
Deployable and Measurable Security in
Software and Systems

��� (Daphne Yao)
Department of Computer Science

Virginia Tech

ACM SIGSAC Turing Celebration China 2019

Testbeds, Benchmarks, Measurement,
Open Source Tools, Deployment

Address space layout randomization
under JIT-ROP attacks

Web Security and Payment

Make secure coding
more effective

SIGSAC is planning a women’s networking dinner event at ACM CCS ‘19

4
https://sites.google.com/a/vt.edu/cyberw2017/home

Women in Cybersecurity (CyberW) Workshop, Dallas, TX

Acknowledgements to
Yao Group Members

Sazzadur Rahaman Ya Xiao Sharmin Afrose Xiaodong Yu Salman Ahmed Miles Frantz Yuan Luo
(visiting student)

Acknowledgements to Yao Group’s Recent Collaborators

Gang Tan (PSU)Trent Jaeger (PSU)

Bart Miller
(UW-Madison)

Xu Liu
(Williams & Mary)

Fabian Monrose
(UNC-Chapel Hill)

N. Asokan
Aalto U (Finland)

Elisa Bertino
(Purdue U)

Gang Wang (VT)

Raheem Beyah
(GaTech)

Na Meng (VT)

Software is everywhere

7
https://www.eitdigital.eu/news-events/blog/article/guess-what-requires-150-million-lines-of-code/

Ford GT has over 10 million lines of code

F-22 Raptor has 2 million lines of code

Boeing 787 Dreamliner has 7 million lines of code

Ford pickup truck F-150 has 150 million lines of code

Security of Critical Infrastructure & Cyber-physical systems (CPS)

8
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/ICS-Security-2017-eng.pdf
https://www.infosecurity-magazine.com/news/critical-infrastructure-more/

Industrial control systems (ICS)

9

Code gets closer and closer to your body

10

Data Breach at the Retail Giant Target

Target Data Breach (Duration from Nov. 27 to Dec. 15, 2013)

11
Breaking the Target. Yao et al. https://arxiv.org/pdf/1701.04940.pdf

3

Fazio Mechanical

Target network

PoS terminals

Compromised Hosts

Drop sites

①

②

③

④

⑤

⑥
⑦

1. Phishing attack
against Fazio
Mechanical Service

2. Accessing the
Target network

3. Gaining access to
vulnerable machines

4. Installing malware
on PoS terminals

5. Collecting card
information from PoS

6. Moving data out of
the Target network

7. Aggregating stolen
card and person data

Attacker

control path
data flow

Fig. 2. Attack steps of the Target breach.

2.1.2 Phase II: PoS Infection
Due to Target’s poor segmentation of its network, all that
the attackers needed in order to gain access into Target’s
entire system was to access its business section. From
there, they gained access to other parts of the Target
network, including parts of the network that contained
sensitive data. Once they gained access into Target’s
network they started to test installing malware onto the
point of sales devices. The attackers used a form of
point of sales malware called BlackPOS, which is further
discussed in Section 3.

2.1.3 Phase III: Data collection
Once BlackPOS was installed, updated and tested. The
malware started to scan the memory of the point of sales
to read the track information, especially card numbers, of
the cards that are scanned by the card readers connected
to the point of sales devices.

2.1.4 Phase IV: Data exfiltration
The card numbers were then encrypted and moved
from the point of sales devices to internal reposito-
ries, which were compromised machines. During the
breach the attackers took over three FTP servers on
Target’s internal network and carefully chose backdoor
user name “Best1 user” with password “BackupU$r”,
which are normally created by IT management software
Performance Assurance for Microsoft Servers. During peak
times of the day, the malware on the point of sale
devices would send credit card information in bulk to

the closest FTP Server [12]. The stolen card information is
then relayed to other compromised machines and finally
pushed to drop sites in Miami and Brazil [13].

2.1.5 Phase V: Monetization
Sources indicate the stolen credit card information was
aggregated at a server in Russia, and the attackers col-
lected 11 GB data during November and December 2013.
The credit cards from the Target breach were identified
on black market forums for sell [14]. At this point, it is
unclear how these sellers, e.g., Rescator (nick name), is
connected with the stolen card and personal information.
In Section 4.3, we describe the well studied case of TJX
credit card breach. It hints possible paths of peddling
stolen credit cards in the black market.

2.2 Targets Security
Target did not run their systems and networks without
security measures. They had firewalls in place and they
attempted to segment their network using Virtual local
area networks (VLAN) [7]. Target also deployed Fire-
Eye, a well-known network security system, six months
prior to the breach. FireEye provides multiple levels of
security from malware detection to network intrusion
detection system (NIDS).

However, the breach demonstrates that sensitive data
in Target, e.g., credit card information and personal
records, is far from secure. Target failed at detecting or
preventing the breach at several points, among which
we list the four most vital ones:

https://arxiv.org/pdf/1701.04940.pdf

BlackPOS (Memory Scrapper Malware)

https://blog.trendmicro.com/trendlabs-security-intelligence/new-blackpos-malware-emerges-in-the-wild-targets-retail-accounts/

• Runs as a Windows service “POSWDS”
• Scans a list of processes that interact with the card reader
• Uploads credit cards to a compromised server (internal network repository)

https://blog.trendmicro.com/trendlabs-security-intelligence/new-blackpos-malware-emerges-in-the-wild-targets-retail-accounts/

How can a HVAC vendor’s credential access Target’s
internal networks?

13

A Theory About How Hackers Reached Target from Fazio

Vendor

Target admin

1. Php scripts uploaded as

invoices to Target’s billing portals
2. Web server attempted to

open it; code got executed

https://www.owasp.org/index.php/Unrestricted_File_Upload

https://aroundcyber.files.wordpress.com/2014/09/aorato-target-report.pdf

SAP Billing Portal

https://www.owasp.org/index.php/Unrestricted_File_Upload
https://aroundcyber.files.wordpress.com/2014/09/aorato-target-report.pdf

FireEye’s Intrusion Detection System (IDS)

15

Target’s security team in Bangalore received FireEye alerts; sent alerts to Target headquarters

FireEye’s auto-malware-delete function was turned off

Target breach starts

Nov. 27

FireEye alerts

Dec. 15, 2013

Breach ends

Nov. 30 Dec. 2

More FireEye alerts

16

"Target was certified as meeting the standard for the payment card industry
(PCI) in Sept. 2013."

-- Gregg Steinhafel (Target then CEO, stepped down in 2014)

https://www.pcisecuritystandards.org/

https://www.pcisecuritystandards.org/documents/PCI%20SSC%20Quick%20Reference%20Guide.pdf

Payment Card Industry Security Standard Council Manages All
Systems That Touch Payment Cards

18

Protect stored cardholder data

Regularly test security systems and processes

PCI data security
standard (DSS) is a
standard for securing
electronic payments

https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf

Good News: Multi-factor Authentication -- A Lesson Learned from the
Target Breach

https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf

20

Bad News: Current Enforcement of Data Security Standards is Weak

But security guarantees are often vague

PC
I m

er
ch

an
t l

ev
el

s

https://www.plumvoice.com/resources/blog/achieve-pci-compliant-tech/

https://www.plumvoice.com/resources/blog/achieve-pci-compliant-tech/

Can We Measure the Strength of PCI Enforcement?

Our BuggyCart Testbed embeds 35 vulnerabilities (will open source very soon)

Network security (14 test cases)
System security (7 test cases)
Web Application security (8 test cases)
Secure storage (6 test cases) – cannot be detected by external scans

Our BuggyCart Testbed and Commercial PCI Scanners Selected

PCI Scanners
Scanner 1
Scanner 2
Scanner 3
Scanner 4
Scanner 5
Scanner 6
Scanner 7
Scanner 8

Worrisome PCI scanners security – Summary of Testbed Results
Scanner 1 Scanner 2 Scanner 3 Scanner 4 Scanner 5

Baseline: #Vul.
Detected (29 Total*)

21 16 17 16 7

Certified: #Vul.
Remaining

7 15 18 20 25

#Vul. detected, but
no need to fix

0 3 7 7 4

*All 29 vulnerabilities violate the PCI’s data security specifications and are required by the
specifications to be removed.

Web Security Cases Are Particularly Weak

Scanner 1 Scanner 2 Scanner 3 Scanner 4 Scanner 5

Assess e-commerce sites with our PCICheckerLite tool

Using HTTP to transmit Signup form

Wrong hostname

Self-signed certificate

Summary of Measurement Findings on the Payment Card Industry

5 out of 6 PCI scanners are not compliant with ASV scanning guidelines

– certifying merchants that still have major vulnerabilities

94% payment-card-taking websites (out of 1,203) evaluated, that’re

supposed to be PCI compliant, are not

Is the concept of for-profit security certification an oxymoron?

Our ongoing work -- in touch with the payment card industry security standards council

Specifications are comprehensive, enforcement is tough

28

How Could Researchers Help?
To Bring in Transparency and Science

Very few high-quality open source web scanning tools available

Who Wouldn’t Want to Write Secure Code?

29

Budget

Resources

Time

Why Care About Deployment and Secure Coding Practices? [ICSE ‘18]

“Addingcsrf().disable() solved the issue!!! I have no
idea why it was enabled by default”

Our work examined 497 Java and security related StackOverflow Posts

“adding -Dtrust_all_cert=true
to VM arguments”

“I want my client to accept
any certificate (because I'm
only ever pointing to one
server)”

[Meng, Yao, et al. ICSE 2018] 30

How Much Influence Does StackOverflow Have?

Insecure Posts Total
Views

No. of
Posts

Min
Views

Max
Views

Average

Disabling CSRF
Protection*

39,863 5 261 28,183 7,258

Trust All Certs 491,567 9 95 391,464 58,594

Obsolete Hash 91,492 3 1,897 86,070 30,497

Total Views 622,922 17 - - -

StackOverflow posts that make insecure suggestions
have a large influence on developers.

* In Java Spring Security for web applications

31
[Meng, Yao, et al. ICSE 2018]

Cyberbullying on Stackoverflow

32https://stackoverflow.com/questions/10594000/when-i-try-to-
convert-a-string-with-certificate-exception-is-raised

“the "accepted answer" is wrong and INDEED it is
DANGEROUS. Others who blindly copy that code
should know this.”

User: skanga
[0]

User: MarsAtomic
[6,287]

“Do NOT EVER trust all certificates. That is very
dangerous.”

“once you have sufficient reputation you will be
able to comment”

“If you don't have enough rep to comment, …
then participate … until you have enough rep.”

[Meng, Yao, et al. ICSE 2018]

How well are crypto implementations written?

Can one measure it?

Crypto Code in Java Can Be Complex to Analyze

[Sazzadur et al. 2019]

Reduction of False Alerts by Our Refinements -- Off-the-shelf
Program Slicing Would Fail

https://arxiv.org/pdf/1806.06881.pdf[Sazzadur et al. 2019]

Reduction of false positives with refinement insights in 46

Apache projects (94 root-subprojects) and 6,181 Android

apps.

Breakdown of the reduction of false positives due to five

of our refinement insights.

https://arxiv.org/pdf/1806.06881.pdf

Maximum, minimum and average LoC: 2,571K (Hadoop),
1.1K (Commons Crypto), and 402K, respectively

Deployment-quality – CryptoGuard handles complex code

CryptoGuard Has the Deployment-grade Accuracy

https://arxiv.org/pdf/1806.06881.pdf[Sazzadur et al. 2019]

https://arxiv.org/pdf/1806.06881.pdf

Android App Libraries Have Issues
TABLE VI: Violations in 5 popular libraries (manually con-
firmed).

Package name Violated rules
com.google.api 3, 4, 5, 7
com.umeng.analytics 7, 9, 12, 16
com.facebook.ads 5, 9, 16
org.apache.commons 5, 9, 16
com.tencent.open 2, 7, 9

SSLSocket is used in WebSocketClient without manu-
ally verifying the hostname 10. In comparison, Google Play’s
inspection appears to only detect obvious misuses [2].

Grouping security violations by app popularity or category
did not show substantial differences across groups.

Summary of experimental findings.

• Our heuristic algorithms for reducing false positives are
extremely effective. For eight rules, they bring an 86%
reduction of alarms in Apache projects and an 85% re-
duction in Android applications. We manually confirmed
that all the removed alerts are indeed false positives. We
also carefully examined the 2,008 Apache alerts (after
applying heuristics) and concluded that the overall false
positive (FP) rate is 2.34%.
Our evaluation shows that RIGORITYJ cover more com-
plex rules and achieves better soundness than other com-
mercial and open-sourced tools.

• 39 out of the 46 Apache projects have at least one
type of cryptographic misuses and 33 have at least two
types. There is a widespread insecure practice of storing
plaintext passwords in code or in configuration files.
Insecure uses of SSL/TLS APIs are set as the default
configuration in some cases. There is virtually no warning
that documents these insecure configurations. Users of the
projects are unknowingly at risk.

• 5,596 (91%) out of the 6,181 Android apps have at
least one type of cryptographic misuses and 4,884 (79%)
apps have at least two types. 96% of the vulnerabil-
ities come from the libraries that are packaged with
the applications. Some libraries are from large software
firms. RIGORITYJ’s detection for SSL/TLS API misuses
is more comprehensive than the built-in screening offered
by Google Play.

VI. DISCUSSION

Code correction. Most of the Apache developers’ responses to
our vulnerability disclosure reports were prompt and insightful.
We highlight the feedback from some projects. Apache Spark
promised to remove the support of dummy hostname verifier
and trust store. Ofbiz promised to fix the reported issues
of constant IVs and KeyStore passwords. Apache Ranger
already fixed our report of constant default values for PBE [8]
and insecure cryptographic primitives [3]. Regarding MD5,
Apache Hadoop justifies that its MD5 use is for the per-block
checksums for Hadoop file systems (HDFS)’s consistency and
the setup does not assume the presence of active adversaries.

10Guide for the correct use can be found at https://developer.android.com/
training/articles/security-ssl#WarningsSslSocket.

For some cases, developers explained that certain oper-
ational constraints (e.g., backward compatibility for clients)
prevent them from fixing the problems. For example, Apache
Tomcat server has to use MD5 in its digest authentication code,
because major browsers do not support secure hash functions
(as defined in RFC 7616) for digest authentication. Digest
authentication is rarely used in the wild11.

The thorniest issue is secret storage. One justification for
developers’ choice of storing plaintext passwords or keys in
file systems is for supporting humanless environments (e.g.,
automated scripts to manage services). However, first, not
all deployment scenarios are server farms in a humanless
environment. Projects should also provide the secure option,
which is to use Java callback to prompt human operators for
passwords. Second, not properly disclosing and documenting
the insecure configurations does a great disservice to the
project’s users.

Our limitations. No static analysis tool is perfect. RIGORI-
TYJ is no exception. We discuss the detection limitations of
RIGORITYJ and future improvements.

• False positives. Our current heuristics design can be
further improved. A major source of false positives comes
from the use of custom objects to store secret information
with other non-secret meta-data. Specifically, if one prop-
erty of a custom object is set with a non-secret constant
and another property of that custom object defines a secret
key, then RIGORITYJ flags the non-secret, which is a false
positive. We plan to implement new slicing operations to
remove this specific type of irrelevant constants.
Also, RIGORITYJ detects the existence of API misuses
in a code base but does not verify that the vulnerable
code will be triggered at runtime. This issue is a general
limitation of static program analysis.
Apache Spark confirmed insecure PRNG uses, but stated
that the affected code regions are not security critical.12

Eliminating this type of alerts is difficult, if possible at
all, as the analysis needs to be aware of custom defined
security criteria (e.g., what constitutes critical security)
with in-depth knowledge about project semantics.

• False negatives. Because of the lack of ground truth, we
are unable to report false negatives. False negatives are
possible. Our heuristics may cause false negatives due
to the deviations from standard programming idioms.
For example, Heuristic II would ignore 6A5B7C8A as
a pseudo-influence from the instruction, byte[] key
= DatatypeConverter.parseHexBinary("6A5B7C8A").
However, these conversions are mostly required to
absorb values from external sources (e.g., file system,
network, etc.). Any such conversions of static values
under the rules of Table I are highly unlikely. Evidently,
we did not observe any such cases during our manual
investigation of Apache alerts. In addition, RIGORITYJ
runs intra-procedural forward slicing for Rules 6 and 15,
where in theory, inter-procedural forward slicing could
improve the coverage. Although, for Rule 15, it may not
make much difference, because KeyPairGenerator

11https://security.stackexchange.com/questions/152935/why-is-there-no-
adoption-of-rfc-7616-http-digest-auth

12It is unclear why Spark chose to use insecure PRNG, even for non-security
purposes.

12

Rules

2 Predictable pwds for PBE

3 Predictable pwds for keystores

4 Dummy hostname verifier

5 Dummy cert. verifier

7 Use of HTTP

9 Weak PRNG

12 Static IV

16 Broken hash

96% of detected issues come from libraries

https://arxiv.org/pdf/1806.06881.pdf[Sazzadur et al. 2019]

https://arxiv.org/pdf/1806.06881.pdf

CryptoAPIBenchmark and Comparison with State-of-the-arts

Benchmarks help motivate researchers to improve their tools;
CrySL (from Bodden’s group) has shown improved performance

Results as of April 8, ‘19

Ongoing Work on Transitioning CryptoGuard to Practice

[Science of Security] Putting together a benchmark for evaluating detection
accuracy

[Transition to Practice] Deployment in DHS Software Assurance
Marketplace

[Engaging Industry/Government] Training, feedback and improvement
40

How well are fine-grained address space layout randomization
(ASLR) solutions, under JIT-ROP attacks?

Can one measure it?

Our work on fine-grained ASLR is under review

Measurement of Deep Learning for Software Security

Harness the Deep Learning Revolution for Security;
Ask Measurement Questions

[General purpose embeddings vs. task-specific embeddings]

[Security-relevant datasets]

[Security-relevant tasks, benchmarks]

[Evaluation methodology -- recipes]

[Security-specific interpretation of ML findings]

44

The Paparazzi

45

Researchers Have a Unique Position --
Bringing in Transparency and Science

Testbeds, Benchmarks, Measurement,
Open Source Tools, Deployment

Deployable and Impactful Security Focus at ACSAC ‘19

• Needs to identify key deployment challenges, explain the deficiencies in state-of-the-art solutions, and

experimentally demonstrate the effectiveness of the proposed approaches and (potential) impact to the real

world.

• May involve prototyping, defining metrics, benchmark evaluation, and experimental comparison with state-of-

the-art approaches in testbeds or real-world pilots, possibly with operational data.

Hard Topic Theme: Deployable and Impactful Security

Questions and
comments?

48

