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Generalized linear models vs. neural networks

∘ Generalized linear models (up to ~2010) 
∘ Fixed basis functions 
∘ Hypothesis space is limited 
∘ Easy to optimize (usually convex) 

∘ Neural networks (2010 onwards) 
∘ Adaptive basis functions 
∘ Rich hypothesis space 
∘ Hard to optimize (usually non-convex)
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How to extend generalized linear models to have 
richer hypothesis?
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How to generalize linear models for linearly non-separable data? 

∘ Use features of features of 
features of features....

ϕ(x) =

x1...
xn

x1x2
x2x3...
x2

1

x2
2...

∘ Challenge: Feature space can get really large really quickly!
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Non-linear features: 1D input

∘ Datasets that are linearly separable with some noise work out 
great: 

∘ But what are we going to do if the dataset is just too hard?
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Non-linear features: 1D input
∘ Datasets that are linearly separable with some noise work out 

great: 

∘ But what are we going to do if the dataset is just too hard?

∘ How about... mapping data to a higher-dimensional space:
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Mapping to higher dimensional space

Linearly non-separable
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Mapping to higher dimensional space
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Mapping to higher dimensional space

Map to 3D

Linearly separable
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Input feature space

Polynomial of degree d

Higher dimensional space

What can go wrong?

Mapping to higher dimensional space

w . ϕ(x)

ϕ(x)

x
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Higher order polynomials

∘ Number of terms  

∘ where m = dimension of input features; d = degree of polynomial 

∘ Grows fast! 
∘ m = 100, d = 6  
∘ ~1.6 billion terms  

= (d + m − 1
d ) =

(d + m − 1)!
d!(m − 1)!
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Feature Mappings

∘ Pros: can help turn non-linear classification problem into 
linear problem 

∘ Cons: “feature explosion” creates issues when training linear 
classifier in new feature space 
∘ More computationally expensive to train 
∘ More training examples needed to avoid overfi6ing
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Kernel Methods

∘ Goal: keep advantages of linear models, but make them 
capture non-linear pa6erns in data! 

∘ How? 
∘ By mapping data to higher dimensions where it exhibits 

linear pa6erns 

∘ By rewriting linear models so that the mapping never 
needs to be explicitly computed
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The Kernel Trick

∘ Rewrite learning algorithms so they only depend on dot 
products between two examples 

∘ Replace dot product  
by kernel function                                                                     
which computes the dot product implicitly 

ϕ(x) . ϕ(z)
k(x, z)



Machine Learning | Virginia Tech© Debswapna Bha6acharya 15

Example of Kernel function
∘ Consider two examples  and  

∘ Let’s assume we are given a function k (kernel) that takes as inputs x and z 

∘ Cool! taking a dot product and an exponential gives same results as 
mapping into high dimensional space and then taking dot product 

∘ The above k implicitly defines a mapping  to a higher dimensional space

x = {x1, x2} z = {z1, z2}

ϕ
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Kernel function

Input space
Feature space 

(higher dimension) 

∘ But, it isn’t obvious yet how we will incorporate it into actual 
learning algorithms. 

We will do that next…
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“Kernelizing” learning algorithms
∘ Key idea: map to higher dimensional space

∘ If x is in , then φ(x) is in  for m > n 
∘ We can now learn feature weights w in Rm and  

∘ predict  by computing 	
∘ Linear function in the higher dimensional space will be non-

linear in the original space

ℝn ℝm

y w . ϕ(x)
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Question to think about…

How can we “Kernelize” perceptron learning algorithm? 


