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CS 4824/ECE 4424: 
Neural Networks I
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Two-layer Feed-forward Network
∘ Architecture 

∘ Hidden nodes: zj = h1 (wj(1)T x) 
∘ Output nodes:  yk = h2 (wk(2)T z) 
∘ Overall: yk = h2(∑j

wkj(2) h1(∑i
wji(1) xi))
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∘ Identity  

∘ Threshold 

∘ Sigmoid 

∘ Gaussian 

∘ Tanh

Common Activation Functions h

h(a) = {1 if a ≥ 0
0 if a < 0

h(a) = a

h(a) = σ(a) =
1

1 + e−a

h(a) = e− 1
2 ( a − μ

σ )2

h(a) = tanh(a) =
ea − e−a

ea + e−a
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Two-layer Feed-forward Network

∘ Regression 

∘ Classification
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∘ Adding two sigmoid nodes with parallel but opposite 
“cliffs” produces a ridge 

∘ Schematic 

Combining Activation Functions
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∘ Adding two intersecting ridges (and thresholding) 
produces a bump 

∘ Schematic

Combining Activation Functions
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∘ A bump can classify linearly non-separable data points 

∘ By tiling bumps of various heights together, we can 
approximate any function
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Combining Activation Functions



Machine Learning | Virginia Tech© Debswapna Bha6acharya 8

∘ Combining activation functions in a neural network 
enables us to approximate any function, hence millions of 
applications 

∘ Machine translation 
∘ Computer vision 
∘ Speech recognition 
∘ Word embedding 
∘ …

Combining Activation Functions


