CS 4824/ECE 4424: Generative vs. Discriminative Classifiers

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Generative vs. discriminative classifiers

- Training classifiers involve estimating $f: X \rightarrow Y$ or $P(Y|X)$

- Generative classifiers (e.g., Naïve Bayes)
 - Assumes some functional form for $P(X|Y), P(Y)$
 - Estimates parameters of $P(X|Y), P(Y)$ from training data
 - Use Bayes rule to calculate $P(Y|X)$
 - Y is boolean

- Discriminative classifiers (e.g., Logistic Regression)
 - Assumes some functional form for $P(Y|X)$
 - Estimates parameters of $P(Y|X)$ directly from training data

- **NOTE**: Even though our derivation of the form of $P(Y|X)$ made GNB-style assumptions, the *training procedure* for logistic regression does not!
Use Naïve Bayes or Logistic Regression?

- Consider
 - Restrictiveness of modeling assumption
 - How well we can learn assuming we have infinite data?
 - Learning curve
 - Rate of convergence (in amount of training data) toward asymptotic (infinite data) hypothesis
Gaussian Naïve Bayes vs. Logistic Regression

\[Y \in \{0, 1\} \]

- Consider boolean \(Y \), continuous \(X_i \)'s
- Number of parameters to estimate

\[X = \langle x_1, \ldots, x_n \rangle \]

\[\rightarrow \quad \text{GNB} \]

\[P(X_i \mid Y=y_k) \sim N(\mu_{ik}, \sigma_{ik}) \]

\[n + 1 \]

\[4n + 1 \]

\[\text{GNB2} \]

\[P(X_i \mid Y=y_k) \sim N(\mu_{ik}, \sigma_i^2) \]

\[3n + 1 \]

\[\text{LR} \]

\[P(Y=0 \mid x, w) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i x_i)} \]

\[n + 1 \]

© Debswapna Bhattacharya
Gaussian Naïve Bayes vs. Logistic Regression

- Consider boolean Y, continuous X_i's
- Number of parameters to estimate
 - GNB: $4n+1$
 - GNB2: $3n+1$
 - LR: $n+1$

- Estimation method
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled
Case study

- Assume $Y = \text{PlayBasketball}$ (boolean) $X_1 = \text{Height}$ $X_2 = \text{Age}$

\[Y_{\text{New}} \leftarrow \arg \max_{y_k} P(Y \mid y_k) \prod_i P(X_{i\text{New}} \mid Y = y_k); \text{ assume } P(Y = 1) = 0.5 \]
Gaussian Naïve Bayes vs. Logistic Regression

- Recall the two assumptions while deriving the form of LR from GNB
 - 1. \(X_i \) are conditionally independent of \(X_k \) given \(Y \). C.I. assumption
 - 2. \(P(X_i \mid Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i) \); NOT \(\mathcal{N}(\mu_{ik}, \sigma_{ik}) \)

- Consider three learning methods:
 - GNB (assumption 1 only) \hspace{2em} \text{can be non-linear d.s.}
 - GNB2 (assumption 1 and 2) \hspace{2em} \text{linear d.s.}
 - LR \hspace{2em} \text{linear d.s.}

- Which method works better if we have infinite training data and
 - Both (1) and (2) are satisfied \(\text{GNB} = \text{GNB2} = \text{LR} \) \hspace{2em} \text{LR? GNB}
 - Neither (1) nor (2) is satisfied \hspace{2em} \text{LR} \succ \text{GNB2} \succ \text{GNB}
 - (1) is satisfied but not (2) \hspace{2em} \text{GNB} \succ \text{LR} \succ \text{GNB2}
Gaussian Naïve Bayes vs. Logistic Regression

- Recall the two assumptions while deriving the form of LR from GNB
 - 1. \(X_i \) are conditionally independent of \(X_k \) given \(Y \)
 - 2. \(P(X_i \mid Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i) \); NOT \(\mathcal{N}(\mu_{ik}, \sigma_{ik}) \)

- Consider three learning methods:
 - GNB (assumption 1 only)
 - GNB2 (assumption 1 and 2)
 - LR

- Which method works better if we have infinite training data and

 - Both (1) and (2) are satisfied \(LR = GNB2 = GNB \)
 - Neither (1) nor (2) is satisfied \(LR > GNB2, \ GNB > GNB2 \)
 - (1) is satisfied but not (2) \(GNB > LR, \ LR > GNB2 \)
Gaussian Naïve Bayes vs. Logistic Regression

- What if we have finite training data?

- GNB and LR converge at different rates to asymptotic (∞ data) error

- Let $\varepsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples

- Let d be the number of features $<X_1, X_2, \ldots, X_d>$

 - $\varepsilon_{LR,n} = \varepsilon_{LR,\infty} + O\left(\sqrt{\frac{d}{n}}\right)$
 - $\varepsilon_{GNB,n} = \varepsilon_{GNB,\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)$

- So GNB requires $d = O(\log d)$ to converge, but LR requires $d = O(d)$
The bottom line

- GNB2 and LR both use linear decision surface, GNB need not

- Given infinite training data, LR is better than GNB2 because the training is free from assumptions (although our derivation of the form of $P(Y|X)$ did)

- But GNB2 converges more quickly to perhaps less-accurate asymptotic error

- And GNB is more biased (assumption 1) and less (assumption 2) than LR, so neither might beat each other.