Program Anomaly Detection: Methodology and Practices

Xiaokui Shu IBM Thomas J. Watson Research Center

Daphne Yao Associate Professor of Computer Science Virginia Tech

CCS Tutorial, October 2016



Drone Control Station Operating System http://theweek.com/article/index/241237/ (2011)

From NBC news (2013) http://nbcnews.tumblr.com/post/47882129464#.UzGICChfd38

Acknowledgments

Publications:

Drs. Kui Xu (Amazon) Xiaokui Shu (IBM Research)

Collaborators

Global trace analysis

[1] X. Shu, D. Yao, N. Ramakrishnan. ACM CCS '15 (Featured in Comm. of ACM)
[2] X. Shu, D. Yao, N. Ramakrishnan, T. Jaeger.
ACM TOPS (under review)

Program analysis in HMM [3] K. Xu, D. Yao, B. Ryder, K. Tian. *IEEE CSF '15*

HMM with context [4] K. Xu, K. Tian, D. Yao, B. Ryder. *IEEE DSN '16*

Unified Program Anomaly Detection Framework [5] Shu, Yao, Ryder. RAID 2015

Outline of This Tutorial

Our Goal:

To encourage and enable anomaly detection research

What have been done?

History of program anomaly detection Attack models Approaches, pros and cons, connecting the dots.....

What can you do? Apply anomaly detection to your work!

Typical workflow and tools, recipe

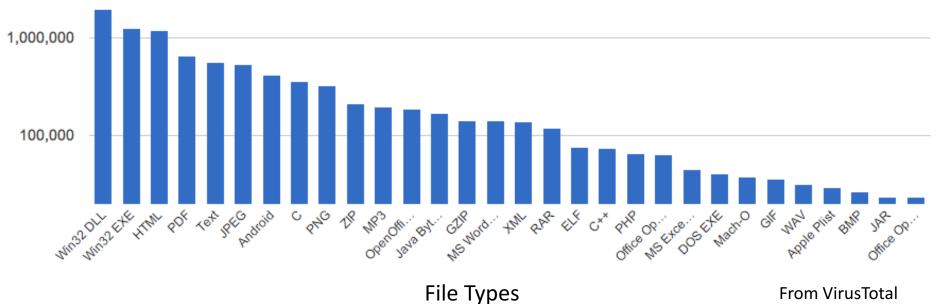
Some recent findings Open problems

Hands-on activities

Slides will be made available online.

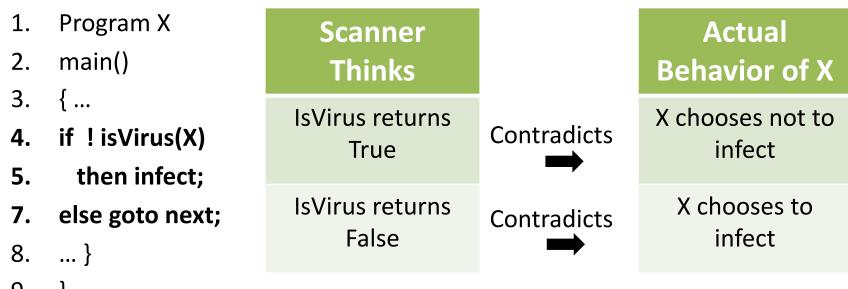
Anti-virus Scanning is the First Line of Defense

Cuckoo Sandbox for dynamic analysis



Number of submissions in a week

However, Code or Behavior Classification is Undecidable

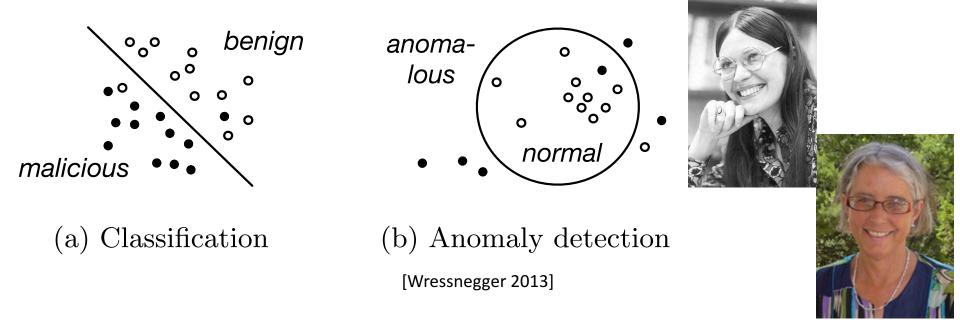


9. }

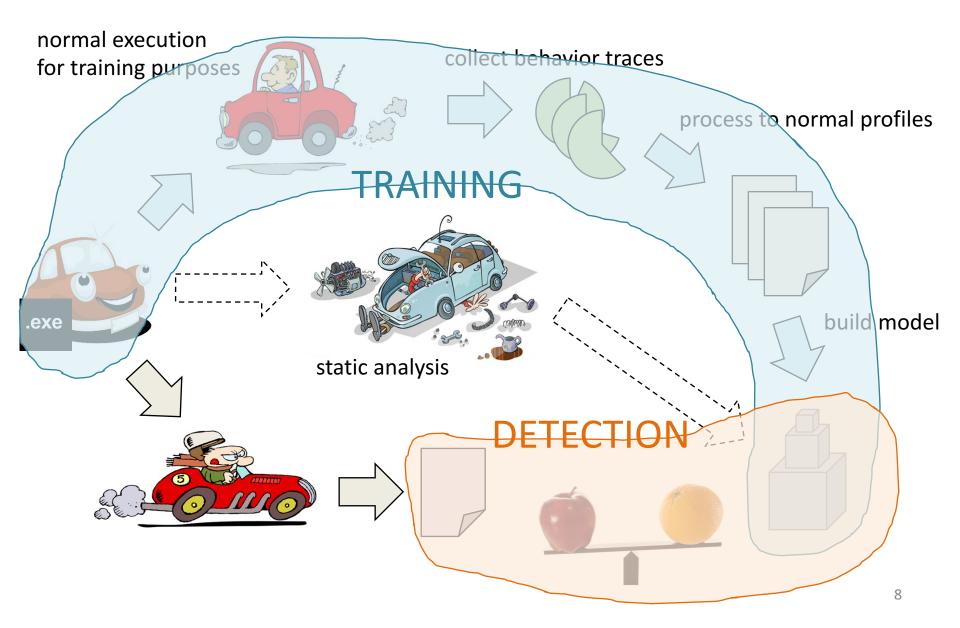
How to detect/prevent zero-day malware/exploits?

- Moving target defense
- Verification
- Control flow integrity

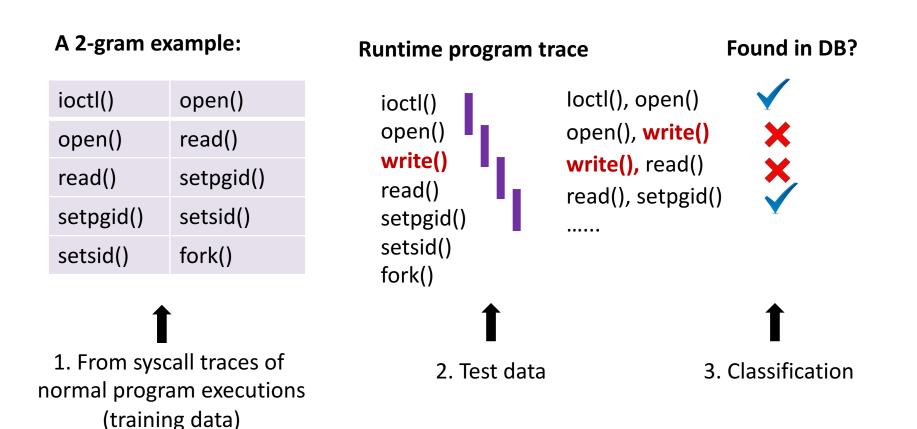
Anomaly-based detection (D. Denning '87, Forrest et al. '96)



Typical Workflow

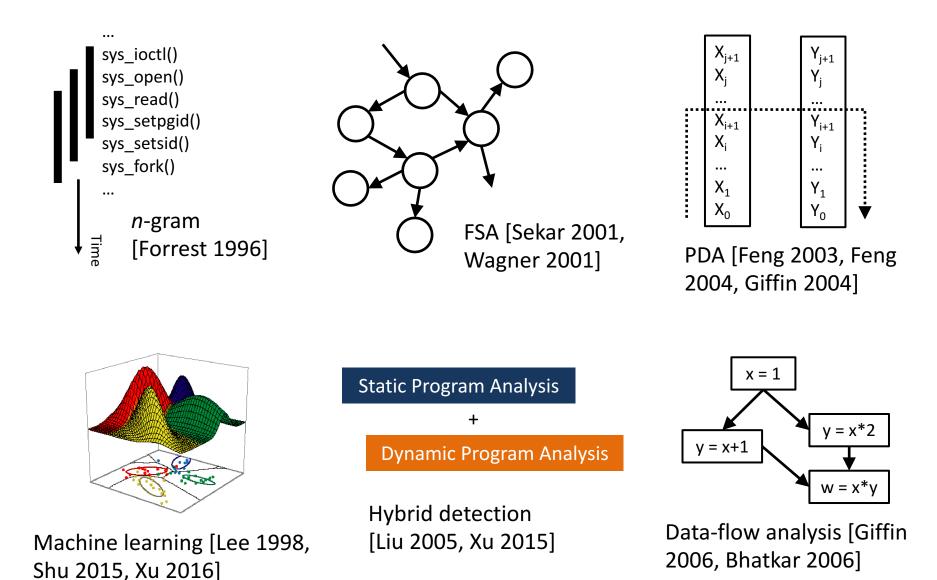


Simplest Program Anomaly Detection: n-gram



[Forrest 1996, Wressnegger 2013]

Existing Approaches



10

Existing Approaches (Categories)

Data-driven Dynamic learning

- [Forrest 1996]
- [Kosoresow 1997]
- [Lee 1998]
- [Sekar 2001]
- [Feng 2003]
- [Gao 2004]
- [Shu 2015]

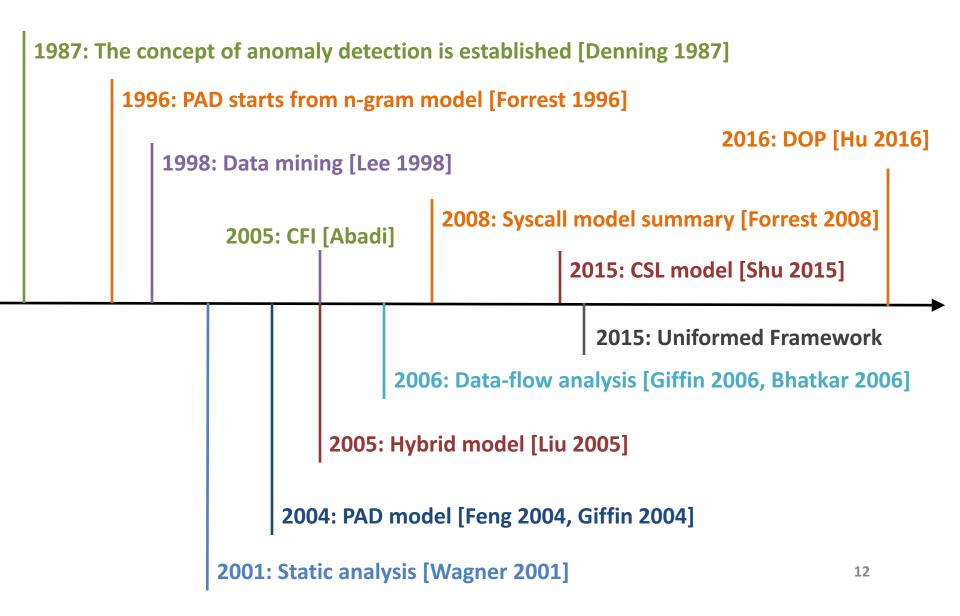
Language-driven Static program analysis

- [Wagner 2001]
- [Feng 2004]
- [Giffin 2004]
- [Giffin 2006]
- [Bhatkar 2006]

Hybrid

- [Liu 2005]
- [Xu 2015]
- [Xu 2016]

Notable Milestones



How Can I Start? Relevant Tools

- Tracing
 - Strace, SystemTap (system call level)
 - PIN (function level), used by BAP (binary analysis platform)
 - Intel PT (hardware-assisted instruction tracing)
 - gdb

Program analysis

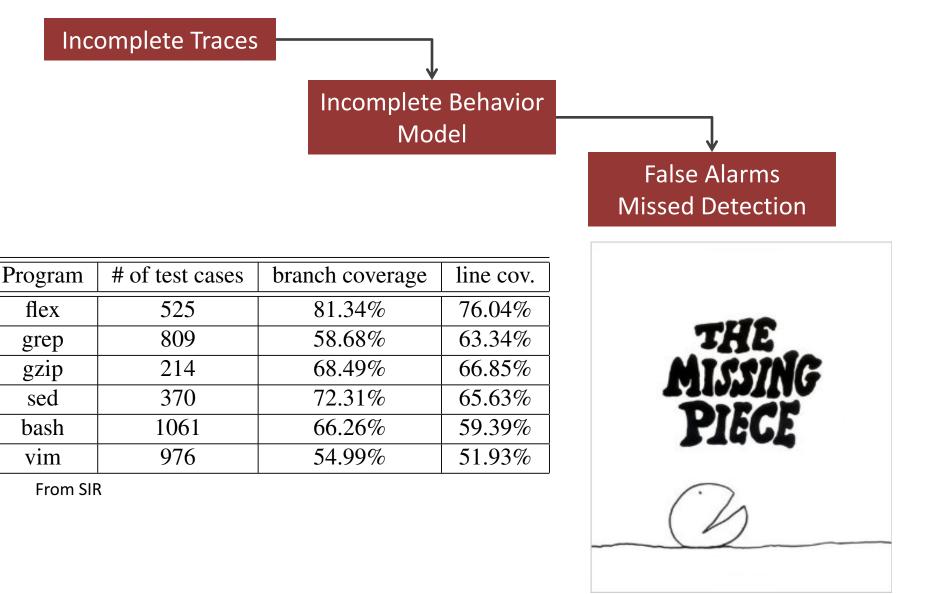
- Wala
- Paradyn/Dyninst, LLVM
- Machine learning
 - Dimension reduction, binary classification, outlier detection
 - scikit-learn, LIBSVM, WEKA
- Datasets (DARPA Intrusion Detection Data Sets)

Who Uses Anomaly Detection?

- Average **\$1.27million/year** on false alerts by an enterprise.
- 4% of alerts are investigated, due to high false positives.
- An organization receives an average of **17,000 alerts/week**.

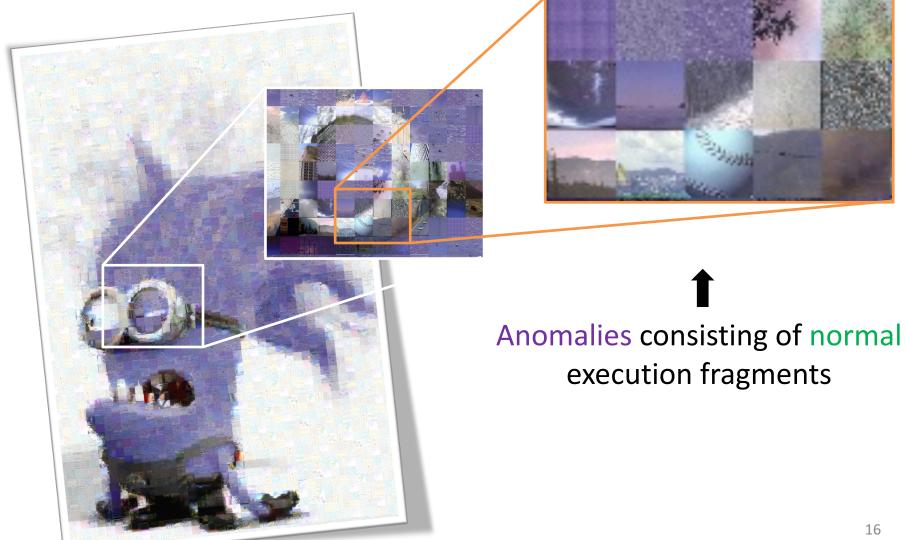
From [Ponemon Institute]

Issue 1: Incomplete Traces

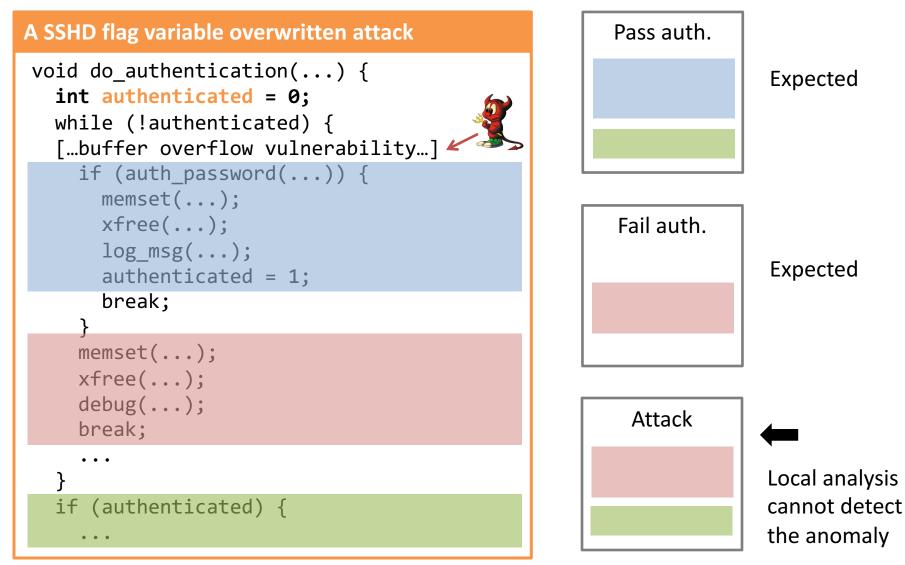


Issue 2: Local Analysis

Local analysis is inadequate

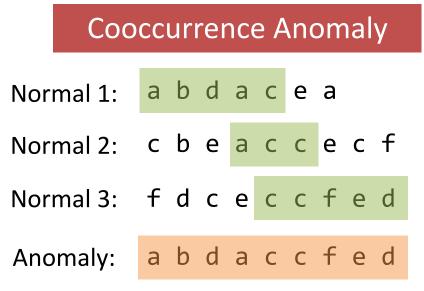


An SSH Authentication Attack



From [Chen '05]

Attack Model, Problem Statement



Attack examples:

- Non-control data attack
- Fragment-based mimicry attack
- Workflow violation attack

Frequency Anomaly

Attack examples:

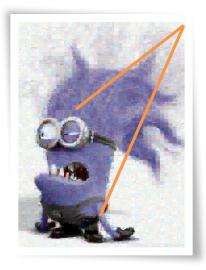
- DoS attacks
- Directory harvest attacks

Problem Statement:

• Given an extremely long trace,

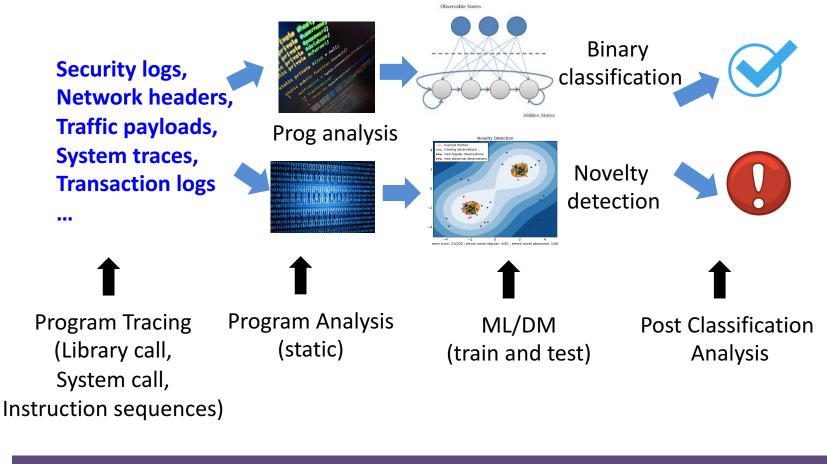
should any set of events co-occur?

• With the expected **frequency**?



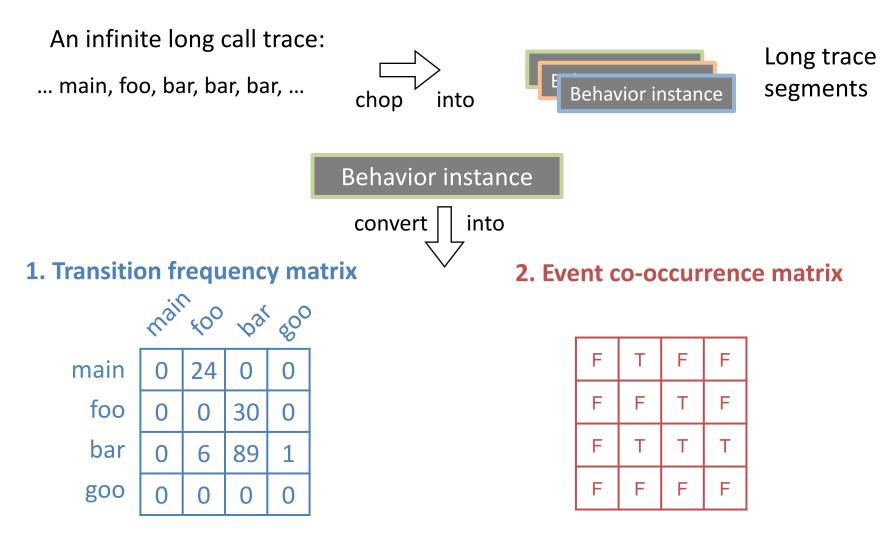
Can n-gram still work?

Our High-Precision Program Anomaly Detection



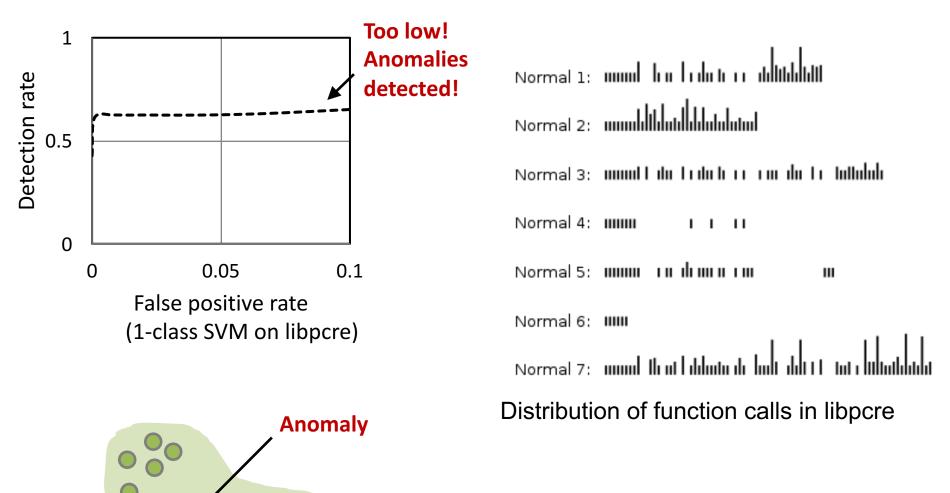
Global Trace Analysis	[1] X. Shu, D. Yao, N. Ramakrishnan. ACM CCS '15
НММ	[2] K. Xu, D. Yao, B. Ryder, K. Tian. IEEE CSF '15
HMM with context	[3] K. Xu, K. Tian, D. Yao, B. Ryder. IEEE DSN '16

Our Compact Matrix Representation



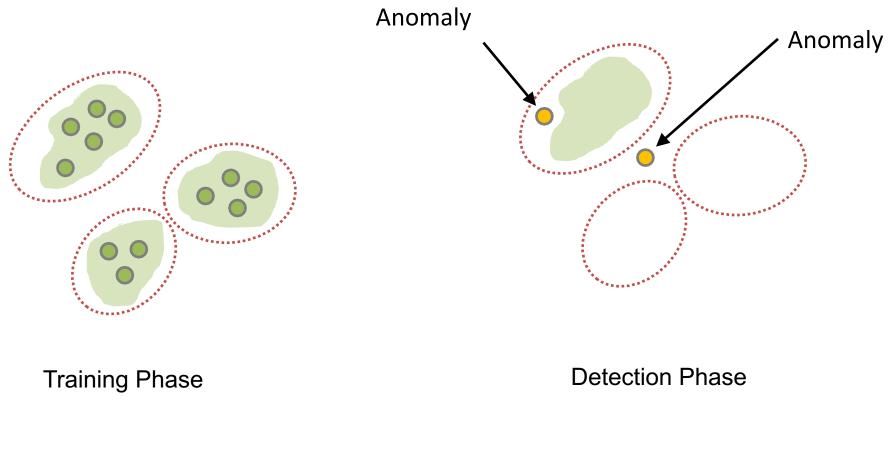
X. Shu, D. Yao, N. Ramakrishnan. ACM CCS '15

Challenges: Diverse Normal Behaviors, High FP



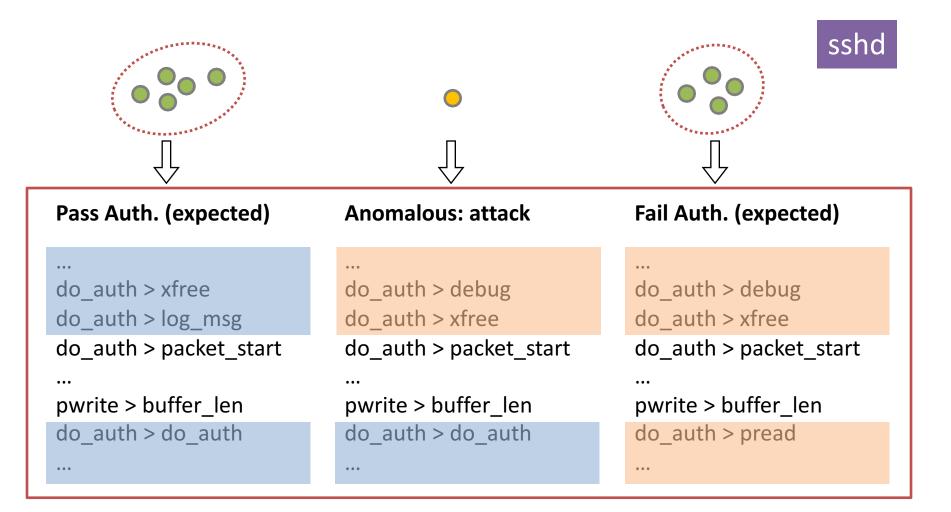
Normal

Our Solution: Grouping Similar Normal Behaviors



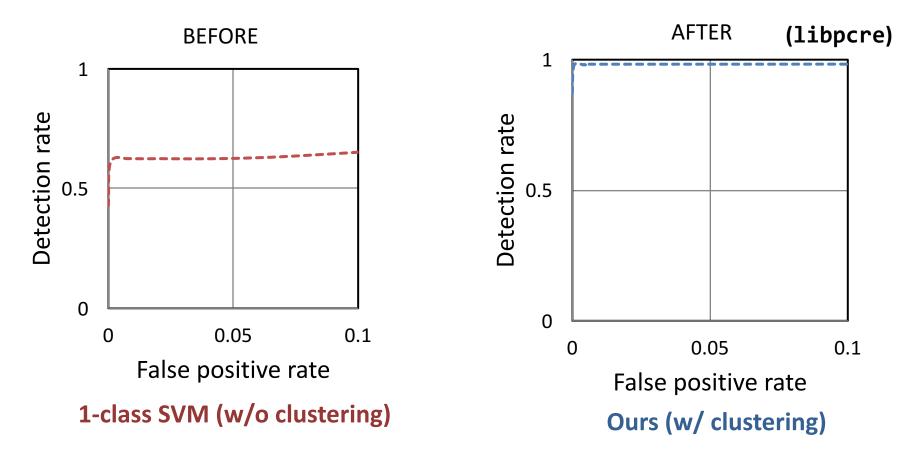
A trace segment represented by matrices

Montage Anomalies Fall Between Clusters



Function call trace (collected through Pintool)

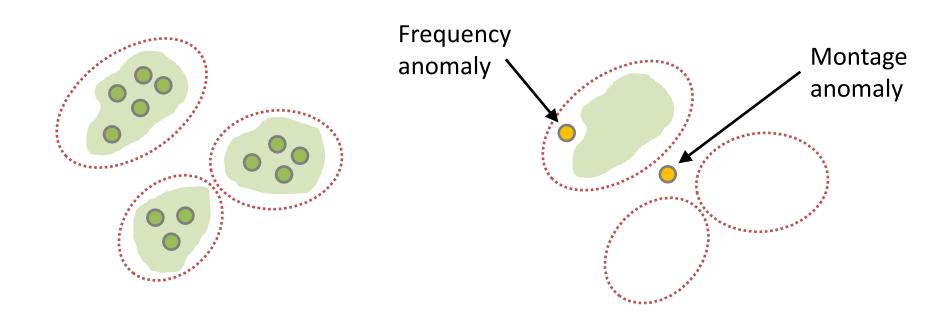
Comparison of Detection Capabilities Against Montage Anomalies



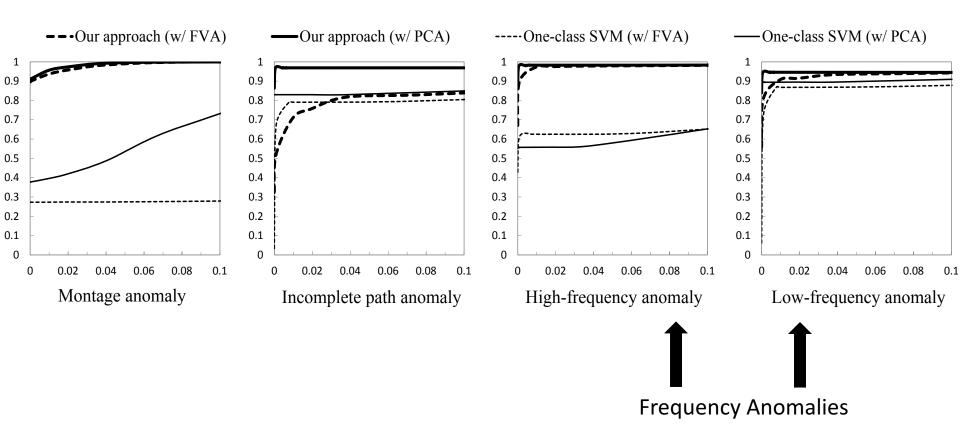
A specialized constrained agglomerative clustering algorithm (on co-occurrence matrices)

Our Operations

- Inter-cluster training
- Inter-cluster detection on co-occurrence matrices
- Intra-cluster training Intra-cluster detection on frequency matrices



Exp 1: Detection Accuracy vs. False Positive in Synthetic Anomalies



Under 10-fold cross-validation with 10,000 normal test cases, 1,000 synthetic anomalies.

Exp 2: Detection of Real-world Attacks in Complex Programs

libpcre

Training w/ 4,800 normal behavior instances (34K events each)

Training w/ 11,027 normal behavior instances (44K events each)

sendmail

Training w/ 6,579 normal behavior instances (1K events each)

Flag variable overwritten attacks w/ various lengths Regular Exp. DoS 3 malicious patterns 8-23 strings to match Directory harvest attack w/ probing batch sizes: 8 to 400 emails

100% Detection accuracy0.01% Average false alarm rate

What is the detection overhead?

Summary for Global Trace Analysis

Security Guarantees:

Detects 1. Co-occurrence anomalies 2. Frequency anomalies

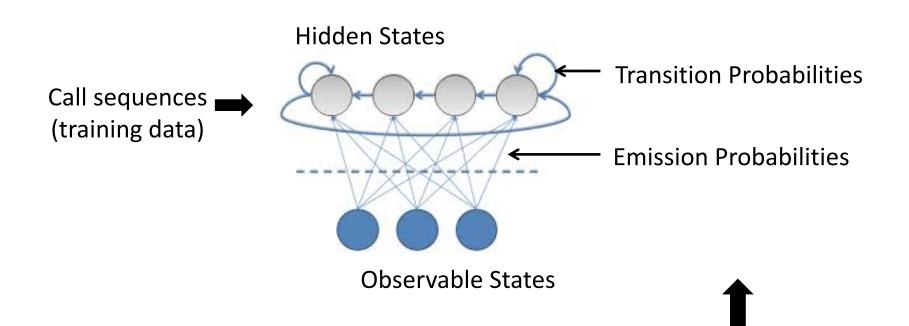
Main Features:

1. Extremely long traces

2. Low false alarm rate

Tradeoffs:

Path insensitive (orderless)



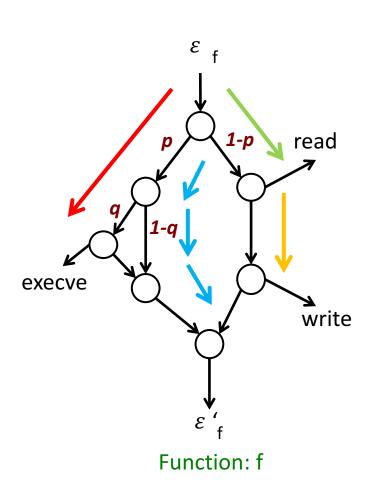
HMM-based program anomaly detection

- Probabilistic
- Path sensitive
- Local analysis

Want to be better than random initialization

[Forrest et al. 1999]

STILO: STatically InitiaLized markOv



Transition probability of a call pair is its likelihood of occurrence during the execution of the function

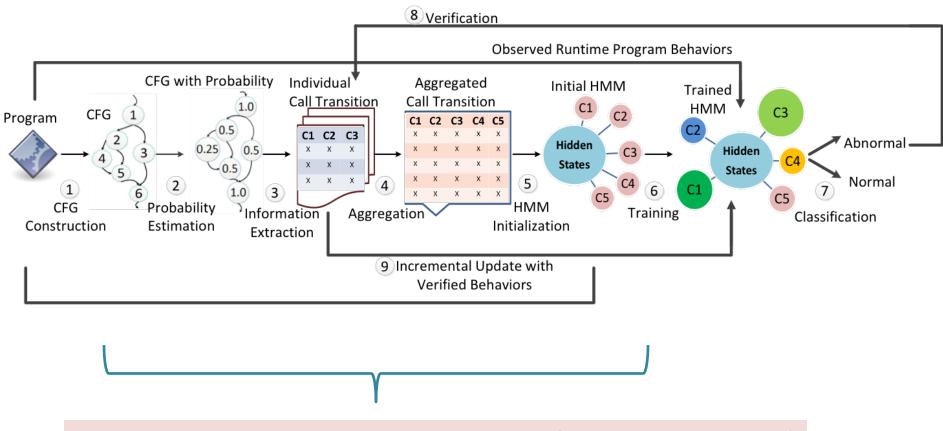
Example of call pair	Transition probability			
read> write	1-p			
read> read	0			
execve $\longrightarrow \epsilon_{f}'$	pq			

	ε _f '(exit)	read		V	vrite	exe	ecve	
ε _f (entry)	p(1-q)		1-p		0		pq	
read	0		0		1-p		0	J
write	1-p		0		0		0	
execve	pq		0		0		0	

p, q are statically estimated.

[K. Xu, D. Yao, B. Ryder, K. Tian. IEEE CSF '15]

Our STILO Workflow

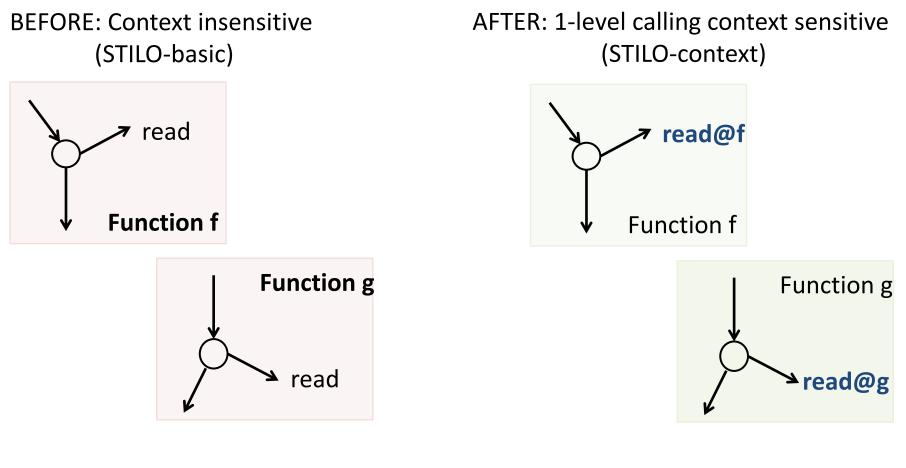


Static Program Analysis based HMM Initialization (Our New Contributions)

Improvement with Context Sensitivity

Why need context sensitive detection?

Improvement with Context Sensitivity



... read read

[K. Xu, K. Tian, D. Yao, B. Ryder. IEEE DSN '16]

... read@f read@g

Scalability: K-mean clustering reduces the # of hidden states

Reduction of Hidden States for Efficiency

Before clustering

After clustering

One-to-one mapping -- a hidden state represents a single call

Many-to-one mapping -- a hidden state may represent multiple similar calls

Program Model	# distinct calls	# states after clustering	Estimated training time reduction
bash	1366	455	88.91%
vim	829	415	74.94%
proftpd	1115	372	88.87%

- K-mean clustering, based on similarity between call-transition vectors
- Aim at 1/2 to 1/3 reduction of nodes

STILO Evaluation

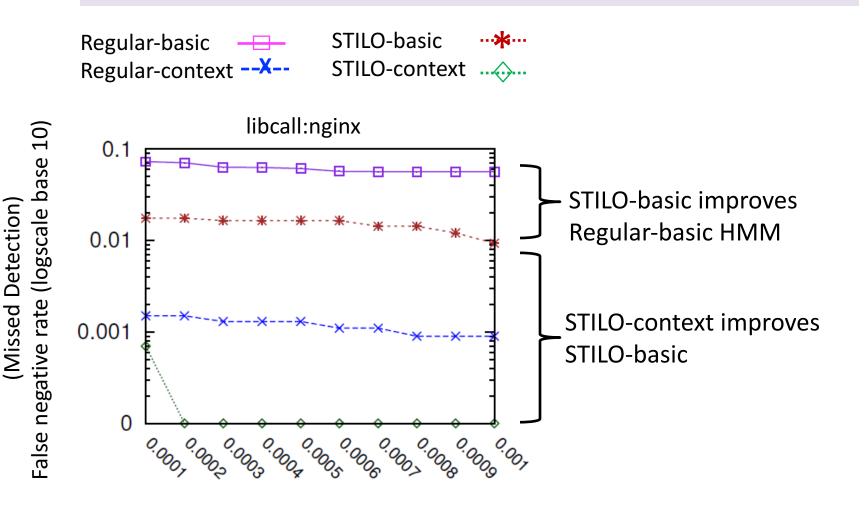
Model	With Static Analysis	With Caller Context
Regular-basic	-	-
Regular-context	-	Yes
STILO-basic	Yes	-
STILO-context	Yes	Yes

2 Linux server programs: nginx, proftpd6 Linux utility programs: flex, grep, gzip, sed, bash, vim

1. Normal:	total 130,940,213 segments
2. Abnormal-S:	160,000 Abnormal-S segments (permute 1/3 calls)
3. Abnormal-A:	attack call sequences obtained from exploits

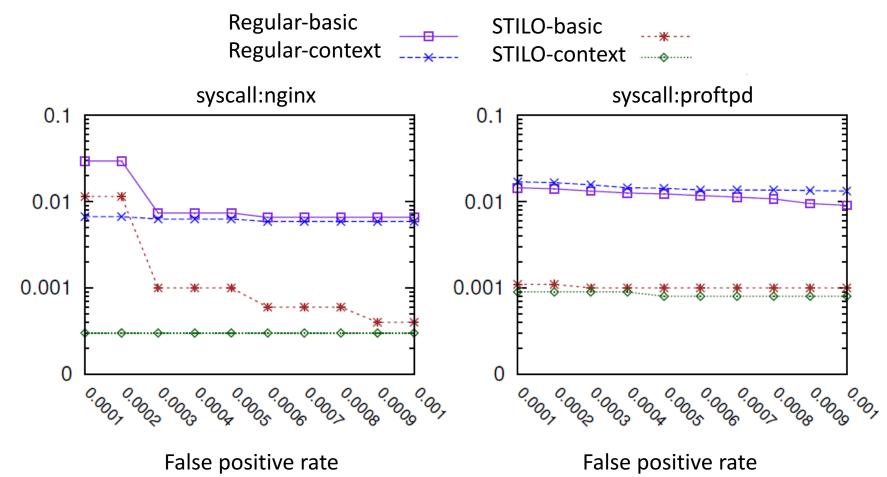
Dyninst for static program analysis, Jahmm library for HMM, 1st-order Markov, strace/ltrace for collection, SIR for test cases, 10-fold cross validation, 15-grams from traces

For libcalls, false negative (missed detection) of context-sensitive models drops by 2-3 orders

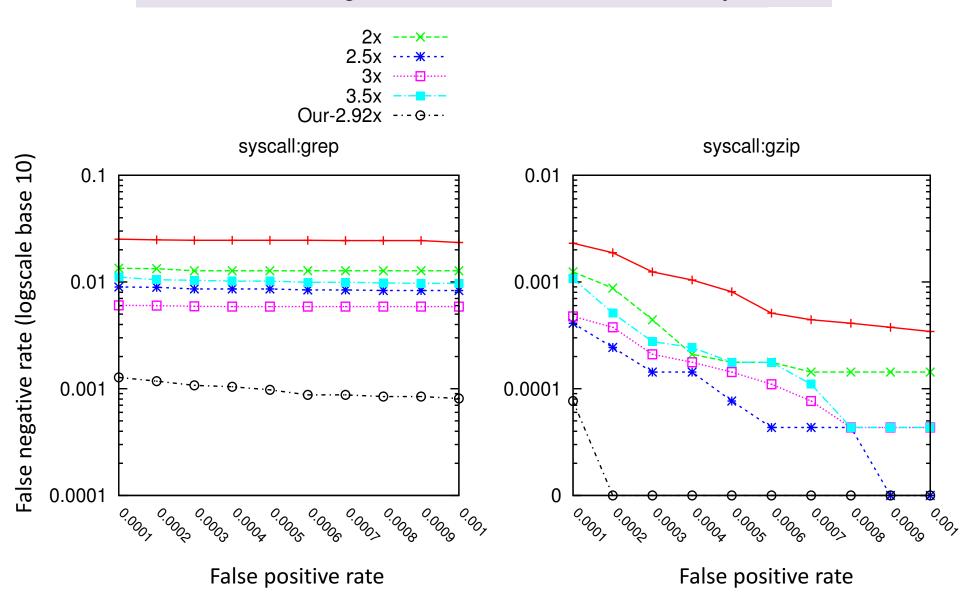


False positive rate (False alarm)

For syscalls, context improves false negative rate by 10 folds. Less dramatic improvement than libcalls.



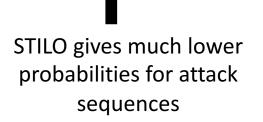
Increasing hidden states in regular HMM does not guarantee classification accuracy



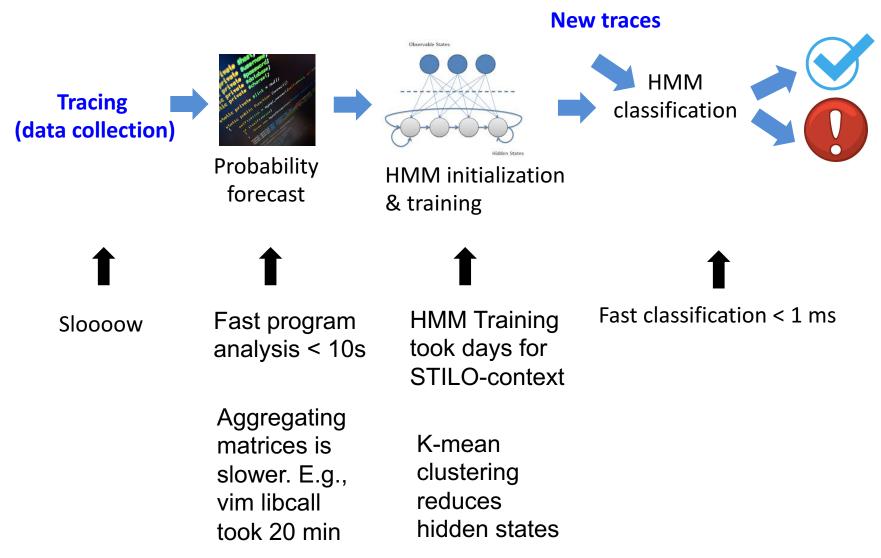
Detection of Real-world Attacks

se	ROP a egment: gzip (sy	s against	
	ID	Prob in STILO	Prob in Regular HMM
	S_1	0	0.2
	S ₂	$2.20 \times e^{-15}$	0.29
	S ₃	1.54 × e ⁻⁵	0.25
	S_4	0	0.27
	S ₅	0.0005	0.33
	S ₆	0	0.23
	S ₇	0.0004	0.26
		•	

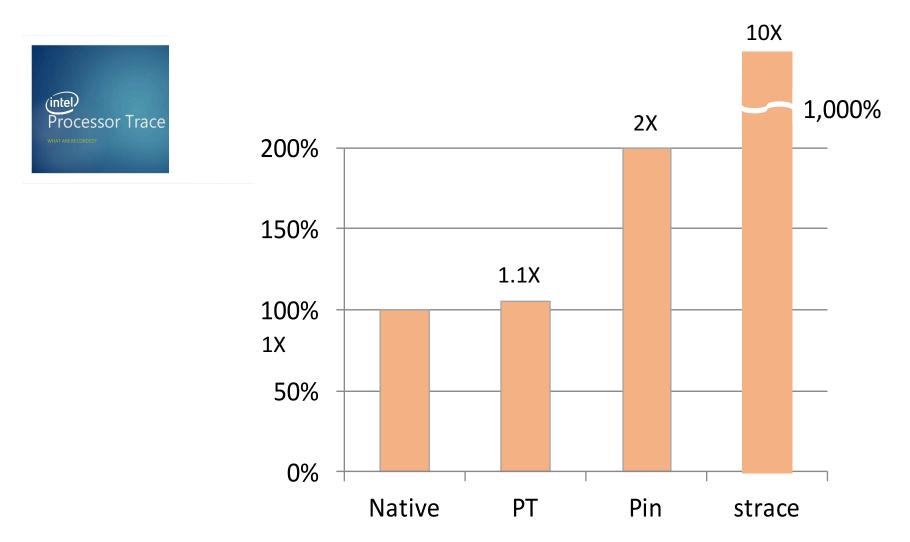
Exploit	Payload		
Buffer Overflow	ROP		
(gzip)	ROP_syscall_chain		
Backdoor (proftpd)	bind_perl		
	bind perl ipv6		
	generic cmd execution		
	double reverse TCP		
	reverse_perl		
	reverse_perl_ssl		
	reverse_ssl_double_telnet		
Buffer Overflow (proftpd)	guess memory address		



STILO Overhead



Hardware-based Instruction-level Tracing



Security/Privacy as Enablers

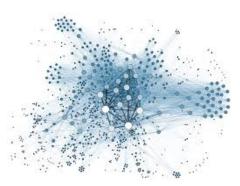
http://resources.infosecinstitute.com

RasPilot

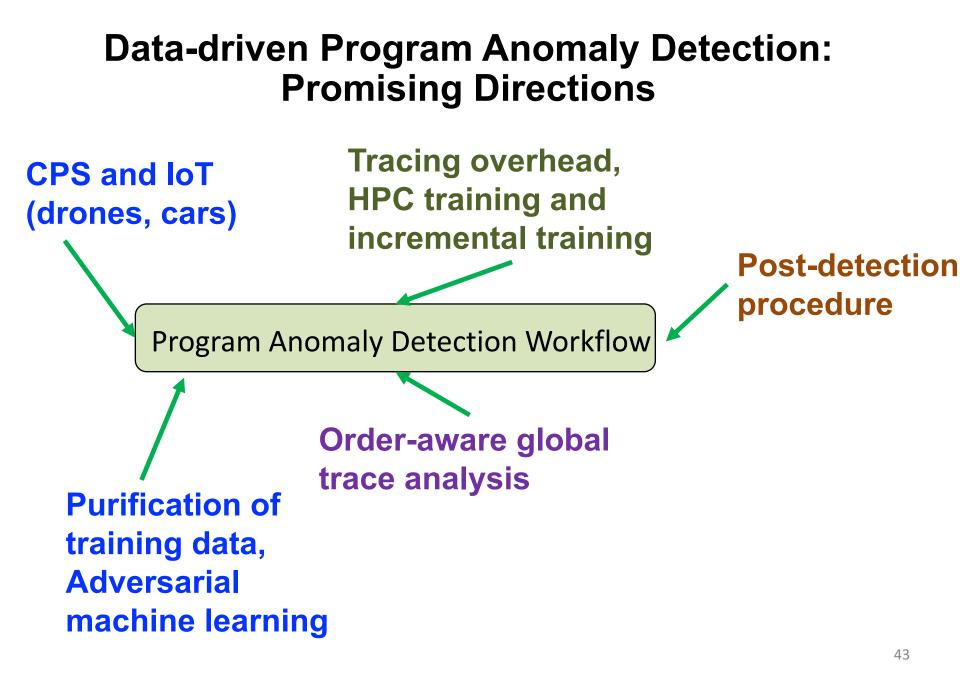
Intelligent secure systems benefiting large populations

Enable new infrastructures

Improve quality of life



Enable new discoveries



Program Anomaly Detection Labs

Lab Scripts and Instructions

https://github.com/subbyte/padlabs

Remote Lab Environment (ssh access)

\$ ssh ccs2016@parma.cs.vt.edu -p 2222

Task 0 (make your own directory) \$ mkdir yourdir; cd yourdir