CS 4824/ECE 4424: Regression

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Regression

- So far, we’ve been interested in learning $P(Y|X)$ where Y has discrete values (called ‘classification’)

- What if Y is continuous? (called ‘regression’)
 - predict snow/rainfall from current and past weather features
 - predict stock price from current and past market conditions
 - predict weight from gender, height, age, ...
Regression: problem setting

- Wish to learn $f: X \rightarrow Y$ where Y is real-valued, given training data
 $\{<X^1, Y^1> \ldots <X^n, Y^n>\}$

- Approach:
 - Choose some parameterized form for $P(Y|X, \theta)$ where θ is the vector of parameters
 - Estimate θ using MLE or MAP estimation
Choose parameterized form for $P(Y | X, \theta)$

- Assume Y is some deterministic $f(X)$, plus random noise
 - $y = f(x) + \varepsilon$ where $\varepsilon \sim \mathcal{N}(0, \sigma)$

- Therefore, Y is a random variable that follows the distribution
 - $p(y | x) = \mathcal{N}(f(x), \sigma)$

- And the expected value of y for any given x is $f(x)$
Consider linear regression

- \(p(y \mid x) = \mathcal{N}(f(x), \sigma) \)

- Assume \(f(x) \) is a linear function of \(x \), i.e.,
 \[f(x) = \omega_0 + \omega_1 x \]

- \(p(y \mid x) = \mathcal{N}(\omega_0 + \omega_1 x, \sigma) \)

- \(\mathbb{E}(y \mid x) = \omega_0 + \omega_1 x \)
Consider linear regression

- \(p(y \mid x) = \mathcal{N}(f(x), \sigma) \)

- Assume \(f(x) \) is a linear function of \(x \) i.e., \(y = w_0 + w_1 x \)
 - \(p(y \mid x) = \mathcal{N}(w_0 + w_1 x, \sigma) \)
 - \(\mathbb{E}(y \mid x) = w_0 + w_1 x \)

- Note: to make our parameters explicit, let’s write
 - \(W = <w_0, w_1> \)
 - \(p(y \mid x, W) = \mathcal{N}(w_0 + w_1 x, \sigma) \)
Training linear regression

- $p(y | x) = \mathcal{N}(f(x), \sigma)$

- How can we learn W from data?
Training linear regression

- $p(y \mid x) = \mathcal{N}(f(x), \sigma)$

- How can we learn W from data?

- Learn W using Maximum Conditional Likelihood Estimation!
 - $W_{MCLE} = \arg \max_W \prod_l P(Y^l \mid X^l, W)$
 - $W_{MCLE} = \arg \max_W \sum_l \ln p(y^l \mid x^l, W)$
 - Where $P(y \mid x, W) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y^l - f(x, W)}{\sigma} \right)^2}$
MCLE derivation

\[
W_{MCLE} = \arg\max_W \sum_l \ln p(y^l | x^l, W)
\]

\[
P(y | x, W) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y^l - f(x, W)}{\sigma} \right)^2}
\]

or

\[
P(y | x, W) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y^l - (w_0 + w_1 x^l)}{\sigma} \right)^2}
\]

\[
W_{MCLE} = \arg\max_W \sum_l \left[\ln \frac{1}{\sigma \sqrt{2\pi}} + \left(\frac{1}{2} \left(\frac{y^l - (w_0 + w_1 x^l)}{\sigma} \right)^2 \right) \right]
\]

\[
= \arg\max_W -\frac{1}{2\sigma^2} \left(y^l - (w_0 + w_1 x^l) \right)^2
\]

\[
W_{MCLE} = \arg\min_W \sum_l \left[\frac{1}{2\sigma^2} \left(y^l - (w_0 + w_1 x^l) \right)^2 \right]
\]

\[
W_{MCLE} = \arg\min_W \left(y^l - (w_0 + w_1 x^l) \right)^2
\]

\[
W_{MCLE} = \text{MSE}^{\text{Squared error}}
\]
Training linear regression

- Learn W using Maximum Conditional Likelihood Estimation:
 \[W_{MCLE} = \arg \min_W \sum_l (y - f(x, W))^2 \]

- Training linear regression involves minimizing a loss function capturing the squared error (often used in “curve fitting”)