CS 4824/ECE 4424: Neural Networks

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Two-layer Feed-forward Network

Architecture

- Hidden nodes: $z_i = h_1 (w_i^{(1)T} x)$
- Output nodes: $y_k = h_2 (\mathbf{w_k^{(2)T}} z)$
- Overall: $y_k = h_2(\sum_j w_{kj}^{(2)} h_1(\sum_i w_{ji}^{(1)} x_i))$

Common Activation Functions h

• Identity
$$h(a) = a$$

• Threshold
$$h(a) = \begin{cases} 1 & \text{if } a \ge 0 \\ 0 & \text{if } a < 0 \end{cases}$$

° Sigmoid
$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

• Gaussian
$$h(a) = e^{-\frac{1}{2}(\frac{a-\mu}{\sigma})^2}$$

• Tanh
$$h(a) = tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

Two-layer Feed-forward Network

Regression

Classification

- Adding two sigmoid nodes with parallel but opposite "cliffs" produces a ridge
- Schematic

- Adding two intersecting ridges (and thresholding) produces a bump
- Schematic

A bump can classify linearly non-separable data points

 By tiling bumps of various heights together, we can approximate any function

- Combining activation functions in a neural network enables us to approximate any function, hence millions of applications
 - Machine translation
 - Computer vision
 - Speech recognition
 - Word embedding

• • •

Optimizing the Weights

- Parameters: $< W^{(1)}, W^{(2)}, ...>$
- Objective:
 - Error minimization
 - Backpropagation (aka backprop)

Backpropagation Algorithm

- Two phases:
 - Forward phase: compute output z_j for each node j

• Backward phase: compute output δ_i for each node i

Forward Phase

- Propagate inputs forward through the network to compute the output of each node
- Output z_i at node j
 - $z_j = h(a_j)$ where $a_j = \sum_i w_{ji} z_i$

Backward Phase

- Use chain rule to recursively compute gradient
 - For each weight w_{ii}

$$\delta_{ji} = \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}}$$

$$\bullet \text{ Let } \delta_j = \frac{\partial E_n}{\partial a_j}$$

$$\bullet \text{ Then } \delta_j = \begin{cases} h'(a_j)(z_j - y_j) & base \ case : j \in output \ nodes \\ h'(a_j) \sum_k w_{kj} \delta_k & recursion : j \in hidden \ nodes \end{cases}$$

Since

$$a_j = \sum_k w_{ji} z_i \ then \ \frac{\partial a_j}{\partial w_{ji}} = z_i$$

Since
$$a_{j} = \sum_{k} w_{ji} z_{i} \text{ then } \frac{\partial a_{j}}{\partial w_{ji}} = z_{i}$$

$$\text{Therefore, } \delta_{ji} = \frac{\partial E_{n}}{\partial w_{ji}} = \frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}} = \delta_{j} z_{i}$$

An Example

- A simple two-layer network:
 - Hidden nodes (Tanh): $h(a) = tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
 - Note: $tanh'(a) = (1 (tanh'(a))^2)$
 - Output nodes (Identity): h(a) = a
- Objective function: squared error

The derivation

Forward phase

• Hidden nodes:
$$a_j =$$

$$z_j =$$

$$a_k =$$

$$z_k =$$

Backward phase

$$\delta_k =$$

$$\delta_j =$$

Gradients

Output layer:
$$\frac{\partial E_n}{\partial w_{kj}} =$$

The derivation

Forward phase

Hidden nodes:
$$a_j = \sum_i w_{ji} x_i$$

$$z_j = tanh(a_j)$$

$$a_k = \sum_j w_{kj} z_j$$

$$z_k = a_k$$

Backward phase

$$\circ$$
 Output nodes: $\delta_k = z_k - y_k$

$$\delta_k = z_k - y_k$$

Hidden nodes:
$$\delta_j = [1 - (z_j)^2] \sum_k w_{kj} \delta_k$$

Gradients

• Hidden layer:
$$\frac{\partial E_n}{\partial w_{ji}} = \delta_j x_i = [1 - (z_j)^2] \sum_k w_{kj} \delta_k x_i$$

Output layer:
$$\frac{\partial E_n}{\partial w_{kj}} = \delta_k z_j = (z_k - y_k) z_j$$

Non-linear regression examples

- Two layer network:
 - 3 tanh hidden units and 1 identity output unit

$$y = x^2$$

$$y = \int_{-\infty}^{x} \delta(t)dt$$

Demo Time 🙂

https://playground.tensorflow.org/