CS 4824/ECE 4424: Neural Networks

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Two-layer Feed-forward Network

- **Architecture**

- **Hidden nodes:** $z_j = h_1 \left(w_{j1}^{(1)^T} x \right)$
- **Output nodes:** $y_k = h_2 \left(w_{k2}^{(2)^T} z \right)$
- **Overall:** $y_k = h_2 \left(\sum_j w_{kj}^{(2)} h_1 \left(\sum_i w_{ji}^{(1)} x_i \right) \right)$
Common Activation Functions h

- **Identity** $h(a) = a$
- **Threshold** $h(a) = \begin{cases} 1 & \text{if } a \geq 0 \\ 0 & \text{if } a < 0 \end{cases}$
- **Sigmoid** $h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$
- **Gaussian** $h(a) = e^{-\frac{1}{2} \left(\frac{a - \mu}{\sigma} \right)^2}$
- **Tanh** $h(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$
Two-layer Feed-forward Network

- Regression

\[y_k = \left(\sum_j w_{kj}^{(2)} \sigma \left(\sum_i w_{ji}^{(1)} x_i \right) \right) \]

- Classification

\[p(y_k | x) = \sigma \left(\sum_j w_{kj}^{(2)} \sigma \left(\sum_i w_{ji}^{(1)} x_i \right) \right) \]
Combining Activation Functions

- Adding two sigmoid nodes with parallel but opposite "cliffs" produces a **ridge**

- Schematic
Combining Activation Functions

- Adding two intersecting ridges (and thresholding) produces a **bump**

- Schematic
Combining Activation Functions

- A bump can classify linearly non-separable data points

- By tiling bumps of various heights together, we can approximate any function
Combining Activation Functions

- Combining activation functions in a neural network enables us to approximate any function, hence millions of applications
 - Machine translation
 - Computer vision
 - Speech recognition
 - Word embedding
 - …
Optimizing the Weights

- Parameters: \(<W^{(1)}, W^{(2)}, \ldots>\)
- Objective:
 - Error minimization
 - Backpropagation (aka backprop)
Backpropagation Algorithm

- Two phases:
 - Forward phase: compute output z_j for each node j
 - Backward phase: compute output δ_j for each node j
Forward Phase

- Propagate inputs forward through the network to compute the output of each node
- Output z_j at node j
 - $z_j = h(a_j)$ where $a_j = \sum_i w_{ji} z_i$
Backward Phase

- Use chain rule to recursively compute gradient
 - For each weight w_{ji}
 - Let $\delta_j = \frac{\partial E_n}{\partial a_j}$
 - Then $\delta_j = \begin{cases} h'(a_j)(z_j - y_j) & \text{base case: } j \in \text{output nodes} \\ h'(a_j) \sum_k w_{kj} \delta_k & \text{recursion: } j \in \text{hidden nodes} \end{cases}$
 - Since $a_j = \sum_k w_{ji} z_i$ then $\frac{\partial a_j}{\partial w_{ji}} = z_i$
 - Therefore, $\delta_{ji} = \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$
An Example

- A simple two-layer network:
 - Hidden nodes (Tanh):
 \[h(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}} \]
 - Note: \[\tanh'(a) = (1 - \tanh'(a))^2 \]
 - Output nodes (Identity):
 \[h(a) = a \]
- Objective function: squared error
The derivation

- **Forward phase**
 - Hidden nodes: \(a_j = \sum_i w_{ji} x_i \quad z_j = \tanh (a_j) \)
 - Output nodes: \(a_k = \sum_j w_{kj} z_j \quad z_k = a_k \)

- **Backward phase**
 - Output nodes: \(\delta_k = z_k - y_k \)
 - Hidden nodes: \(\delta_j = [1 - (z_j)^2] \sum_k w_{kj} \delta_k \)

- **Gradients**
 - Hidden layer: \(\frac{\partial E_n}{\partial w_{ji}} = \delta_j x_i = [1 - (z_j)^2] \sum_k w_{kj} \delta_k \)
 - Output layer: \(\frac{\partial E_n}{\partial w_{kj}} = \delta_k z_j = (z_k - y_k) z_j \)
The derivation

- **Forward phase**
 - Hidden nodes: \(a_j = \sum_i w_{ji} x_i \quad z_j = \tanh(a_j) \)
 - Output nodes: \(a_k = \sum_j w_{kj} z_j \quad z_k = a_k \)

- **Backward phase**
 - Output nodes: \(\delta_k = z_k - y_k \)
 - Hidden nodes: \(\delta_j = [1 - (z_j)^2] \sum_k w_{kj} \delta_k \)

- **Gradients**
 - Hidden layer: \(\frac{\partial E_n}{\partial w_{ji}} = \delta_j x_i = [1 - (z_j)^2] \sum_k w_{kj} \delta_k x_i \)
 - Output layer: \(\frac{\partial E_n}{\partial w_{kj}} = \delta_k z_j = (z_k - y_k) z_j \)
Non-linear regression examples

- Two layer network:
 - 3 tanh hidden units and 1 identity output unit

\[
\begin{align*}
 y &= x^2 \\
 y &= |x| \\
 y &= \sin x \\
 y &= \int_{-\infty}^{x} \delta(t) dt
\end{align*}
\]
Demo Time 😊

https://playground.tensorflow.org/