CS 4824/ECE 4424: Generative vs. Discriminative Classifiers

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Generative vs. discriminative classifiers

- Training classifiers involve estimating $f: X \rightarrow Y$ or P(Y | X)
- Generative classifiers (e.g., Naïve Bayes)
 - Assumes some functional form for P(X|Y), P(Y)
 - Estimates parameters of P(X|Y), P(Y) from training data
 - Use Bayes rule to calculate P(Y|X)
 - Y is boolean
- Discriminative classifiers (e.g., Logistic Regression)
 - Assumes some functional form for P(Y|X)
 - Estimates parameters of P(Y|X) directly from training data
- **NOTE**: Even through our derivation of the form of P(Y|X) made GNBstyle assumptions, the *training procedure* for logistic regression does not!

Use Naïve Bayes or Logistic Regression?

- Consider
 - Restrictiveness of modeling assumption
 - How well we can learn assuming we have infinite data?
 - Learning curve
 - Rate of convergence (in amount of training data) toward asymptotic (infinite data) hypothesis

GaussianNaïve Bayes vs. Logistic Regression $\gamma \in \{0,1\}$

- Consider boolean Y, continuous X_i 's $X = \langle X_1, \dots, X_n \rangle$
- Number of parameters to estimate

- Consider boolean Y, continuous Xi's
- Number of parameters to estimate
 - GNB: 4n+1
 - GNB2: 3n+1

• LR: n+1

- Estimation method
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled

- Recall the two assumptions while deriving the form of LR from GNB
 - 1. X_i are conditionally independent of X_k given Y . C.T. assumption
 - 2. $P(X_i | Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i)$; NOT $\mathcal{N}(\mu_{ik}, \sigma_{ik})$
- Consider three learning methods:
 - GNB (assumption 1 only) can be non-linear d.S.
 - GNB2 (assumption 1 and 2) linear d. S.
 - · LR linear d. S.

© Debswapna Bhattacharya

- Which method works better if we have infinite training data and
 - GNB = GNBZ = LR LR? Both (1) and (2) are satisfied 0 LR) GNB2 GNB> GNB2 Neither (1) nor (2) is satisfied 0 (1) is satisfied but not (2) 0 LR) GNB > LR GNB2 Machine Learning | Virginia Tech

- Recall the two assumptions while deriving the form of LR from GNB
 - $\circ \ \ 1. \ X_i \ \ are \ \ conditionally \ \ independent \ \ of \ \ X_k \ \ given \ Y$
 - 2. $P(X_i | Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i)$; NOT $\mathcal{N}(\mu_{ik}, \sigma_{ik})$
- Consider three learning methods:
 - GNB (assumption 1 only)
 - GNB2 (assumption 1 and 2)
 - LR
- Which method works better if we have <u>infinite training data</u> and
 - Both (1) and (2) are satisfied LR = GNB2 = GNB
 - Neither (1) nor (2) is satisfied LR > GNB2, GNB > GNB2
 - (1) is satisfied but not (2) GNB > LR, LR > GNB2

- What if we have finite training data?
- GNB and LR converge at different rates to asymptotic (∞ data) error
- Let $\varepsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples
- Let d be the number of features $\langle X_1, X_2, ..., X_d \rangle$

$$\varepsilon_{LR,n} = \varepsilon_{LR,\infty} + O(\sqrt{\frac{d}{n}})$$

$$\varepsilon_{GNB,n} = \varepsilon_{GNB,\infty} + O(\sqrt{\frac{\log d}{n}})$$

• So GNB requires $d = O(\log d)$ to converge, but LR requires d = O(d)

Naïve Bayes vs. Logistic Regression

- The bottom line
 - GNB2 and LR both use linear decision surface, GNB need not
 - Given infinite training data, LR is better than GNB2 because the training is free from assumptions (although our derivation of the form of P(Y|X) did)
 - But GNB2 converges more quickly to perhaps less-accurate asymptotic error
 - And GNB is more biased (assumption 1) and less (assumption 2) than LR, so neither might beat each other.