CS 4824/ECE 4424: Kernels

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Generalized linear models vs. neural networks

- Generalized linear models (up to ~2010)
 - Fixed basis functions
 - Hypothesis space is limited
 - Easy to optimize (usually convex)
- Neural networks (2010 onwards)
 - Adaptive basis functions
 - Rich hypothesis space
 - Hard to optimize (usually non-convex)

How to extend generalized linear models to have richer hypothesis?

How to generalize linear models for linearly non-separable data?

Use features of features of features of features of features....

Challenge: Feature space can get really large really quickly!

Non-linear features: 1D input

 Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

Non-linear features: 1D input

 Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Linearly non-separable

Linearly separable

Higher dimensional space

Higher order polynomials

- where m = dimension of input features; d = degree of polynomial
- Grows fast!
 - \circ m = 100, d = 6
 - ~1.6 billion terms

number of input dimensions

Feature Mappings

- Pros: can help turn non-linear classification problem into linear problem
- Cons: "feature explosion" creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting

Kernel Methods

 Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?

- By mapping data to higher dimensions where it exhibits linear patterns
- By rewriting linear models so that the mapping never needs to be explicitly computed

The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples
- Replace dot product $\phi(\mathbf{x})$. $\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

Example of Kernel function

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

• Let's assume we are given a function k (kernel) that takes as inputs x and z

$$\Phi(x) = \begin{bmatrix} x_1 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$\Phi(z) = \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix}$$

- Cool! taking a dot product and an exponential gives same results as mapping into high dimensional space and then taking dot product
- The above k **implicitly** defines a mapping ϕ to a higher dimensional space

Kernel function

It is a dot-product $K(X_1, X_2) = \Phi(X_1) \cdot \Phi(X_2)$ only business.

 But, it isn't obvious yet how we will incorporate it into actual learning algorithms.

We will do that next...

"Kernelizing" learning algorithms

- **Key idea**: map to higher dimensional space
 - If \mathbf{x} is in \mathbb{R}^n , then $\phi(\mathbf{x})$ is in \mathbb{R}^m for m > n
 - We can now learn feature weights w in R^m and
 - predict *y* by computing $\mathbf{w} \cdot \phi(\mathbf{x})$
 - Linear function in the higher dimensional space will be nonlinear in the original space

Question to think about...

How can we "Kernelize" perceptron learning algorithm?