CS 4824/ECE 4424:
Kernels

Generalized linear models vs. neural networks

> Generalized linear models (up to ~2010)
- Fixed basis functions
- Hypothesis space is limited
- Easy to optimize (usually convex)

o Neural networks (2010 onwards)
- Adaptive basis functions
> Rich hypothesis space
- Hard to optimize (usually non-convex)

© Debswapna Bhattacharya Machine Learning | Virginia Tech

How to extend generalized linear models to have
richer hypothesis?

© Debswapna Bhattacharya Machine Learning | Virginia Tech

How to generalize linear models for linearly non-separable data?

- Use features of features of X\
features of features....

x|

B X1%,

X~ X
- b ="

- Challenge: Feature space can get really large really quickly!

© Debswapna Bhattacharya Machine Learning | Virginia Tech 4

Non-linear features: 1D input

- Datasets that are linearly separable with some noise work out
great:

of x

© Debswapna Bhattacharya Machine Learning | Virginia Tech

Non-linear features: 1D input

- Datasets that are linearly separable with some noise work out

great:

© Debswapna Bhattacharya Machine Learning | Virginia Tech

1.5
. o
1.0+
° o °g . ‘..o
..
...
°
¢,
0.5} » o
g 0y t, [
® o0 E . A o
Ap L 4
N A
@ a A N
0.0} ° ah °e
0 ?. oo
o
o . &®
Al . o
-0.5 s o
e °,
® 8
° o
o
e, R o 0o
-1.0} ° e o
_1'—51.5 —1.0 -0.5 0.0 0.15 1.0 15

© Debswapna Bhattacharya

Linearly non-separable

Mapping to higher dimensional space

1.0
1.0}
[]
'.
05|
.; ...
L
L J
®
0.0 o °
[] ...
o
o.?
L
[]
0.5
..10 |
1575 210 205 0.0 0.5 1.0 15

Machine Learning | Virginia Tech

Mapping to higher dimensional space

|+-———- r_s X
—‘-— —
1" -
+—f—+ —
— —+

© Debswapna Bhattacharya Machine Learning | Virginia Tech

Mapping to higher dimensional space

15
10} . .'.. ,:' ses
'. .. °
... .,
05} :' " ¢
o:- ° 4 ““ ‘l ..o. °
. % “ é .
@ ° a M, a “‘ X
0.0} ° ah s ° |
® o :A‘ "‘
& a
.‘ :A A .. °
03 : ° o.’ ;
e ° o o 1]
e, ° e
-10f ° ": eoe® @
133 -10 ~05) IoioL_l 0.5 10 15
1.4 7 e °
J o o ° e
14 ° ° o ..
o , * e 12 7 % % Lle [o
° o 0° ° ° o
12 o LT b ke bels P Bos o0 & % o8
< °° °% o 1.0 7 © a0 °3e 0®
° 000 o om) o§o% o ° 9% ¢ (’o’
1.0 7T ’ O‘SQ; c.” 2 ° .— P o 90 ® 'Ogo ° nO .'8
”oo o o'i. 8§ °° %o .o' 0.8 7 e * o ° 9 ° ° %
0.8 7 o o0, " % Jo ><‘> ¢ J o °8
. o ~ °
06 T
® ° o)
0.4 7
0.4 7 a2
. 4A A
. 0.2 . thaiih, #s4 y
ag a & % A, AL "a A
0.2 1 5‘?“ sa 4 AN - S
NPy \ ‘ R
"y a A ~P’’——‘_"_”‘_’__'___,___-———‘—”'
—1.\// 10 o5 00 s T o5 10
05 o -1.0 Yiape ~— 710 -10 705 7T
- -0.5
YLabe/ 0.5 10 1o 0.5 0.0 "
v 1 ahe

Linearly separable

© Debswapna Bhattacharya Machine Learning | Virginia Tech

Mapping to higher dimensional space

Higher dimensional space

Input feature space

- w. $(x)
Polynomial of degree d

What can go wrong? T¢(X)]

© Debswapna Bhattacharya Machine Learning | Virginia Tech

10

Higher order polynomials

(0]

Number of terms = (

o (Grows fast!
- m=100,d=6
o ~1.6 billion terms

© Debswapna Bhattacharya

d+m—1
d

&
(=3

)

d

m—1)!

dli(m—1)!

- where m = dimension of input features; d = degree of polynomial

-
(=]

400 -

300+

200+

100+

number of monomialterms

- - —— d=2
1 1 | |
Y

| d=4

1 d=3

4

Machine Learning | Virginia Tech

number of input dimensions

11

Feature Mappings

> Pros: can help turn non-linear classification problem into
linear problem

- Cons: “feature explosion” creates issues when training linear
classifier in new feature space
- More computationally expensive to train

- More training examples needed to avoid overfitting

© Debswapna Bhattacharya Machine Learning | Virginia Tech 12

Kernel Methods

> Goal: keep advantages of linear models, but make them
capture non-linear patterns in data!

> How?
- By mapping data to higher dimensions where it exhibits
linear patterns

> By rewriting linear models so that the mapping never
needs to be explicitly computed

COVWW% the AT Uf\@Q l'neay W\OJ@(N4 o8
Mﬁk@r OQ}mer\g‘@r\cJ rﬂo&p@(

© Debswapna Bhattacharya Machine Learning | Virginia Tech 13

The Kernel Trick

> Rewrite learning algorithms so they only depend on dot
products between two examples

- Replace dot product ¢(X) . P(z)

by kernel function k(X, Z)

which computes the dot product implicitly
%\ Qg K K)
XL /\ -1 Cx] /><2
o — >
O <X|Kz><29 -

/<><,‘ 5T Tofks

J = X
© Debswapna Bhattacharya Machine Learning | Virginia Tech H 14

Example of Kernel function

X
o ConSider tWO examples X — {xl’ XZ} and Z — {Zl, ZZ})5 . Z_
i S T | R

> Let’s assume we are given a function[k (kerneﬂ that takes as inputs x and z

. K - L
@G«): @,\wz O()Z) CX ‘Z>
— @\21 4 X 22

r)QZ—
— 2

é(z} h— (\[/zzzl\ga - Cxﬁ ﬁxxxz, ><22>T CerL) (\E)Z.] ZZ,Z;)
Z, — @Cx} pﬁ(ﬁy

- Cool! taking a dot product and an exponential gives same results as

mapping into high dimensional space and then taking dot product
[J

> The above k implicitly defines a mapping @ to a higher dimensional space

© Debswapna Bhattacharya Machine Learning | Virginia Tech 15

B . Kernel function
m@[gbm;;@% E,WL/PW kLX) - X) ¢Cx D - @CK)

Feature space

2 (higher dimension)
b @ R — 112% ;

A X’r\//?fx)

D)

Input space

> But, it isn’t obvious yet how we will incorporate it into actual
learning algorithms.

We will do that next...

© Debswapna Bhattacharya Machine Learning | Virginia Tech 16

“Kernelizing” learning algorithms

- Key idea: map t(;fhigher dimensional spacg
> If x is in/R"} then ¢(x) is in/R"™ for m > n

> We can now learn feature We1ghtst Rmand
o predict y by computing(w . ¢(X\\

> Linear function in the higher dimensional space will be non-

linear in the original space

© Debswapna Bhattacharya Machine Learning | Virginia Tech 17

Question to think about...

How can we “Kernelize” perceptron learning algorithm?

© Debswapna Bhattacharya Machine Learning | Virginia Tech 18

