
Program Anomaly Detection:
Methodology and Practices

CCS	Tutorial,	October	2016

Daphne	Yao
Associate	Professor	of	Computer	Science

Virginia	Tech

Xiaokui Shu
IBM	Thomas	J.	Watson	Research	Center

http://theweek.com/article/index/241237/	(2011)

Drone	Control	Station	Operating	System From	NBC	news	(2013)
http://nbcnews.tumblr.com/post/47882129464#.UzGICChfd38

Drs. Kui Xu Xiaokui Shu
(Amazon) (IBM Research)

Collaborators

Acknowledgments

Global	trace	analysis
[1]	X.	Shu,	D.	Yao,	N.	Ramakrishnan.	ACM	CCS	’15
(Featured	in	Comm.	of	ACM)
[2]	X.	Shu,	D.	Yao,	N.	Ramakrishnan,	T.	Jaeger.	
ACM	TOPS	(under	review)

Program	analysis	in	HMM
[3]	K.	Xu,	D.	Yao,	B.	Ryder,	K.	Tian.	IEEE	CSF	’15

HMM	with	context
[4]	K.	Xu,	K.	Tian,	D.	Yao,	B.	Ryder.	IEEE	DSN	’16

Unified	Program	Anomaly	Detection	Framework
[5]	Shu,	Yao,	Ryder.	RAID	2015

Publications:

4

Outline of This Tutorial
Our	Goal:	
To	encourage	and	enable	anomaly	detection	research

What	have	been	done?
History	of	program	anomaly	detection
Attack	models
Approaches,	pros	and	cons,	connecting	the	dots…...

What	can	you	do?	Apply	anomaly	detection	to	your	work!
Typical	workflow	and	tools,	recipe

Some	recent	findings
Open	problems

Hands-on	activities

Slides	will	be	made	available	online.

Anti-virus Scanning is the First Line of Defense

5

For	files	(apps	and	PDFs),	URLs
Vtzilla plugin

Cuckoo	Sandbox	for	
dynamic	analysis

File	Types

Number	of	submissions	in	a	week

From	VirusTotal

However, Code or Behavior Classification is
Undecidable

1. Program	X	
2. main()
3. {	…
4. if		!	isVirus(X)	
5. then	infect;
7. else	goto next;
8. … }
9. }

6From	[Fred	Cohen,	J.	of	Virology	1987]

Scanner
Thinks

IsVirus returns	
True

IsVirus returns	
False

Actual	
Behavior	of	X
X	chooses	not	to	

infect

X	chooses	to	
infect

Contradicts

Contradicts

How to detect/prevent zero-day malware/exploits?

Moving	target	defense	

Verification	

Control	flow	integrity	

Anomaly-based	detection	(D.	Denning	’87,	Forrest	et	al.	‘96)

In summary, the contributions of the analysis presented
in this paper are as follows:

• We discuss the scope of anomaly detection and classi-
fication for intrusion detection and define prerequisites
for practical application.

• We devise suitability criteria for n-gram models for
intrusion detection that help selecting an appropriate
learning scheme.

• Finally, we demonstrate the validity of the developed
criteria in a case study on client-side and server-side
web intrusion detection.

The rest of the paper is structured as follows: The two
prevalent learning schemes for intrusion detection are pre-
sented in Section 2, while n-gram models are discussed in
Section 3. In Section 4 we analyze datasets from different
domains and develop our suitability criteria. These criteria
are evaluated in a series of experiments, whose results are
presented in Section 5. Section 6 discusses related work and
Section 7 concludes.

2. LEARNING SCHEMES
In many fields of application where learning methods are

applicable for decision making one often is confronted with
the selection of the underlying learning scheme. For intru-
sion detection two schemes are prevalent: classification and
anomaly detection. In this section we shortly review both
of these schemes in order to identify possible indicators for
deciding when to use the one or the other.

malicious

benign

(a) Classification

normal

anoma-
lous

(b) Anomaly detection

Figure 1: Schematic depiction of learning schemes.

Classification.
In computer security often very strict definitions are in

demand for deciding about something being benign or mali-
cious, which immediately suggests a classification task. The
identification of the two classes is achieved by learning a
discrimination as illustrated in Figure 1(a). Several learn-
ing methods, such as decision trees, neuronal networks and
boosting can be used for learning a classification [8]. An
intuitive example is the two-class SVM that learns a hy-
perplane separating two classes with maximum margin in
a feature space [see 43]. Learning a classification, however,
requires enough data of both classes in order to be able to
generalize to unseen samples. If one class is represented by
a few instances only, it is likely that the learning will overfit
and thereby impede detection of unknown attacks. In this
regard a lack of data for one class is already a crucial factor
for abstaining from using classification.

In some cases of intrusion detection, sufficient data for
both classes can be acquired automatically. For example,
for learning a client-side detection of web-based attacks, it
is possible to actively visit benign and malicious web pages

using honeyclients and special crawlers [e.g., 18, 42]. This
crawling enables one to assemble a recent collection of train-
ing data for both classes. In other settings, as for example
the server-side detection of web-based attacks, one is re-
stricted to passively wait for attacks using network honey-
pots. As a consequence, it is not possible to put together a
representative set of server-side attacks in a timely manner
and classification methods should not be employed.

Anomaly Detection.
Detecting unknown attacks is of critical importance in se-

curity, as these may relate to zero-day exploits or new in-
stances of known malware. Fortunately, it is possible to take
this scenario into account using anomaly detection—even if
no attacks are available for learning. By focusing on the
prominent class and learning its structure, it is possible to
differentiate that class from everything else, as illustrated in
Figure 1(b). Several methods are suitable for learning such
a model of normality, for example, by analyzing the density,
probability or boundary of the given class [8]. A common
method for anomaly detection is the spherical one-class SVM
(or SVDD) that determines a hypersphere enclosing the data
with minimum volume [see 43].
At this point it is important to stress that anomaly detec-

tion methods do not explicitly learn to discriminate benign
from malicious data, but instead normality from anomalies.
This semantic gap requires one to design features and de-
tection systems carefully, as otherwise identified anomalies
may not reflect malicious activity [13, 45]. Moreover, it is
also necessary to sanitize the training data to avoid incor-
porating attacks in the model of normality [5]. Nonetheless,
anomaly detection is the learning scheme of choice if little
or no data is available for the attack class, as for example,
when learning a server-side detection of attacks.

Prerequisites.
In summary, both learning schemes offer their advantages

if used in the right setting. We thus arrive at the following
prerequisites for learning-based detection:

• Classification. If enough representative data is avail-
able for both classes, this scheme allows to learn a
model for discriminating one class from the other. De-
pending on the type of attacks, this discrimination may
generalize to unknown attacks but is not guaranteed
to do so.

• Anomaly Detection. If only one class is available for
learning, anomaly detection allows to learn a model for
detecting unknown attacks. However, a careful design
of the detection system is necessary in order to limit
the semantic gap between attacks and anomalies.

3. N-GRAM MODELS
Most learning methods operate on numeric vectors rather

than on raw data. Therefore, it often is necessary to con-
struct a map to a vector space for interfacing with learning
methods. In some settings, this can be achieved by defining
numeric measures describing the data, such as the length or
the entropy of packets. A more generic map, however, can
be developed using the concept of n-gram models. Initially
proposed for natural language processing [3, 6, 46], n-grams
have become the representation of choice in many detection
systems [e.g., 21, 24, 32, 37, 38, 49].

[Wressnegger 2013]

Typical Workflow

8

collect	behavior	traces

process	to	normal	profiles

build	model

normal	execution
for	training	purposes

TRAINING

static	analysis

DETECTION

9

Simplest	Program	Anomaly	Detection:	n-gram

[Forrest	1996,	Wressnegger 2013]

ioctl()
open()
write()
read()
setpgid()
setsid()
fork()

A	2-gram	example:

ioctl() open()

open() read()

read() setpgid()

setpgid() setsid()

setsid() fork()

1.	From	syscall traces	of	
normal	program	executions

(training	data)

Runtime	program	trace

Ioctl(),	open()
open(),	write()
write(),	read()
read(),	setpgid()
…...

Found	in	DB?

2.	Test	data 3.	Classification

10

…
sys_ioctl()
sys_open()
sys_read()
sys_setpgid()
sys_setsid()
sys_fork()
…

Tim
e

n-gram
[Forrest	1996]

FSA	[Sekar 2001,	
Wagner	2001]

Xj+1
Xj
…
Xi+1
Xi
…
X1
X0

Yj+1
Yj
…
Yi+1
Yi
…
Y1
Y0

PDA	[Feng	2003,	Feng	
2004,	Giffin 2004]

x	=	1

y	=	x+1
y	=	x*2

w	=	x*y

Data-flow	analysis	[Giffin
2006,	Bhatkar 2006]

Machine	learning	[Lee	1998,	
Shu	2015,	Xu	2016]

Static	Program	Analysis

Dynamic	Program	Analysis

Hybrid	detection
[Liu	2005,	Xu	2015]

+

Existing Approaches

Existing Approaches (Categories)

Hybrid

• [Liu 2005]
• [Xu 2015]
• [Xu 2016]

11

Data-driven
Dynamic learning

• [Forrest 1996]
• [Kosoresow 1997]
• [Lee 1998]
• [Sekar 2001]
• [Feng 2003]
• [Gao 2004]
• [Shu 2015]

Language-driven
Static program analysis

• [Wagner 2001]
• [Feng 2004]
• [Giffin 2004]
• [Giffin 2006]
• [Bhatkar 2006]

12

Notable Milestones

1996:	PAD	starts	from	n-gram	model	[Forrest	1996]

1987:	The	concept	of	anomaly	detection	is	established	[Denning	1987]

1998:	Data	mining	[Lee	1998]

2001:	Static	analysis	[Wagner	2001]

2004:	PAD	model	[Feng	2004,	Giffin 2004]

2005:	Hybrid	model	[Liu	2005]

2006:	Data-flow	analysis	[Giffin 2006,	Bhatkar 2006]

2015:	CSL	model	[Shu	2015]

2008:	Syscall model	summary	[Forrest	2008]

2015:	Uniformed	Framework

2005:	CFI	[Abadi]

2016:	DOP	[Hu	2016]

How Can I Start? Relevant Tools
• Tracing

– Strace, SystemTap (system call level)
– PIN (function level), used by BAP (binary analysis

platform)
– Intel PT (hardware-assisted instruction tracing)
– gdb

• Program analysis
– Wala
– Paradyn/Dyninst, LLVM

• Machine learning
– Dimension reduction, binary classification, outlier

detection
– scikit-learn, LIBSVM, WEKA

• Datasets (DARPA Intrusion Detection Data Sets) 13

14

• Average	$1.27million/year	on	false	alerts	by	an	enterprise.	

• 4%	of	alerts	are	investigated,	due	to	high	false	positives.

• An	organization	receives	an	average	of	17,000	alerts/week.

From	[Ponemon Institute]

Who Uses Anomaly Detection?

a distinct system call or library call. This is done by as-
signing high emission probability (0.5) to each hidden
state for the system/library call it represents, and random
low probabilities to other observation symbols. The state
transition probability matrix A is initialized with the tran-
sition probabilities {Pt

i j} of call pairs in the program’s
call transition matrix. The initial probability distribution
p of hidden states is computed based on the normalized
frequency of occurrence of that state (the call) in the pro-
gram’s call transition matrix. In this way, the actual call
transition information obtained by program analysis is
written into the initial model of our HMM.

4 Experimental Evaluation

4.1 Experiment Setup
Our prototype for the static program analysis is imple-
mented in C/C++ using the Dyninst library. The HMM
training and evaluation code is written in Java using the
Jahmm library. We refer to our prototype STILO, short
for STatically InitiaLized markOv. We use the system
tools strace and ltrace to intercept system calls 4 and li-
brary calls 5 of running application processes. System
calls may be wrapped up in different names when they
are exported to user space. We obtain the wrapper func-
tions for system calls from the glibc source code. The
library calls of interest are the glibc library calls, which
is a collection of C standard libraries.

We compare the performance of STILO with the
widely accepted HMM-based classification (e.g., [19,
48]). We refer to that model as the regular model.
For the regular HMM, the libcall/syscall set (observa-
tion symbols) includes all distinct calls from execution
traces. The number of hidden states is same as the size
of the call set. Also regular model uses random num-
bers to initialize transition probabilities, emission prob-
abilities, and initial distributions which differs from our
STILO. The programs and test cases used in our exper-
iments are from Software-artifact Infrastructure Reposi-
tory (SIR) [40], and are summarized in Table 2.

We aim to answer the following questions.

1. How does STILO compare to a regular HMM
model? (In Section 4.6 and 4.3)

2. Can STILO detect real-world attack traces and syn-
thetic abnormal traces? (In Section 4.5 and 4.2)

3. kui How well does the parameter selection of
STILO perform, compared to regular models with
different number of hidden states to start? (In sec-
tion 4.4)

4Around 200 distinct system calls.
5Over 1000 distinct library calls.

Program # of test cases branch coverage line cov.
flex 525 81.34% 76.04%
grep 809 58.68% 63.34%
gzip 214 68.49% 66.85%
sed 370 72.31% 65.63%

bash 1061 66.26% 59.39%
vim 976 54.99% 51.93%

Table 2: Statistics of programs and test cases used in ex-
periment.

4. What is the impact of segment length on classifica-
tion accuracy? (In Section 4.2)

Statistics of calls observed during execution and calls
in the program code (flex, grep, gzip, sed, bash and
vim) are shown in Tables 6 and 7 in the appendix.

Standard machine learning procedures are followed.
We perform 10-fold cross validation on the prepared data
set. Convergence status is determined by the test results
of trace segments in the training termination set. All
comparable HMM models are subject to the same con-
vergence criteria.

Training and classification are on n-grams of traces,
where n =15 in our experiments. Duplicate segments are
removed in our training datasets in order to avoid bias.

Normal call sequences are legitimate sequences that
are obtained by running the target executable and record-
ing the library call sequences or system call sequences
as the result of the execution. A HMM classification
model needs to give high probabilities to these normal
sequences.

The training of hidden Markov models requires nor-
mal sequences, not abnormal sequences. We test the
trained models with two types of abnormal call se-
quences. These sequences should give 0 or low proba-
bilities.

• Abnormal-A sequence segments (or attack segment)
are obtained by reproducing real-world attack ex-
ploits.

• Abnormal-S sequence segments (or synthetic seg-
ments) are obtained by consecutively replacing one
third of normal call segment with randomly selected
calls from the legitimate call set, which is con-
structed based on a program’s traces.

We assume that all the synthesized segments are abnor-
mal.

Our experiments were conducted on a Linux machine
with Intel Core i7-3770 CPU (@3.40GHz) and 16G
memory.

9

From	SIR

Incomplete	Traces

Incomplete	Behavior	
Model

False	Alarms
Missed	Detection

Issue 1: Incomplete Traces

By	Shel Silverstein

16

Local	analysis	is	inadequate

Issue 2: Local Analysis

Anomalies consisting	of	normal
execution	fragments

17

A	SSHD	flag	variable	overwritten attack
void do_authentication(...) {
int authenticated = 0;
while (!authenticated) {
[…buffer overflow vulnerability…]
if (auth_password(...)) {
memset(...);
xfree(...);
log_msg(...);
authenticated = 1;
break;

}
memset(...);
xfree(...);
debug(...);
break;
...

}
if (authenticated) {
...

Pass	auth.

Fail	auth.

An SSH Authentication Attack

Attack

Expected

Expected

Local	analysis
cannot	detect
the	anomaly

From	[Chen	’05]

a b d a c e a

c b e a c c e c f

f d c e c c f e d

a b d a c c f e d

18

Attack	examples:
• Non-control	data	attack
• Fragment-based	mimicry	attack
• Workflow	violation	attack

Cooccurrence Anomaly

Normal	1:

Normal	2:

Normal	3:

Anomaly:

Attack Model, Problem Statement

• Given	an	extremely	long	trace,	

should	any set	of	events	co-occur?

• With	the	expected	frequency?

Problem	Statement:

Frequency	Anomaly
Attack	examples:
• DoS attacks
• Directory	harvest	attacks

Can	n-gram	still	work?

19

Security	logs,
Network	headers,
Traffic	payloads,
System	traces,
Transaction	logs
…

Novelty	
detection

Binary	
classification

Prog analysis	

Our High-Precision Program Anomaly Detection

Program	Tracing
(Library	call,
System	call,

Instruction	sequences)

Program	Analysis
(static)

ML/DM
(train	and	test)

Post	Classification	
Analysis

Global	Trace	Analysis [1]	X.	Shu,	D.	Yao,	N.	Ramakrishnan.	ACM	CCS	’15
HMM	 [2]	K.	Xu,	D.	Yao,	B.	Ryder,	K.	Tian.	IEEE	CSF	’15
HMM	with	context [3]	K.	Xu,	K.	Tian,	D.	Yao,	B.	Ryder.	IEEE	DSN	’16

20

…	main,	foo,	bar,	bar,	bar,	…

0 24 0 0
0 0 30 0
0 6 89 1
0 0 0 0

main
foo
bar
goo

convert							into

An	infinite	long	call	trace:

chop						into
Behavior	instanceBehavior	instanceBehavior	instance

Long	trace	
segments

Behavior	instance

F T F F

F F T F

F T T T

F F F F

2.	Event	co-occurrence	matrix1.	Transition	frequency	matrix	

X.	Shu,	D.	Yao,	N.	Ramakrishnan.	ACM	CCS	‘15

Our Compact Matrix Representation

Matrix representation is
path insensitive

21

Distribution of function calls in libpcreAnomaly

0

0.5

1

0 0.05 0.1

De
te
ct
io
n	
ra
te

False	positive	rate
(1-class	SVM	on	libpcre)

Challenges: Diverse Normal Behaviors, High FP

Normal

Too	low!
Anomalies		
detected!

22

Anomaly
Anomaly

Our Solution: Grouping Similar Normal Behaviors

A trace segment represented by matrices

Training Phase Detection Phase

23

Pass	Auth.	(expected)

…
do_auth >	xfree
do_auth >	log_msg
do_auth >	packet_start
…
pwrite >	buffer_len
do_auth >	do_auth
…

Anomalous:	attack

…
do_auth >	debug
do_auth >	xfree
do_auth >	packet_start
…
pwrite >	buffer_len
do_auth >	do_auth
…

sshd

Function	call	trace	
(collected	through	Pintool)

Fail	Auth.	(expected)

…
do_auth >	debug
do_auth >	xfree
do_auth >	packet_start
…
pwrite >	buffer_len
do_auth >	pread
…

Montage Anomalies Fall Between Clusters

24

Comparison	of	Detection	Capabilities	
Against	Montage	Anomalies

0

0.5

1

0 0.05 0.1

De
te
ct
io
n	
ra
te

False	positive	rate

1-class	SVM	(w/o	clustering)

0

0.5

1

0 0.05 0.1

De
te
ct
io
n	
ra
te

False	positive	rate
Ours	(w/	clustering)	

A	specialized	constrained	agglomerative	clustering	algorithm	
(on	co-occurrence	matrices)	

(libpcre)BEFORE AFTER

Our	Operations

• Inter-cluster	training

• Intra-cluster	training

• Inter-cluster	detection

• Intra-cluster	detection

Montage	
anomaly

Frequency	
anomaly

25

on	co-occurrence	matrices

on	frequency	matrices

26

Our approach (w/ FVA) Our approach (w/ PCA) One-class SVM (w/ FVA) One-class SVM (w/ PCA)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.02 0.04 0.06 0.08 0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.02 0.04 0.06 0.08 0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.02 0.04 0.06 0.08 0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.02 0.04 0.06 0.08 0.1

High-frequency anomaly Low-frequency anomalyIncomplete path anomalyMontage anomaly

Figure 7: libpcre ROC of our approach and basic one-class SVM. X-axis is false positive rate, and y-axis is detection rate.

cluster detection (Co-occurrence Analysis) because in-
valid usernames occur in normal training dataset.

This experiment demonstrates that our approach can con-
sume coarse program behavior descriptions (e.g., system calls)
to detect attacks. Most of the probing emails do not have
valid receivers. They result in a di↵erent processing proce-
dure than that for normal emails; the batch of DHA emails
processed in an execution window gives anomalous ratios
between frequencies of valid email processing control flows
and frequencies of invalid email processing control flows. In
sendmail, these di↵erent control flows contain di↵erent sets
of system calls, so they are revealed by system call profiles.
More precise detection requires the exposure of internal pro-
gram activities, such as function calls.

6.3 Systematic Accuracy Evaluation
We systematically demonstrate how sensitive and accu-

rate our approach is through receiver operating characteris-
tic (ROC). Besides normal program behaviors ground truth
(Sect. 6.1), we generate four types of synthetic aberrant path
anomalies. We first construct F 0 for each synthetic anoma-
lous behavior instance b0, and then we use (1) to derive O0

(of b0) from F 0.

1. Montage anomaly : two behavior instance b1 and b2 are
randomly selected from two di↵erent behavior clusters.
For a cell f 0

i,j in F 0, if one of f1i,j (of F1) and f2i,j
(of F2) is 0, the value of the other is copied into f 0

i,j .
Otherwise, one of them is randomly selected and copied.

2. Incomplete path anomaly : random one-eighth of non-
zero cells of a normal F are dropped to 0 (indicating
events that have not occurred) to construct F 0.

3. High-frequency anomaly : three cells in a normal F are
randomly selected, and their values are magnified 100
times to construct F 0.

4. Low-frequency anomaly : similar to high-frequency anoma-
lies, but the values of the three cells are reduced to 1.

To demonstrate the e↵ectiveness of our design in handling
diverse program behaviors, we compare our approach with
a basic one-class SVM (the same ⌫-SVM and same configu-
rations, e.g., kernel function, feature selection, and parame-
ters, as used in our Intra-cluster Modeling operation).
We present the detection accuracy results on libpcre in

Fig. 7, which has the most complicated behavior patterns

among the three studied programs/libraries11. In any sub-
figure of Fig. 7, each dot is associated with a false positive
rate (multi-round 10-fold cross-validation with 10,000 test
cases) and a detection rate (1,000 synthetic anomalies). We
denote an anomaly result as a positive.
Fig. 7 shows the e↵ectiveness of our clustering design.

The detection rate of our prototype (with PCA12) is usu-
ally higher than 0.9 with FPR less than 0.01. Because of
diverse patterns, basic one-class SVM fails to learn tight
boundaries that wrap diverse normal patterns as expected.
A loose boundary results in false negatives and low detection
rates.

6.4 Performance Analysis
Although performance is not a critical issue for the train-

ing phase, a fast and e�cient detection is important for en-
abling real-time protection and minimizing negative user ex-
perience [32]. The overall overhead of a program anomaly
detection system comes from tracing and analysis in general.
We evaluate the performance of our analysis procedures

(inter- and intra-cluster detections) with either function call
profiles (libpcre) or system call profiles (sendmail). We
test the analysis on all normal profiles (libpcre: 11027,
sendmail: 6579) to collect overhead for inter-cluster detec-
tion alone and the combination of inter- and intra-cluster
detection13. The analysis of each behavior instance is re-
peated 1,000 times to obtain a fair timing. The performance
results in Fig. 8 illustrate that

• It takes 0.1~1.3ms to analyze a single behavior instance,
which contains 44893 function calls (libpcre) or 1134
system calls (sendmail) on average (Table 1).

• The analysis overhead is positively correlated with the
number of unique events in a profile (Table 1), which is
due to our DOK implementation of profile matrices.

• Montage anomalies takes less time to detect than fre-
quency anomalies, because they are detected at the first
stage (Co-occurrence Analysis).

11Results of the other two programs share similar character-
istics as libpcre and are not presented.

12PCA proves itself more accurate than FVA in Fig. 7.
13PCA is used for feature selection. FVA (results omitted)
yields a lower overhead due to its simplicity.

Exp 1:	Detection	Accuracy	vs.	False	Positive	in	Synthetic	Anomalies

Under	10-fold	cross-validation	with	10,000	normal	test	cases,
1,000	synthetic	anomalies.

Frequency	Anomalies

27

sshd libpcre sendmail

Training	w/	
4,800	normal	behavior	
instances	(34K	events	

each)

Training	w/
11,027	normal	behavior	

instances	(44K	events	each)

Training	w/
6,579	normal	behavior	

instances	(1K	events	each)

Flag	variable	
overwritten	attacks	
w/	various	lengths

Regular	Exp.	DoS
3	malicious	patterns
8-23	strings	to	match

Directory	harvest	attack
w/	probing	batch	sizes:

8	to	400	emails

Exp 2:	Detection	of	Real-world	Attacks	in	Complex	Programs

100%	Detection	accuracy
0.01%	Average	false	alarm	rate

What	is	the	detection	overhead?

28

Summary	for	Global	Trace	Analysis

1.	Extremely	long	traces 2.	Low	false	alarm	rate

Main	Features:

Tradeoffs:

Path	insensitive	(orderless)	

Detects	1.	Co-occurrence	anomalies 2.	Frequency	anomalies

Security	Guarantees:

29

Hidden	States

Observable	States

Call	sequences	
(training	data)

Transition	Probabilities

Emission	Probabilities

[Forrest	et	al.	1999]

HMM-based	program	anomaly	detection

• Probabilistic

• Path	sensitive

• Local	analysis

Want	to	be	better	than	
random	initialization

read

write
execve

Function:	f

𝜀g f‘

𝜀g f

εf’(exit) read write execve

εf (entry) p(1-q) 1-p 0 pq

read 0 0 1-p 0

write 1-p 0 0 0

execve pq 0 0 0

p 1-p

q
1-q

Transition	probability	of	a	call	pair	is	its	
likelihood	of	occurrence	during	the	execution	
of	the	function

Example	of	call	pair Transition	probability

read																write 1-p

read read 0

execve εf’	 pq

[K.	Xu,	D.	Yao,	B.	Ryder,	K.	Tian.	IEEE	CSF	’15]

STILO: STatically InitiaLized markOv

p,	q	are	statically	estimated.

Our STILO Workflow

31

Static	Program	Analysis	based	HMM	Initialization	(Our	New	Contributions)

32

Why	need	context	sensitive	detection?

Improvement	with	Context	Sensitivity

Improvement with Context Sensitivity

BEFORE:	Context	insensitive	
(STILO-basic)

AFTER:	1-level	calling	context	sensitive	
(STILO-context)

read

Function	f

Function	g

read

…	read	….	read

read@f

Function	f

Function	g

read@g

…	read@f ….	read@g

Scalability:
K-mean	clustering	reduces	the	
#	of	hidden	states[K.	Xu,	K.	Tian,	D.	Yao,	B.	Ryder.	IEEE	DSN	’16]

Reduction of Hidden States for Efficiency

• K-mean	clustering,	based	on	similarity	between	call-transition	vectors	
• Aim	at	1/2	to	1/3	reduction	of	nodes

34

After	clustering

Many-to-one	mapping	-- a	hidden	
state	may	represent	multiple	similar	
calls

Before	clustering

One-to-one	mapping	-- a	hidden	
state		represents	a	single	call

Program	Model	 #	distinct	calls	 #	states	after	
clustering	

Estimated	
training	time	
reduction

bash 1366 455 88.91%
vim 829 415 74.94%

proftpd 1115 372 88.87%

Model With Static	Analysis With Caller	Context	
Regular-basic - -
Regular-context - Yes
STILO-basic Yes -
STILO-context Yes Yes

Dyninst for	static	program	analysis,	Jahmm library	for	HMM,	1st-order	Markov,	strace/ltrace
for	collection,	SIR	for	test	cases,	10-fold	cross	validation,	15-grams	from	traces

1. Normal: total 130,940,213 segments
2. Abnormal-S: 160,000 Abnormal-S segments (permute 1/3 calls)
3. Abnormal-A: attack call sequences obtained from exploits

STILO Evaluation

2	Linux	server	programs:	nginx,	proftpd
6	Linux	utility	programs:	flex,	grep,	gzip,	sed,	bash,	vim

For libcalls, false negative (missed detection) of
context-sensitive models drops by 2-3 orders

False	positive	rate	
(False	alarm)

libcall:nginx libcall:proftpd

(M
iss
ed

	D
et
ec
tio

n)
Fa
lse

	n
eg
at
iv
e	
ra
te
	(l
og
sc
al
e
ba
se
	1
0)

Regular-basic
Regular-context X

STILO-basic
STILO-context *

STILO-basic	improves	
Regular-basic	HMM

STILO-context	improves	
STILO-basic

Regular-basic
Regular-context

syscall:nginx syscall:proftpd

False	positive	rate False	positive	rate

STILO-basic
STILO-context

Fa
lse

	n
eg
at
iv
e	
ra
te
	(l
og
sc
al
e
ba
se
	1
0)

For syscalls, context improves false negative rate by 10 folds.
Less dramatic improvement than libcalls.

 0.0001

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a

ls
e

 n
e

g
a

ti
v
e

 r
a

te
(L

o
g

s
c
a

le
 b

a
s
e

 1
0

)

False positive rate

syscall:grep

1.5x
2x

2.5x
3x

3.5x
Our-2.92x

0

 0.0001

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

False positive rate

syscall:gzip

1.5x
2x

2.5x
3x

3.5x
Our-2.35x

Increasing hidden states in regular HMM
does not guarantee classification accuracy

Fa
lse

	n
eg
at
iv
e	
ra
te
	(l
og
sc
al
e
ba
se
	1
0)

False	positive	rate False	positive	rate

Exploit Payload
Buffer	Overflow	
(gzip)

ROP
ROP_syscall_chain

Backdoor	
(proftpd)

bind_perl
bind	perl ipv6

generic	cmd execution
double	reverse	TCP

reverse_perl
reverse_perl_ssl

reverse_ssl_double_telnet
Buffer	Overflow	
(proftpd)

guess	memory	address

Detection of Real-world Attacks

ID Prob in	
STILO

Prob in	
Regular		
HMM

S1 0 0.2

S2 2.20	× e−15 0.29

S3 1.54	× e−5 0.25

S4 0 0.27

S5 0.0005 0.33

S6 0 0.23

S7 0.0004 0.26

STILO	gives	much	lower	
probabilities	for	attack	

sequences	

ROP	attack	
segments	against	
gzip (syscalls)

STILO Overhead

40

Tracing	
(data	collection)

HMM
classification

Probability
forecast

Sloooow Fast	classification	<	1	msFast program
analysis < 10s

Aggregating
matrices is
slower. E.g.,
vim libcall
took 20 min

HMM Training
took days for
STILO-context

K-mean
clustering
reduces
hidden states

HMM	initialization
&	training

New	traces

0%

50%

100%

150%

200%

Native PT Pin strace

1,000%

1.1X

2X

1X

10X

Hardware-based Instruction-level Tracing

42

Security/Privacy as Enablers

Improve	quality	of	lifeEnable	new	infrastructures

http://resources.infosecinstitute.com

Enable	new	discoveries

RasPilot

25

Table of Contents (TOC) Graphic

Page 27 of 28

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Intelligent	secure	systems	
benefiting	large	populations

43

Data-driven Program Anomaly Detection:
Promising Directions

CPS and IoT
(drones, cars)

Post-detection
procedure

Tracing overhead,
HPC training and
incremental training

Order-aware global
trace analysis

Program	Anomaly	Detection	Workflow

Purification of
training data,
Adversarial
machine learning

44

Program Anomaly Detection Labs

Lab Scripts and Instructions
https://github.com/subbyte/padlabs

Remote Lab Environment (ssh access)
$ ssh ccs2016@parma.cs.vt.edu -p 2222

Task 0 (make your own directory)
$ mkdir yourdir; cd yourdir

