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Human Intelligence

> Brian is responsible for human intelligence by performing
> Learning
> Memorization
> Cognition and recognition
> Decision making

o Brian consists of nerve cells called neurons

- Neurons can propagate nervous signal
> Neurons form giant network of signal propagation
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© Debswapna Bhattacharya Machine Learning | Virginia Tech



Comparison

° Brain
> Network of neurons
- Nerve signals propagate via neural network
> Parallel computation
> Robust (neurons die everyday without any impact)

> Computer
> Bunch of gates
> Electrical signals directed by gates
> Sequential and parallel computation
- Fragile (if a gate stops working, computer crashes)
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Artificial Neural Networks

- Key idea: emulate biological neurons for computation

o Artificial neural network (ANN)
> Units are called "nodes" and correspond to neurons
- Connections between nodes correspond to synapses

> Correspondence between ANN and biological neural network
> Numerical signal transmitted between nodes corresponds
to chemical signals between neurons
- Nodes modifying numerical signal correspond to neurons
firing rate
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ANN: Node

o Schematic
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ANN

- Node: 1

- Weights: W
o Strength of the connection from node i to node ;
o Input signals x; weighted by Wj; and linearly combined:

0 ﬂj=ZiVVjixi+ wo= Wijix

Activation function: h
> Numerical signal produced: y; =h(a))

o)

o Nodes are interconnected to form a network
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ANN: Activation Function

> Genrerally non-linear
- Else, the network is just a linear function

> Mimics the firing in neurons
> Nodes should be “active” (output close to 1) when fed
with the “right” inputs
> Nodes should be “inactive” (output close to 0) when fed
with the “wrong” inputs
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Common Activation Functions

Identity Threshold Sigmoid
h(a) = =4 4= h(a) = o(a) =
a)=a a) = 0 ifa<0 (a)—a(a)—l_l_e_a
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Representing Boolean Functions

- Design ANN for logic gates

- What should be the weights of the following unites to
represent AND, OR, NOT gates?

AND OR NOT
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Representing Boolean Functions

> ANN can be used to design various logic gates

> 50 ANN can be used to approximate any boolean functions
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Network Architecture

o Feed-forward Network
> Directed acyclic graph
o No internal state

- Recurrent Network
> Directed cyclic graph
> Dynamical system with internal states
o Can memorize information
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Perceptron

- Single layer feed-forward network

input
nodes
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Threshold Perceptron

> Given list if (x, y) pairs
° Train feed-forward ANN
- Compute correct outputs y when fed with inputs x

> Accordingly adjust wights Wj;

- Leads to a simple algorithm for threshold perceptrons
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Threshold Perceptron Learning

> Learning is done separately for each output node j
> Since nodes do not share weights

> Perceptron learning for node j
> For each (x, y) pairs do:
> Case 1: correct output produced

ViWii < Wj
> Case 2: output produced 0 instead of 1

ViWii <= Wi+ x;

> Case 3: output produced 1 instead of 0
ViWiji < Wi —x;

> Until correct output for all training instances

© Debswapna Bhattacharya Machine Learning | Virginia Tech

15



Threshold Perceptron Learning

0]

Dot products xTx 20 and — xTx <0

o

Perceptron computes

o 1 when wa=Z, xXi Wi+ wp> 0
i

o 0 when wa=Z, xX; Wi+ wp<(
i

o

If output should be 1 instead of 0
o W< Ww+xsince (W+x)Tx > wlx

o

If output should be 1 instead of 0
o W< W-—xsince (W-x)Ix < wix
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Alternative Approach

0]

Lety € -1, 1} Vy
Let M = {{x., yu}vn} be set of misclassified examples
o Le Yy, wix <0

o

> Find w that minimizes misclassification error:

- E(w)=-2,

T
(Xn, Yn)EM Yn WX

o Apply gradient descent algorithm
° W< wW-nVE
\

learning rate or step size
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Sequential Gradient Descent

o Gradient VE=-)_ g Y X

(xn; yn)e

- Sequencial gradient descent
> Adjust w based on one example (x, y) at a time
c W WH+NYyX

- When n =1, we recover the threshold perceptron algorithm
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Threshold Perceptron Algorithm

o)

Lety € {-1, 1} Vy

o)

Start with randomly initialized weights: w

o For t=1..T (T passes over data)
> For I =1..n: (each training example)
> Classity with current weights
> i = sign (WTx) where sign(x) =+1 if x >0 else -1

o If correct (i.e., § =v'), no change! )
If wrong: update:
° W<—W -+ yl xl

o
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Properties of Threshold Perceptron

- Hypothesis space hw

> Binary classifications with parameters w
> Since wTx is linear in w, perceptron is a linear separator

- Converges iff the data is linearly separable
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Perceptron Linear Separability

- Examples

Linearly Separable Linearly Nonseparable
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Sigmoid Perceptron

> “Soft” linear separator
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Can we use sigmoid perceptron for linearly nonseparable data points?
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Sigmoid Perceptron Learning

- Maximum likelihood estimation
- Equivalent to logistic regression

> Objective function can be:
> Mimimim squared error

1 1
E(w) = Z E (W) = 2 (y, — 6(W'x,))>
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Gradient

o Derivation

oE oL
= Z E—"
an' y an'
= Z E (w)o'’ (WTXn)Xl-

o'(x) = d—G(X) = o(x)(1 = o(x))
X

= ) E,wo(wx,)(1 — o(w'x,)x,

No closed form solution!
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Gradient Descent

> Perceptron-Learning(examples, network)
> Repeat
> For each (xy, y,) in examples, do:
o En < yy — 0 (Wlx)
> W< w-nk,o (Wlx) (1 -0 (wlx)) x,
> Until some stopping criteria satistied
> Return learnt network
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https://playground.tensorflow.org/

