CS 4824/ECE 4424: Perceptron

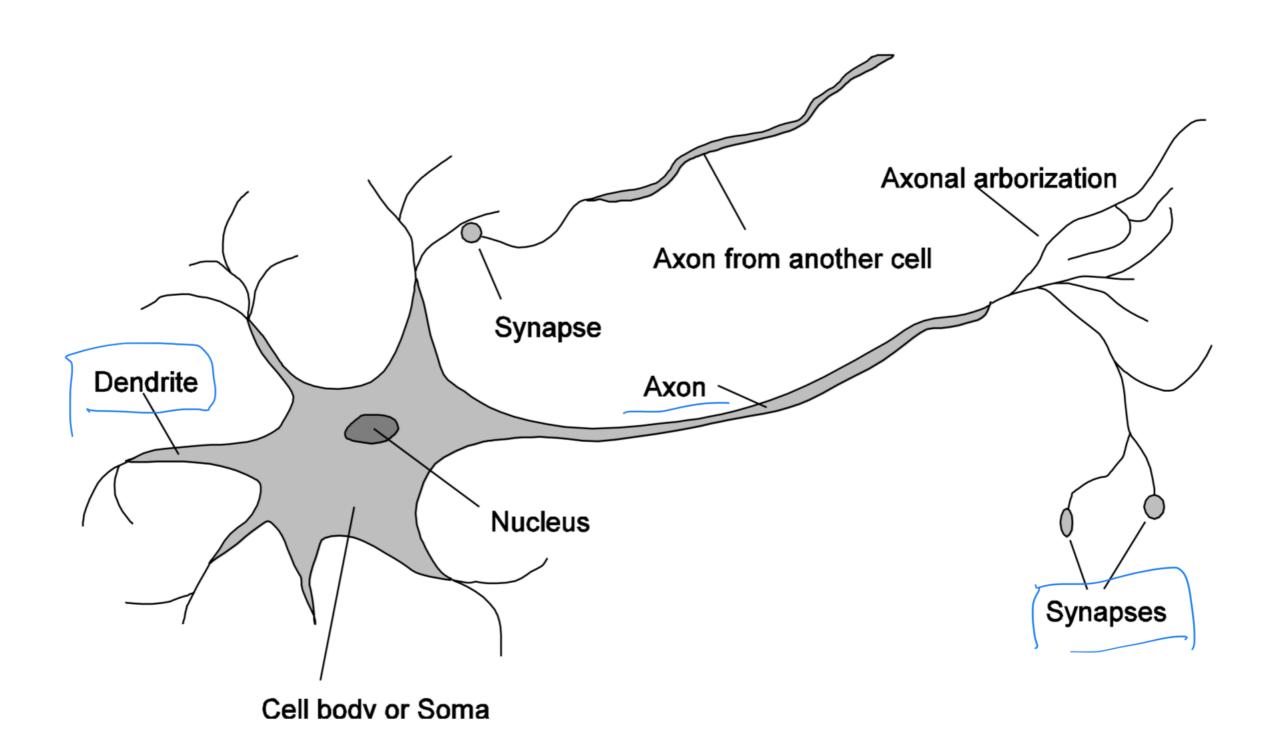
Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Human Intelligence

- Brian is responsible for human intelligence by performing
 - Learning
 - Memorization
 - Cognition and recognition
 - Decision making
- Brian consists of nerve cells called neurons
 - Neurons can propagate nervous signal
 - Neurons form giant network of signal propagation

Neuron



Comparison

Brain

- Network of neurons
- Nerve signals propagate via neural network
- Parallel computation
- Robust (neurons die everyday without any impact)

Computer

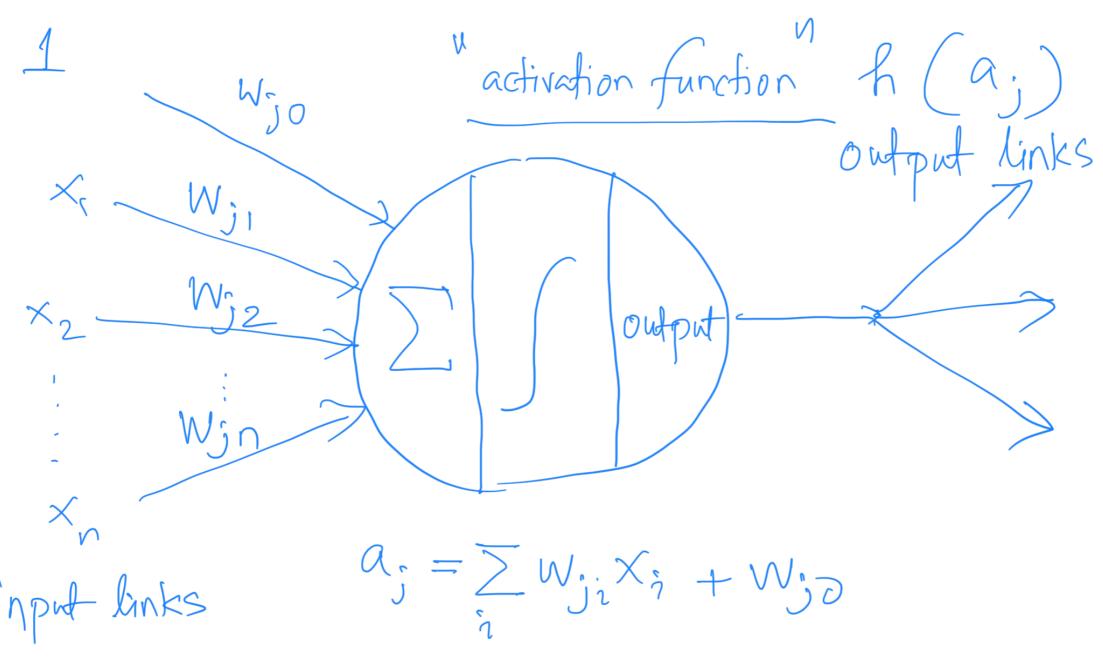
- Bunch of gates
- Electrical signals directed by gates
- Sequential and parallel computation
- Fragile (if a gate stops working, computer crashes)

Artificial Neural Networks

- Key idea: emulate biological neurons for computation
- Artificial neural network (ANN)
 - Units are called "nodes" and correspond to neurons
 - Connections between nodes correspond to synapses
- Correspondence between ANN and biological neural network
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal correspond to neurons firing rate

ANN: Node

Schematic



ANN

 \circ Node: i

- Weights: W
 - Strength of the connection from node *i* to node *j*
 - Input signals x_i weighted by W_{ji} and linearly combined:

$$\circ \left[a_j = \sum_i W_{ji} x_i + w_0 = \mathbf{W}_{ji} x \right]$$

- Activation function: h
 - Numerical signal produced: $y_j = h(a_j)$
- Nodes are interconnected to form a network

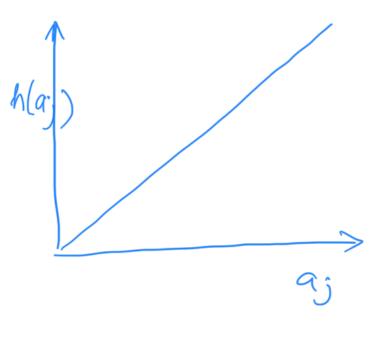
ANN: Activation Function

- Genrerally non-linear
 - Else, the network is just a linear function
- Mimics the firing in neurons
 - Nodes should be "active" (output close to 1) when fed with the "right" inputs
 - Nodes should be "inactive" (output close to 0) when fed with the "wrong" inputs

Common Activation Functions

Identity

$$h(a) = a$$

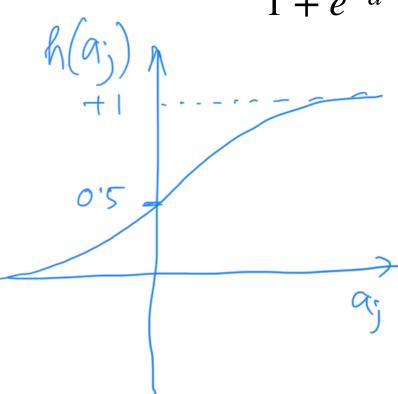


Threshold

$$h(a) = \begin{cases} 1 & if a \ge 0 \\ 0 & if a < 0 \end{cases}$$

Sigmoid

$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

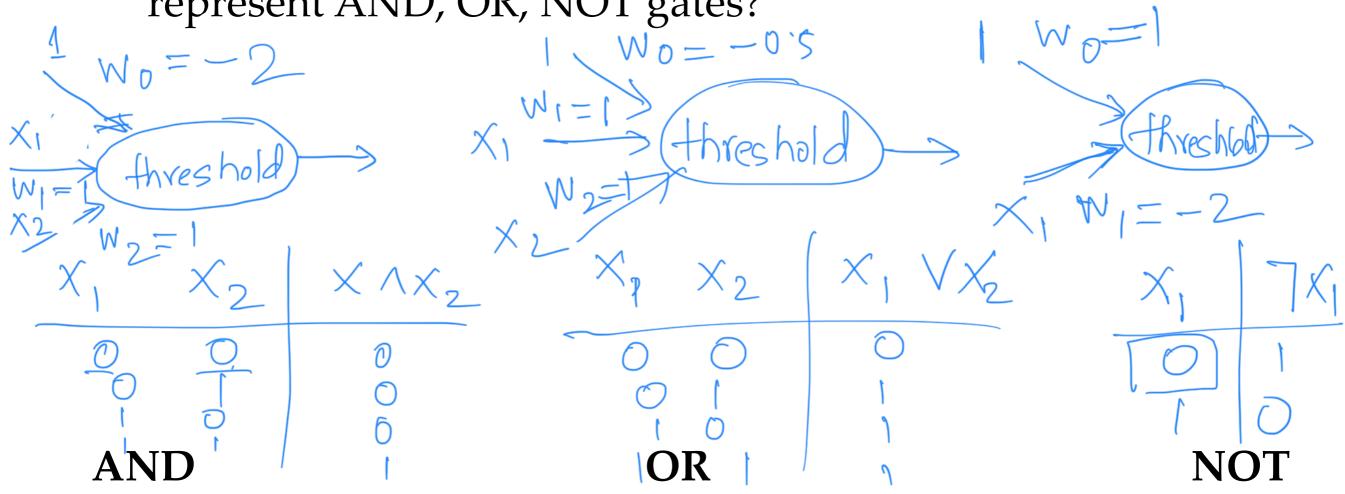


Representing Boolean Functions

Design ANN for logic gates

What should be the weights of the following unites to

represent AND, OR, NOT gates?



Representing Boolean Functions

- ANN can be used to design various logic gates
- So ANN can be used to approximate any boolean functions

Network Architecture

Feed-forward Network

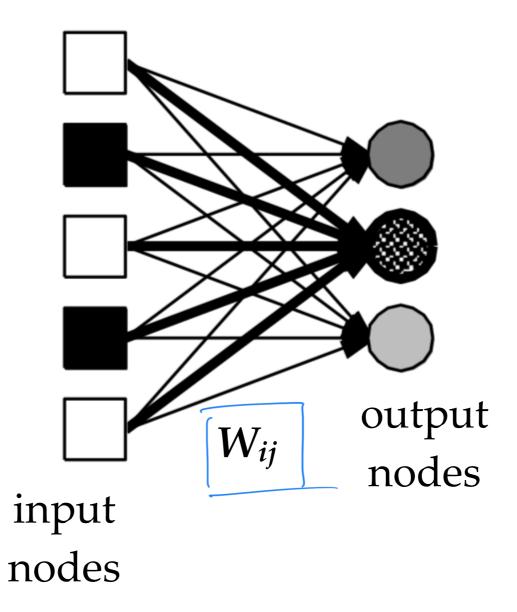
- Directed acyclic graph
- No internal state

Recurrent Network

- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

Perceptron

Single layer feed-forward network



Threshold Perceptron

- Given list if (x, y) pairs
- Train feed-forward ANN
 - Compute correct outputs y when fed with inputs x
 - \circ Accordingly adjust wights W_{ji}
- Leads to a simple algorithm for threshold perceptrons

Threshold Perceptron Learning

- Learning is done separately for each output node j
 - Since nodes do not share weights
- Perceptron learning for node j
 - For each (x, y) pairs do:
 - Case 1: correct output produced

$$\forall_i W_{ji} \leftarrow W_{ji}$$

Case 2: output produced 0 instead of 1

$$\forall_i W_{ji} \leftarrow W_{ji} + \chi_i$$

Case 3: output produced 1 instead of 0

$$\forall_i W_{ji} \leftarrow W_{ji} - x_i$$

Until correct output for all training instances

Threshold Perceptron Learning

- Dot products $x^Tx \ge 0$ and $-x^Tx \le 0$
- Perceptron computes
 - $\circ 1 \text{ when } \mathbf{w}^T \mathbf{x} = \sum_i x_i w_i + w_0 > 0$
 - 0 when $\mathbf{w}^T \mathbf{x} = \sum_{i} x_i w_i + w_0 < 0$
- If output should be 1 instead of 0

$$\circ \left[w \leftarrow w + x \right] \operatorname{since} \left[(w + x)^T x \right] \ge w^T x$$

- If output should be 1 instead of 0
 - $w \leftarrow w x \text{ since } (w x)^T x \le w^T x$

Alternative Approach

- Let $y \in \{-1, 1\} \ \forall y$ Let $M = \{\{x_n, y_n\}_{\forall n}\}$ be set of misclassified examples i.e. $y_n | \mathbf{w}^T \mathbf{x} < 0$
- Find w that minimizes misclassification error:

$$\circ \quad \mathbf{E}(\mathbf{w}) = -\sum_{(x_n, y_n) \in M} y_n \mathbf{w}^T \mathbf{x}$$

Apply gradient descent algorithm

$$\circ \quad w \leftarrow w - \eta \nabla E$$

learning rate or step size

Sequential Gradient Descent

• Gradient
$$\nabla E = -\sum_{(x_n, y_n) \in M} y_n x_n$$

- Sequencial gradient descent
 - Adjust w based on one example (x, y) at a time

$$\circ \quad \mathbf{w} \leftarrow \mathbf{w} + \eta \, y \, x$$

• When $\eta = 1$, we recover the threshold perceptron algorithm

Threshold Perceptron Algorithm

- Let $y \in \{-1, 1\} \ \forall y$
- Start with randomly initialized weights: w
- For t = 1..T (T passes over data) \leftarrow
 - For l = 1..n: (each training example) \leftarrow
 - Classify with current weights
 - $\hat{y} = sign(\mathbf{w}^T \mathbf{x})$ where sign(x) = +1 if x > 0 else -1
- If correct (i.e., $\hat{y} = y^l$), no change!) \leftarrow
- If wrong: update:
 - $\circ \quad \boldsymbol{w} \leftarrow \boldsymbol{w} + y^l \; \boldsymbol{x}^l \; \boldsymbol{\longleftarrow}$

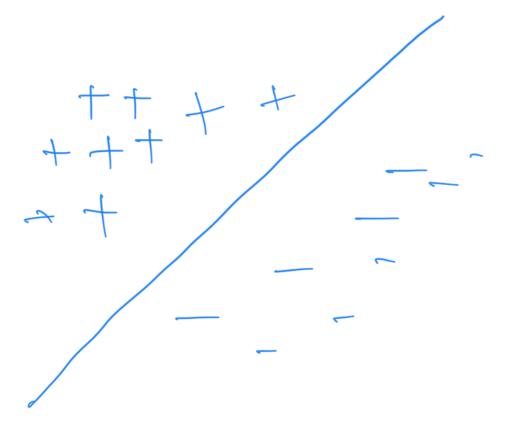
Properties of Threshold Perceptron

- Hypothesis space h_w
- Binary classifications with parameters w
- Since w^Tx is linear in w, perceptron is a linear separator
- Converges *iff* the data is linearly separable

Perceptron Linear Separability

Examples

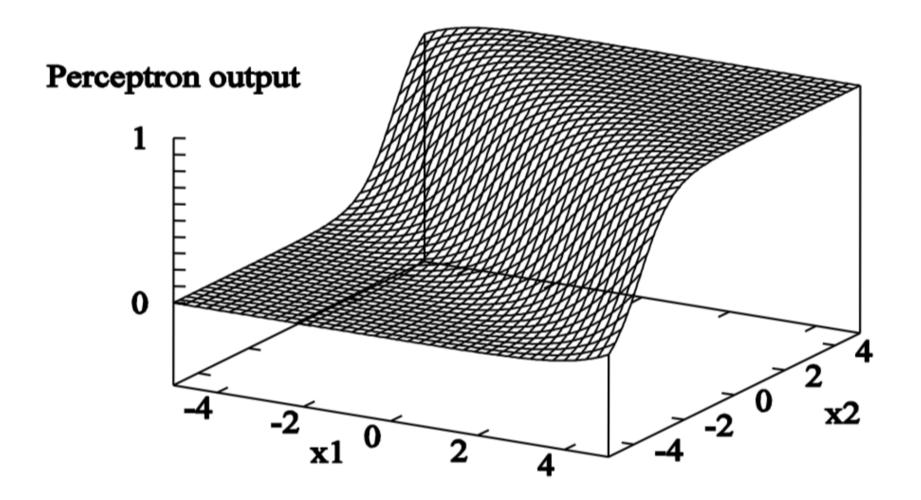
Linearly Separable



Linearly Nonseparable

Sigmoid Perceptron

"Soft" linear separator



Can we use sigmoid perceptron for linearly nonseparable data points?

Sigmoid Perceptron Learning

- Maximum likelihood estimation
 - Equivalent to logistic regression
- Objective function can be:
 - Mimimim squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n} E_n(\mathbf{w})^2 = \frac{1}{2} \sum_{n} (y_n - \sigma(\mathbf{w}^T \mathbf{x_n}))^2$$

Gradient

Derivation

$$\frac{\partial E}{\partial w_i} = \sum_{n} E_n \frac{\partial E_n}{\partial w_i} \qquad \text{Recall,}
\sigma(x) = \frac{1}{1 + e^{-x}}
= \sum_{n} E_n(w)\sigma'(\mathbf{w}^T \mathbf{x_n})\mathbf{x_i} \qquad \sigma'(x) = \frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))
= \sum_{n} E_n(w)\sigma(\mathbf{w}^T \mathbf{x_n})(1 - \sigma(\mathbf{w}^T \mathbf{x_n}))\mathbf{x_i}$$

No closed form solution!

Gradient Descent

- Perceptron-Learning(examples, network)
 - Repeat
 - For each (x_n, y_n) in examples, do:
 - $\circ E_n \leftarrow y_n \sigma(\mathbf{w}^T \mathbf{x})$
 - $\mathbf{w} \leftarrow \mathbf{w} + \eta E_n \sigma (\mathbf{w}^T \mathbf{x}) (1 \sigma (\mathbf{w}^T \mathbf{x})) \mathbf{x}_n$
 - Until some stopping criteria satisfied
 - Return learnt network

Demo Time

https://playground.tensorflow.org/