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∘ Brian is responsible for human intelligence by performing

∘ Learning

∘ Memorization

∘ Cognition and recognition

∘ Decision making


∘ Brian consists of nerve cells called neurons

∘ Neurons can propagate nervous signal

∘ Neurons form giant network of signal propagation

Human Intelligence
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Neuron
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∘ Brain

∘ Network of neurons

∘ Nerve signals propagate via neural network

∘ Parallel computation

∘ Robust (neurons die everyday without any impact)


∘ Computer

∘ Bunch of gates

∘ Electrical signals directed by gates

∘ Sequential and parallel computation

∘ Fragile (if a gate stops working, computer crashes)

Comparison
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∘ Key idea: emulate biological neurons for computation


∘ Artificial neural network (ANN)

∘ Units are called "nodes" and correspond to neurons

∘ Connections between nodes correspond to synapses


∘ Correspondence between ANN and biological neural network

∘ Numerical signal transmitted between nodes corresponds 

to chemical signals between neurons

∘ Nodes modifying numerical signal correspond to neurons 

firing rate

Artificial Neural Networks
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∘ Schematic


ANN: Node
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∘ Node: i


∘ Weights: W

∘ Strength of the connection from node i to node j

∘ Input signals xi weighted by Wji and linearly combined:


∘ aj = ∑
i
Wji xi + w0 = Wji x


∘ Activation function: h

∘ Numerical signal produced: yj = h(aj)


∘ Nodes are interconnected to form a network 

ANN



Machine Learning | Virginia Tech© Debswapna Bhattacharya 8

∘ Genrerally non-linear 

∘ Else, the network is just a linear function


∘ Mimics the firing in neurons 

∘ Nodes should be “active” (output close to 1) when fed 

with the “right” inputs

∘ Nodes should be “inactive” (output close to 0) when fed 

with the “wrong” inputs

ANN: Activation Function
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Common Activation Functions
Threshold SigmoidIdentity

h(a) = a h(a) = {1 if a ≥ 0
0 if a < 0 h(a) = σ(a) =

1
1 + e−a
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∘ Design ANN for logic gates 


∘ What should be the weights of the following unites to 
represent AND, OR, NOT gates?

Representing Boolean Functions

AND OR NOT
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∘ ANN can be used to design various logic gates 


∘ So ANN can be used to approximate any boolean functions

Representing Boolean Functions
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∘ Feed-forward Network

∘ Directed acyclic graph

∘ No internal state


∘ Recurrent Network

∘ Directed cyclic graph

∘ Dynamical system with internal states

∘ Can memorize information

Network Architecture
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∘ Single layer feed-forward network

Perceptron

input

nodes 

output

nodes  

Wij
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∘ Given list if (x, y) pairs


∘ Train feed-forward ANN

∘ Compute correct outputs y when fed with inputs x

∘ Accordingly adjust wights Wji


∘ Leads to a simple algorithm for threshold perceptrons

Threshold Perceptron
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∘ Learning is done separately for each output node j

∘ Since nodes do not share weights


∘ Perceptron learning for node j

∘ For each (x, y) pairs do:


∘ Case 1: correct output produced 

∘ Case 2: output produced 0 instead of 1


∘ Case 3: output produced 1 instead of 0


∘ Until correct output for all training instances

Threshold Perceptron Learning 

∀i Wji  ← Wji 

∀i Wji  ← Wji + xi 

∀i Wji  ← Wji − xi 
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∘ Dot products xTx ≥ 0 and − xTx ≤ 0


∘ Perceptron computes 

∘ 1 when wTx = ∑

i
 xi wi + w0 > 0


∘ 0 when wTx = ∑
i
 xi wi + w0 < 0


∘ If output should be 1 instead of 0

∘ w ← w + x since (w + x)Tx ≥ wTx


∘ If output should be 1 instead of 0

∘ w ← w − x since (w - x)Tx ≤  wTx

Threshold Perceptron Learning 
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∘ Let y ∈	{−1, 1} ∀y

∘ Let	M	=	{{xn , yn}∀n}	be	set	of	misclassified	examples


∘ i.e.	yn wTx < 0


∘ Find	w	that	minimizes misclassification error:

∘ E(w) = − ∑(xn, yn)∈M yn wTx


∘ Apply	gradient	descent	algorithm

∘ w	← w − η∇E

Alternative Approach

learning rate or step size 
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∘ Gradient ∇E = − ∑
(xn, yn)∈M

 yn xn


∘ Sequencial gradient descent

∘ Adjust w based on one example (x, y) at a time


∘ w	← w + η y x


∘ When η = 1, we recover the threshold perceptron algorithm

Sequential Gradient Descent
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∘ Let y ∈	{−1, 1} ∀y


∘ Start with randomly initialized weights: w 


∘ For t = 1..T (T passes over data)

∘ For l =1..n: (each training example)


∘ Classify with current weights

∘ ŷ =  sign (wTx) where sign(x) = +1 if x > 0 else -1

∘ If correct (i.e., ŷ = yl), no change! ) 

∘ If wrong: update:


∘ w	← w + yl xl

Threshold Perceptron Algorithm
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∘ Hypothesis space hw


∘ Binary classifications with parameters w


∘ Since wTx is linear in w, perceptron is a linear separator


∘ Converges if the data is linearly separable

Properties of Threshold Perceptron
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Perceptron Linear Separability 
∘ Examples


Linearly Separable Linearly Nonseparable
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∘ “Soft” linear separator

Sigmoid Perceptron

Can we use sigmoid perceptron for linearly nonseparable data points?
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∘ Maximum likelihood estimation

∘ Equivalent to logistic regression


∘ Objective function can be:

∘ Mimimim squared error

Sigmoid Perceptron Learning 

E(w) =
1
2 ∑

n

En(w)2 =
1
2 ∑

n

(yn − σ(wTxn))2
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∘ Derivation


Gradient

∂E
∂wi

= ∑
n

En
∂En

∂wi

= ∑
n

En(w)σ(wTxn)(1 − σ(wTxn))xi

= ∑
n

En(w)σ′￼ (wTxn)xi

Recall,



σ(x) =
1

1 + e−x

σ′￼(x) =
d
dx

σ(x) = σ(x)(1 − σ(x))

No closed form solution!
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∘ Perceptron-Learning(examples, network)

∘ Repeat

∘ For each (xn, yn) in examples, do:


∘ En ← yn  − σ (wTx)

∘ w ← w	- ηEn σ (wTx) (1 − σ (wTx)) xn


∘ Until some stopping criteria satisfied 

∘ Return learnt network

Gradient Descent
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https://playground.tensorflow.org/ 

Demo Time 🙂

https://playground.tensorflow.org/

