An Introduction to Manifold Methods

Partha Niyogi
Mikhail Belkin
The University of Chicago

Collaborators: V. Sindhwani, X. He, D. Surendran, A. Jansen, S. Smale,
S. Weinberger

High Dimensional Data

- Raw Format of Natural Data is often high dimensional.
- Curse of Dimensionality.
- Search for low dimensional structure and models.

Principal Components Analysis

Given $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{D}$
Find $y_{1}, \ldots, y_{n} \in \mathbb{R}$ such that

$$
y_{i}=\mathbf{w} \cdot \mathbf{x}_{i}
$$

and

$$
\max _{\mathbf{w}} \operatorname{Variance}\left(\left\{y_{i}\right\}\right)=\sum_{i} y_{i}^{2}=\mathbf{w}^{T}\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{w}
$$

$\mathbf{w}_{*}=$ leading eigenvector of $\sum_{i} x_{i} x_{i}^{T}$

Manifold Model

Suppose data does not lie on a linear subspace.
Yet data has inherently one degree of freedom.

An Acoustic Example

An Acoustic Example

One Dimensional Air Flow
(i) $\frac{\partial V}{\partial x}=-\frac{A}{\rho c^{2}} \frac{\partial P}{\partial t}$
(ii) $\frac{\partial P}{\partial x}=-\frac{\rho}{A} \frac{\partial V}{\partial t}$
$V(x, t)=$ volume velocity
$P(x, t)=$ pressure

Solutions

$$
\begin{aligned}
& u(t)=\sum_{n=1}^{\infty} \alpha_{n} \sin \left(n \omega_{0} t\right) \in l_{2} \\
& s(t)=\sum_{n=1}^{\infty} \beta_{n} \sin \left(n \omega_{0} t\right) \in l_{2}
\end{aligned}
$$

Acoustic Phonetics

Vocal Tract modeled as a sequence of tubes. (e.g. Stevens, 1998)

Vision Example

$$
\begin{gathered}
f: \mathbb{R}^{2} \rightarrow[0,1] \\
\mathcal{F}=\{f \mid f(x, y)=v(x-t, y-r)\}
\end{gathered}
$$

Manifold Learning

Learning when data $\sim \mathcal{M} \subset \mathbb{R}^{N}$

- Clustering: $\mathcal{M} \rightarrow\{1, \ldots, k\}$
connected components, min cut
- Classification: $\mathcal{M} \rightarrow\{-1,+1\}$
P on $\mathcal{M} \times\{-1,+1\}$
- Dimensionality Reduction: $f: \mathcal{M} \rightarrow \mathbb{R}^{n} \quad n \ll N$
- \mathcal{M} unknown: what can you learn about \mathcal{M} from data?
e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics

Dimensionality Reduction

Given $x_{1}, \ldots, x_{n} \in \mathcal{M} \subset \mathbb{R}^{N}$,
Find $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$ where $d \ll N$

- ISOMAP (Tenenbaum, et al, 00)
- LLE (Roweis, Saul, 00)
- Laplacian Eigenmaps (Belkin, Niyogi, 01)
- Hessian Eigenmaps (Donoho, Grimes, 02)
- Diffusion Maps (Coifman, Lafon, et al, 04)

Algorithmic framework

Neighborhood graph common to all methods.

1. Construct Neighborhood Graph.
2. Find shortest path distances.

$$
D_{i j} \text { is } n \times n
$$

3. Embed using Multidimensional Scaling.

Multidimensional Scaling

Consider a positive definite matrix A.
Then $A_{i j}$ corresponds to inner products.

$$
A=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \phi_{i}^{T}
$$

Then for any $x \in\{1, \ldots, n\}$

$$
\psi(x)=\left(\sqrt{\lambda_{1}} \phi_{i}(x), \ldots, \sqrt{\lambda_{k}} \phi_{k}(x)\right) \in \mathbb{R}^{k}
$$

approximates inner products and therefore distances.
Therefore find A such that

$$
A_{i i}+A_{j j}-2 A_{i j} \approx D_{i j}
$$

Good Answer:

$$
A=-\frac{1}{2} H D H \text { where } H=I-\frac{1}{n} \mathbf{1 1}^{T}
$$

Laplacian Eigenmaps

Step 1 [Constructing the Graph]

$$
e_{i j}=1 \Leftrightarrow \mathbf{x}_{i} \text { "close to" } \mathbf{x}_{j}
$$

1. ϵ-neighborhoods. [parameter $\epsilon \in \mathbb{R}$] Nodes i and j are connected by an edge if

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}<\epsilon
$$

2. n nearest neighbors. [parameter $n \in \mathbb{N}$] Nodes i and j are connected by an edge if i is among n nearest neighbors of j or j is among n nearest neighbors of i.

Laplacian Eigenmaps

Step 2. [Choosing the weights].

1. Heat kernel. [parameter $t \in \mathbb{R}$]. If nodes i and j are connected, put

$$
W_{i j}=e^{-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{t}}
$$

2. Simple-minded. [No parameters]. $W_{i j}=1$ if and only if vertices i and j are connected by an edge.

Laplacian Eigenmaps

Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized eigenvector problem:

$$
L f=\lambda D f
$$

D is diagonal matrix where

$$
\begin{gathered}
D_{i i}=\sum_{j} W_{i j} \\
L=D-W
\end{gathered}
$$

Let $\mathbf{f}_{0}, \ldots, \mathbf{f}_{k-1}$ be eigenvectors.
Leave out the eigenvector f_{0} and use the next m lowest eigenvectors for embedding in an m-dimensional Euclidean space.

Justification

Find $y_{1}, \ldots, y_{n} \in R$

$$
\min \sum_{i, j}\left(y_{i}-y_{j}\right)^{2} W_{i j}
$$

Tries to preserve locality

A Fundamental Identity

But

$$
\begin{gathered}
\frac{1}{2} \sum_{i, j}\left(y_{i}-y_{j}\right)^{2} W_{i j}=\mathbf{y}^{T} L \mathbf{y} \\
\sum_{i, j}\left(y_{i}-y_{j}\right)^{2} W_{i j}=\sum_{i, j}\left(y_{i}^{2}+y_{j}^{2}-2 y_{i} y_{j}\right) W_{i j} \\
=\sum_{i} y_{i}^{2} D_{i i}+\sum_{j} y_{j}^{2} D_{j j}-2 \sum_{i, j} y_{i} y_{j} W_{i j} \\
=2 \mathbf{y}^{T} L \mathbf{y}
\end{gathered}
$$

Embedding

$$
\lambda=0 \rightarrow \mathbf{y}=\mathbf{1}
$$

$$
\min _{\mathbf{y}^{T} \mathbf{1}=0} \mathbf{y}^{T} L \mathbf{y}
$$

Let $Y=\left[\mathbf{y}_{1} \mathbf{y}_{2} \ldots \mathbf{y}_{m}\right]$

$$
\begin{gathered}
\sum_{i, j}\left\|Y_{i}-Y_{j}\right\|^{2} W_{i j}=\operatorname{trace}\left(Y^{T} L Y\right) \\
\text { subject to } Y^{T} Y=I
\end{gathered}
$$

Use eigenvectors of L to embed.

PCA versus Laplacian Eigenmaps

On the Manifold

smooth map $f: \mathcal{M} \rightarrow R$

$$
\int_{\mathcal{M}}\left\|\nabla_{\mathcal{M}} f\right\|^{2} \approx \sum_{i \sim j} W_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

Recall standard gradient in \mathbb{R}^{k} of $f\left(z_{1}, \ldots, z_{k}\right)$

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial z_{1}} \\
\frac{\partial f}{\partial z_{2}} \\
\cdot \\
\cdot \\
\frac{\partial f}{\partial z_{k}}
\end{array}\right]
$$

Curves on Manifolds

Consider a curve on \mathcal{M}

$$
c(t) \in \mathcal{M} \quad t \in(-1,1) \quad p=c(0) ; q=c(\tau)
$$

$$
f(c(t)):(-1,1) \rightarrow \mathbb{R}
$$

$$
|f(0)-f(\tau)| \lesssim d_{G}(p, q)\left\|\nabla_{M} f(p)\right\|
$$

Stokes' Theorem

A Basic Fact

$$
\int_{\mathcal{M}}\left\|\nabla_{\mathcal{M}} f\right\|^{2}=\int f \cdot \Delta_{\mathcal{M}} f
$$

This is like

$$
\sum_{i, j} W_{i j}\left(f_{i}-f_{j}\right)^{2}=\mathbf{f}^{T} \mathbf{L f}
$$

where
$\Delta_{\mathcal{M}} f$ is the manifold Laplacian

Manifold Laplacian

Recall ordinary Laplacian in \mathbb{R}^{k}
This maps

$$
f\left(x_{1}, \ldots, x_{k}\right) \rightarrow\left(-\sum_{i=1}^{k} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right)
$$

Manifold Laplacian is the same on the tangent space.

Properties of Laplacian

Eigensystem

$$
\Delta_{\mathcal{M}} f=\lambda_{i} \phi_{i}
$$

$$
\lambda_{i} \geq 0 \text { and } \lambda_{i} \rightarrow \infty
$$

$\left\{\phi_{i}\right\}$ form an orthonormal basis for $L^{2}(\mathcal{M})$

$$
\int\left\|\nabla_{\mathcal{M}} \phi_{i}\right\|^{2}=\lambda_{i}
$$

The Circle: An Example

Eigenvalues are

$$
\lambda_{n}=n^{2}
$$

Eigenfunctions are

$$
\sin (n t), \cos (n t)
$$

From graphs to manifolds

$$
f: \mathcal{M} \rightarrow \mathbb{R} \quad x \in \mathcal{M} \quad x_{1}, \ldots, x_{n} \in \mathcal{M}
$$

Graph Laplacian:

$$
L_{n}^{t}(f)(x)=f(x) \sum_{j} e^{-\frac{\left\|x-x_{j}\right\|^{2}}{t}}-\sum_{j} f\left(x_{j}\right) e^{-\frac{\left\|x-x_{j}\right\|^{2}}{t}}
$$

Theorem 1 [pointwise convergence] $t_{n}=n^{-\frac{1}{k+2+\alpha}}$

$$
\lim _{n \rightarrow \infty} \frac{\left(4 \pi t_{n}\right)^{-\frac{k+2}{2}}}{n} L_{n}^{t_{n}} f(x)=\mathcal{L}_{\mathcal{M}} f(x)
$$

From graphs to manifolds

Theorem 2 [uniform convergence]

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathcal{M}, f \in \mathcal{B}}\left|\frac{\left(4 \pi t_{n}\right)^{-\frac{k+2}{2}}}{n} L_{n}^{t_{n}} f(x)-\mathcal{L}_{\mathcal{M}} f(x)\right|=0
$$

Theorem 3 [convergence of eigenfunctions]

$$
\operatorname{Eig}\left[L_{n}^{t_{n}}\right] \rightarrow \operatorname{Eig}\left[\mathcal{L}_{\mathcal{M}}\right]
$$

Belkin Niyogi 05 [in preparation]

