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Generalized linear models vs. neural networks

> Generalized linear models (up to ~2010)
- Fixed basis functions
- Hypothesis space is limited
- Easy to optimize (usually convex)

o Neural networks (2010 onwards)
- Adaptive basis functions
> Rich hypothesis space
- Hard to optimize (usually non-convex)
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How to extend generalized linear models to have
richer hypothesis?
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How to generalize linear models for linearly non-separable data?

- Use features of features of X\
features of features....

x|

B X1%,

X~ X
- b ="

- Challenge: Feature space can get really large really quickly!
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Non-linear features: 1D input

- Datasets that are linearly separable with some noise work out
great:

of x
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Non-linear features: 1D input

- Datasets that are linearly separable with some noise work out

great:
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Linearly non-separable

Mapping to higher dimensional space
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Mapping to higher dimensional space
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Mapping to higher dimensional space
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Mapping to higher dimensional space

Higher dimensional space

Input feature space

- w. $(x)
Polynomial of degree d

What can go wrong? T¢(X)]
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Higher order polynomials

(0]

Number of terms = (

o (Grows fast!
- m=100,d=6
o ~1.6 billion terms
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Feature Mappings

> Pros: can help turn non-linear classification problem into
linear problem

- Cons: “feature explosion” creates issues when training linear
classifier in new feature space
- More computationally expensive to train

- More training examples needed to avoid overfitting
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Kernel Methods

> Goal: keep advantages of linear models, but make them
capture non-linear patterns in data!

> How?
- By mapping data to higher dimensions where it exhibits
linear patterns

> By rewriting linear models so that the mapping never
needs to be explicitly computed

COVWW% the AT Uf\@Q l'neay W\OJ@( N4 o8
Mﬁk@r OQ}mer\g‘@r\cJ rﬂo&p@(
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The Kernel Trick

> Rewrite learning algorithms so they only depend on dot
products between two examples

- Replace dot product ¢(X) . P(z)

by kernel function k(X, Z)

which computes the dot product implicitly
%\ Qg K K)
XL /\ -1 Cx] /><2
o — >
O <X|Kz><29 -

/<><,‘ 5T Tofks

J = X
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Example of Kernel function

X
o ConSider tWO examples X — {xl’ XZ} and Z — {Zl, ZZ} )5 . Z_
i S T | R

> Let’s assume we are given a function[ k (kerneﬂ that takes as inputs x and z

. K - L
@G«): @,\wz O()Z) CX ‘Z>
— @\21 4 X 22

r)QZ—
— 2

é(z} h— (\[/zzzl\ga - Cxﬁ ﬁxxxz, ><22>T CerL) (\E)Z.] ZZ,Z;)
Z, — @Cx} pﬁ(ﬁy

- Cool! taking a dot product and an exponential gives same results as

mapping into high dimensional space and then taking dot product
[ J

> The above k implicitly defines a mapping @ to a higher dimensional space
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B . Kernel function
m@[gbm;;@% E,WL/PW kLX) - X) ¢Cx D - @CK)

Feature space

2 (higher dimension)
b @ R — 112% ;

A X’r\//?fx)

D)

Input space

> But, it isn’t obvious yet how we will incorporate it into actual
learning algorithms.

We will do that next...
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“Kernelizing” learning algorithms

- Key idea: map t(;fhigher dimensional spacg
> If x is in/R"} then ¢(x) is in/R"™ for m > n

> We can now learn feature We1ghtst Rmand
o predict y by computing(w . ¢(X\\

> Linear function in the higher dimensional space will be non-

linear in the original space
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Question to think about...

How can we “Kernelize” perceptron learning algorithm?
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