p2p system, the answer depends on:

- Memory allocation to the resource type
- Relevance threshold
- Transmission (randevous) range
- Traffic speed
- Vehicle density
- Resource density
- Average resource availability time

Other possible relevance functions

Nonlinear

Other factors

- Travel Direction (gas station, malfunctioning brake-light)
- *Transmit*-time, in addition to *create*-time (analogous to transaction/valid time)

Advertising spatial resources

- Gas stations, restaurants, ATM's, etc., announce continuously
- An announced resource item is acquired by the vehicles within the wireless coverage of the stationary site
- Different <u>location-based-services</u> paradigm than
 - Cellular-service provider database
 - Geographic web searching

Further research in data dissemination mathematical model

- Spread resembles epidemiological models of (Bailey 75) but there are important differences
 - Spatio-temporal relevance function
 - Interaction of multiple infectious-diseases (resources)
- Should answer: given resource report generated at (0,0,0), what is the probability that a vehicle at (x,y,t) receives it

Further research in data acquisition(2)

- Data granularity/aggregation-level of sensor-data
 - Raw: multiple applications, more b/w
 - Abstractions/aggregations: less b/w, application specific
- Sensor fusion
 - fuse sensors of same kind from different vehicles
 - fuse different sensor-data, e.g. computer vision -- laser range-finding
- Resource-exchange modalities
 - Broadcast vs. 1:1
 - Push vs. pull

Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Participation incentives
- Remote Querying
- Data Integration, Moving Objects Databases

Another resource classification

- Competitive (parking slots, cab-customers)
- Semi-competitive (ride-sharing partners)
- Noncompetitive (malfunctioning brake lights, speed of a vehicle at (x,y,t))

Information by itself is not sufficient to capture resource

If move to obsolete resources may waste time compared to blind search

Strategies for capturing (semi-) competitive resources

Example (Threshold Driven) – Go to the resource if its availability-report relevance is higher than a threshold *th*

How much does TD save compared to Blind Search ?

Information Guided Resource Discovery

On average, TD captures the resource up to twice as fast as BS

Consider spatial-clustering of resources

Further research in Spatio-temporal resource-capture strategies

- Develop and analyze information-guided spatio-temporal strategies (game theoretic approach?)
- How much does information improve resource utilization?
- Do invalidation messages help?
- If so, how should they be treated w.r.t. availability-reports?

Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Participation incentives
- Remote Querying
- Data Integration, Moving Objects Databases

The mobile opportunistic p2p scheme heavily depends on wide participation

Why should a vehicle/pda provide and transfer resources?

December 31, 2007

Possible incentive model

- Virtual currency -- tokens
- Producer-paid resources (road-emergency call, gas station)
 - Each report (advertisement) sent has a token-budget
 - On transfer between vehicles:
 - Carrier withdraws flat commission
 - Rest of budget split equally
- Consumer-paid resources (parking slots, cab customer, trafficincident). 2 modes:
 - Consumer mode pays amount proportional to relevance
 - Broker mode cannot view resource, speculative
- Tamper-resistant security module
 - Stores resource-reports and tokens
 - Executes p2p protocol

Research in incentive models

- Other virtual currency models
- Pricing and negotiation
- Cost optimizations in such models
 - For example, minimize advertisement cost per potential customer
- Distributed reputation models
- Transactions and atomicity issues
- Security
 - eavesdropping
 - fake resources
 - tampering to gain unfair advantage, create havoc

Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Dissemination incentives
- Remote Querying
- Data integration, Moving Objects Databases

Moving object queries local database

Moving object queries a region R, i.e. all the moving objects in R

Examples and Issues

- Queries that find all the resources within a particular geographic area
 - find all the available parking spaces within the UIC eastern campus
 - find all the cab requests within five blocks of the Sears Tower
- How to determine the set of objects to which the query is sent?
- How to disseminate the query?
- How to collect the answers?

Determination of Query Destination Area – Possible answer

Remote Query Approach

Query dissemination

- Query originator sends the query into the destination area.
- The query is flooded to all the moving objects within the area.
- Answer delivery
 - Each object in the destination area sends the answer back to the query originator
 - Query originator consolidates the answers.

How is query originator v found?

Via the infrastructure using node-id

May be costly

In p2p mode

v sends future trajectory in query

- Each object knows the trajectories of each other object
 - Trajectories exchanged as resources
- Each object does not know the trajectories of other objects except that of the querying object

 Encounter graph: each edge represents the time interval during which two objects can communicate

December 31, 2007

- A revised Djikstra algorithm is used to find
 - the shortest path between the querying moving object and the query destination area (for query dissemination)
 - The shortest path between an object in the query destination area and the querying moving object (for answer delivery)

Question: How does a moving object decide whether or not to forward a message to its encountered neighbor?

Answer: Forward iff θ is smaller than a certain threshold (*critical angle*)

Choosing the Critical Angle

Response to originator by each queried vehicle

Query originator/ consolidates

Response to *leader* by each queried vehicle; *leader* consolidates and responds to originator

Query Processing Modes (3)

Hierarchical solution

December 31, 2007

Further research in Remote Querying

- Comparison of query processing modes; coping with high mobility
- Other query types, aggregate/imprecise (average speed a mile ahead)
 - How to determine the set of objects to which the query is sent?
 - How to disseminate the query?
 - How to collect the answers?
- How/when to use cellular/infrastructure in communication of queries and answers?

Research issues in data management

- Sensor data acquisition, fusion, dissemination
- Data usage strategies
- Dissemination incentives
- Remote Querying
- Integration of sensor and higher level data

Moving Objects Database Technology

Query/trigger examples:

- During the past year, how many times was bus#5 late by more than 10 minutes at station 20, or at some station (past query)
- Send me message when helicopter in a given geographic area (trigger)
- Trucks that will reach destination within 20 minutes (future query)
- Taxi cabs within 1 mile of my location (present query)
- Average speed on highway, one mile ahead
- Tracking for "context awareness"

December 31, 2007

Applications

- Location Based Services e.g., "Closest gas station"
- Digital Battlefield
- Transportation (taxi, courier, emergency response, municipal transportation, traffic control)
- Supply Chain Management, logistics
- Context-awareness, augmented-reality, fly-through visualization
- Location- or Mobile-Ecommerce and Marketing
- Mobile workforce management
- Air traffic control (www.faa.gov/freeflight)
- Dynamic allocation of bandwidth in cellular network

Currently built in an ad hoc fashion

Further research in Moving Objects Databases

- Location modeling/management
- Linguistic issues
- Uncertainty/Imprecision
- Indexing
- Synthetic datasets
- Compression/data-reduction
- Joins and data mining (similarity of trajectories)

Relevant Work

- Resource discovering protocols
 - SLP, Jini, Salutation, UPnP
 - Rely on a dedicated directory server
 - Not suitable for high mobility environments
- Epidemic replication/routing (Demers 87, Vahdat 00, Khelil 02)
 - Regular data/messages, not spatial-temporal
- Sensor networks (Bonnet 00, Intanagonwiwat 00, Mandden 02)
 - Sensors are stationary
- Epidemiology (Bailey 75)

sensor-rich-environment + short-range wireless Computer Science research issues:

- Sensor data acquisition/fusion/dissemination
- Data usage strategies
- Dissemination incentives
- Remote Querying
- Integration of sensor and higher level data

- Privacy/security considerations
- Experiments based on a road network and Monarch/ns-2