CS 4824/ECE 4424: Generative vs. Discriminative Classifiers

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Generative vs. discriminative classifiers

- Training classifiers involve estimating $f: X \rightarrow Y$ or $P(Y | X)$

- Generative classifiers (e.g., Naïve Bayes)
 - Assumes some functional form for $P(X | Y)$, $P(Y)$
 - Estimates parameters of $P(X | Y)$, $P(Y)$ from training data
 - Use Bayes rule to calculate $P(Y | X)$
 - Y is boolean

- Discriminative classifiers (e.g., Logistic Regression)
 - Assumes some functional form for $P(Y | X)$
 - Estimates parameters of $P(Y | X)$ directly from training data

NOTE: Even through our derivation of the form of $P(Y | X)$ made GNB-style assumptions, the *training procedure* for logistic regression does not!
Use Naïve Bayes or Logistic Regression?

- Consider
 - Restrictiveness of modeling assumption
 - How well we can learn assuming we have infinite data?
 - Learning curve
 - Rate of convergence (in amount of training data) toward asymptotic (infinite data) hypothesis
Gaussian Naïve Bayes vs. Logistic Regression

- Consider boolean Y, continuous X_i's
- Number of parameters to estimate
 - GNB
 - GNB2
 - LR
Gaussian Naïve Bayes vs. Logistic Regression

- Consider boolean Y, continuous X_i's
- Number of parameters to estimate
 - GNB: $4n+1$
 - GNB2: $3n+1$
 - LR: $n+1$

- Estimation method
 - NB parameter estimates are uncoupled
 - LR parameter estimates are coupled
Case study

- Assume \(Y = \text{PlayBasketball} \) (boolean) \(X_1 = \text{Height} \) \(X_2 = \text{Age} \)
 \[Y_{\text{New}} \leftarrow \arg \max_{y_k} P(Y | y_k) \prod_{y_k} P(X_i^{\text{New}} | Y = y_k) \]; assume \(P(Y=1) = 0.5 \)
Gaussian Naïve Bayes vs. Logistic Regression

- Recall the two assumptions while deriving the form of LR from GNB
 - 1. X_i are conditionally independent of X_k given Y
 - 2. $P(X_i | Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i)$; NOT $\mathcal{N}(\mu_{ik}, \sigma_{ik})$

- Consider three learning methods:
 - GNB (assumption 1 only)
 - GNB2 (assumption 1 and 2)
 - LR

- Which method works better if we have infinite training data and
 - Both (1) and (2) are satisfied
 - Neither (1) nor (2) is satisfied
 - (1) is satisfied but not (2)
Gaussian Naïve Bayes vs. Logistic Regression

○ Recall the two assumptions while deriving the form of LR from GNB
 ○ 1. X_i are conditionally independent of X_k given Y
 ○ 2. $P(X_i \mid Y = y_k) \sim \mathcal{N} (\mu_{ik}, \sigma_i)$; NOT $\mathcal{N} (\mu_{ik}, \sigma_{ik})$

○ Consider three learning methods:
 ○ GNB (assumption 1 only)
 ○ GNB2 (assumption 1 and 2)
 ○ LR

○ Which method works better if we have infinite training data and

 ○ Both (1) and (2) are satisfied \quad LR = GNB2 = GNB
 ○ Neither (1) nor (2) is satisfied \quad LR > GNB2, GNB > GNB2
 ○ (1) is satisfied but not (2) \quad GNB > LR, LR > GNB2
Gaussian Naïve Bayes vs. Logistic Regression

- What if we have finite training data?

- GNB and LR converge at different rates to asymptotic (∞ data) error

- Let $\varepsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples

- Let d be the number of features $<X_1, X_2, ..., X_d>$

 - $\varepsilon_{LR,n} = \varepsilon_{LR,\infty} + O\left(\sqrt{\frac{d}{n}}\right)$

 - $\varepsilon_{GNB,n} = \varepsilon_{GNB,\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)$

- So GNB requires $d = O(\log d)$ to converge, but LR requires $d = O(d)$
Naïve Bayes vs. Logistic Regression

- The bottom line
 - GNB2 and LR both use linear decision surface, GNB need not
 - Given infinite training data, LR is better than GNB2 because the training is free from assumptions (although our derivation of the form of $P(Y|X)$ did)
 - But GNB2 converges more quickly to perhaps less-accurate asymptotic error
 - And GNB is more biased (assumption 1) and less (assumption 2) than LR, so neither might beat each other.