# CS 4824/ECE 4424: Perceptron

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

## Human Intelligence

- Brian is responsible for human intelligence by performing
  - Learning
  - Memorization
  - Cognition and recognition
  - Decision making
- Brian consists of nerve cells called neurons
  - Neurons can propagate nervous signal
  - Neurons form giant network of signal propagation

#### Neuron



## Comparison

- Brain
  - Network of neurons
  - Nerve signals propagate via neural network
  - Parallel computation
  - Robust (neurons die everyday without any impact)
- Computer
  - Bunch of gates
  - Electrical signals directed by gates
  - Sequential and parallel computation
  - Fragile (if a gate stops working, computer crashes)

### Artificial Neural Networks

- Key idea: emulate biological neurons for computation
- Artificial neural network (ANN)
  - Units are called "**nodes**" and correspond to neurons
  - Connections between nodes correspond to synapses
- Correspondence between ANN and biological neural network
  - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
  - Nodes modifying numerical signal correspond to neurons firing rate

#### ANN: Node

• Schematic

#### ANN

- **Node:** *i*
- Weights: W
  - Strength of the connection from node *i* to node *j*
  - Input signals *x<sub>i</sub>* weighted by *W<sub>ji</sub>* and linearly combined:

$$\circ \quad a_j = \sum_i W_{ji} x_i + w_0 = W_{ji} x$$

- Activation function: *h* 
  - Numerical signal produced:  $y_j = h(a_j)$

#### • Nodes are interconnected to form a network

### **ANN: Activation Function**

- Genrerally non-linear
  - Else, the network is just a linear function
- Mimics the firing in neurons
  - Nodes should be "active" (output close to 1) when fed with the "right" inputs
  - Nodes should be "inactive" (output close to 0) when fed with the "wrong" inputs

#### **Common Activation Functions**

Identity

h(a) = a

Threshold

 $h(a) = \begin{cases} 1 & \text{if } a \ge 0\\ 0 & \text{if } a < 0 \end{cases}$ 

Sigmoid

$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

### **Representing Boolean Functions**

- Design ANN for logic gates
- What should be the weights of the following unites to represent AND, OR, NOT gates?

NOT

### **Representing Boolean Functions**

- ANN can be used to design various logic gates
- So ANN can be used to approximate any boolean functions

#### Network Architecture

#### • Feed-forward Network

- Directed **acyclic** graph
- No internal state

#### • Recurrent Network

- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

## Perceptron

• Single layer feed-forward network



## Threshold Perceptron

- Given list if (*x*, *y*) pairs
- Train feed-forward ANN
  - Compute correct outputs *y* when fed with inputs *x*
  - Accordingly adjust wights W<sub>ji</sub>
- Leads to a simple algorithm for threshold perceptrons

## Threshold Perceptron Learning

- Learning is done separately for each output node *j* 
  - Since nodes do not share weights
- Perceptron learning for node *j* 
  - For each (*x*, *y*) pairs do:
    - Case 1: correct output produced

 $\forall_i W_{ji} \leftarrow W_{ji}$ 

• Case 2: output produced 0 instead of 1

$$\forall_i W_{ji} \leftarrow W_{ji} + x_i$$

• Case 3: output produced 1 instead of 0

$$\forall_i W_{ji} \leftarrow W_{ji} - x_i$$

• Until correct output for all training instances

### Threshold Perceptron Learning

• Dot products 
$$x^T x \ge 0$$
 and  $-x^T x \le 0$ 

• Perceptron computes

• 1 when 
$$w^T x = \sum_i x_i w_i + w_0 > 0$$

• 0 when 
$$w^T x = \sum_i x_i w_i + w_0 < 0$$

- If output should be 1 instead of 0 •  $w \leftarrow w + x$  since  $(w + x)^T x \ge w^T x$
- If output should be 1 instead of 0
  - $w \leftarrow w x$  since  $(w x)^T x \le w^T x$

## Alternative Approach

- Let  $y \in \{-1, 1\} \forall y$
- Let  $M = \{\{x_n, y_n\}_{\forall n}\}$  be set of misclassified examples • i.e.  $y_n \mathbf{w}^T \mathbf{x} < 0$
- Find *w* that minimizes misclassification error:

• 
$$E(\boldsymbol{w}) = -\sum_{(x_n, y_n) \in M} y_n \boldsymbol{w}^T \boldsymbol{x}$$

• Apply gradient descent algorithm

$$\circ w \leftarrow w - \eta \nabla E$$

*learning rate or step size* 

## Sequential Gradient Descent

• Gradient 
$$\nabla E = -\sum_{(x_n, y_n) \in M} y_n x_n$$

- Sequencial gradient descent
  - Adjust w based on one example (x, y) at a time
    - $w \leftarrow w + \eta y x$

• When  $\eta = 1$ , we recover the threshold perceptron algorithm

#### Threshold Perceptron Algorithm

- Let  $y \in \{-1, 1\} \forall y$
- Start with randomly initialized weights: w
- For t = 1..T (T passes over data)
  - For *l* =1..n: (each training example)
    - Classify with current weights
      - $\hat{y} = sign(\mathbf{w}^T \mathbf{x})$  where  $sign(\mathbf{x}) = +1$  if  $\mathbf{x} > 0$  else -1
- If correct (i.e.,  $\hat{y} = y^l$ ), no change!)
- If wrong: update:
  - $\circ \boldsymbol{w} \leftarrow \boldsymbol{w} + y^l \boldsymbol{x}^l$

#### Properties of Threshold Perceptron

- Hypothesis space  $h_w$
- Binary classifications with parameters **w**
- Since  $w^T x$  is linear in w, perceptron is a **linear separator**
- Converges *iff* the data is linearly separable

## Perceptron Linear Separability

• Examples

Linearly Separable

Linearly Nonseparable

## Sigmoid Perceptron

• "Soft" linear separator



Can we use sigmoid perceptron for linearly nonseparable data points?

## Sigmoid Perceptron Learning

- Maximum likelihood estimation
  - Equivalent to logistic regression
- Objective function can be:
  - Mimimim squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n} E_n(\mathbf{w})^2 = \frac{1}{2} \sum_{n} (y_n - \sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x_n}))^2$$

#### Gradient

• Derivation

$$\frac{\partial E}{\partial w_i} = \sum_n E_n \frac{\partial E_n}{\partial w_i} \qquad \text{Recall,} \\ \sigma(x) = \frac{1}{\frac{1}{1 + e^{-x}}} \\ = \sum_n E_n(w)\sigma' (\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathbf{n}})\mathbf{x}_i \qquad \sigma'(x) = \frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x)) \\ = \sum_n E_n(w)\sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathbf{n}})(1 - \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathbf{n}}))\mathbf{x}_i$$

#### No closed form solution!

© Debswapna Bhattacharya

#### Gradient Descent

- Perceptron-Learning(examples, network)
  - Repeat
  - For each  $(x_n, y_n)$  in examples, do:
    - $E_n \leftarrow y_n \sigma (\boldsymbol{w}^T \boldsymbol{x})$
    - $\boldsymbol{w} \leftarrow \boldsymbol{w} \eta E_n \sigma (\boldsymbol{w}^T \boldsymbol{x}) (1 \sigma (\boldsymbol{w}^T \boldsymbol{x})) \boldsymbol{x}_n$
  - Until some stopping criteria satisfied
  - Return learnt network



## https://playground.tensorflow.org/