CS 4824/ECE 4424: Kernels

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Generalized linear models vs. neural networks

- Generalized linear models (up to ~2010)
 - Fixed basis functions
 - Hypothesis space is limited
 - Easy to optimize (usually convex)
- Neural networks (2010 onwards)
 - Adaptive basis functions
 - Rich hypothesis space
 - Hard to optimize (usually non-convex)

How to extend generalized linear models to have richer hypothesis?

How to generalize linear models for linearly non-separable data?

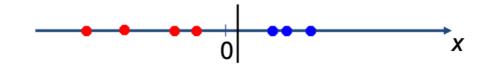
Use features of features of features of features.... $\begin{array}{c}
\vdots\\
x_n\\
x_1x_2\\
x_2x_3\\
\vdots\\
x_1^2\\
x_1^2\\
x_2^2\\
\vdots\\
\cdot
\end{array}$ $\phi(x) =$ ⊕ ♣

0

Challenge: Feature space can get really large really quickly! 0

Non-linear features: 1D input

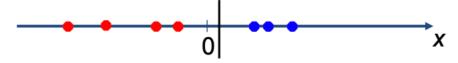
 Datasets that are linearly separable with some noise work out great:



• But what are we going to do if the dataset is just too hard?

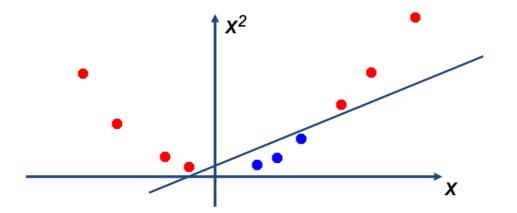
Non-linear features: 1D input

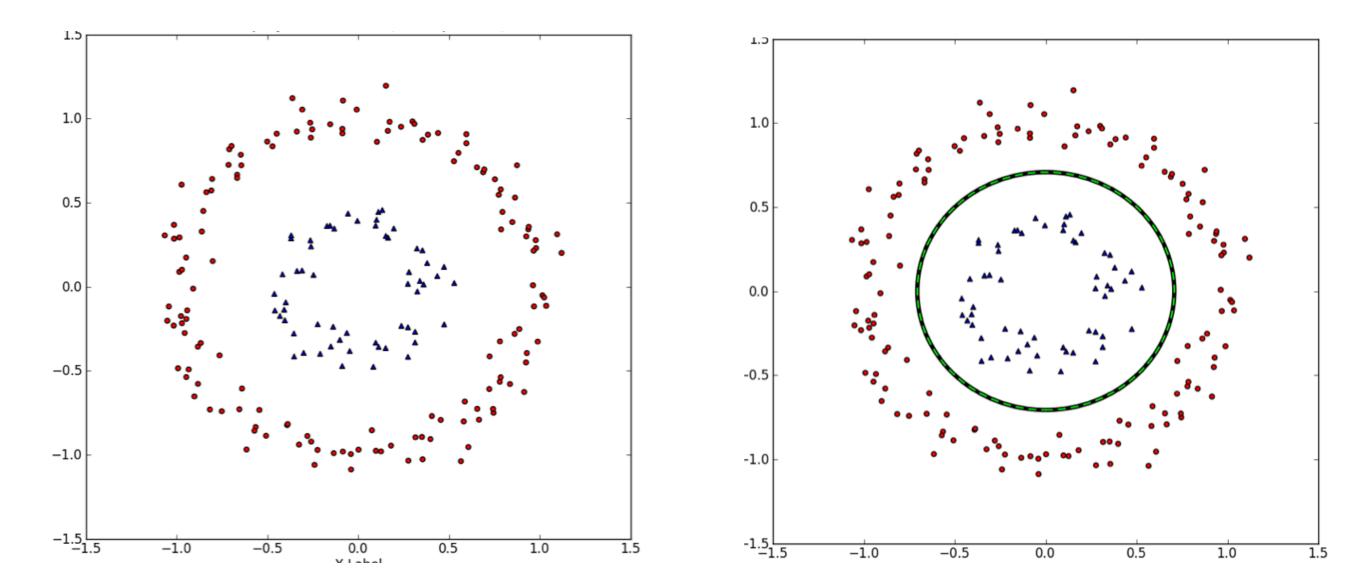
 Datasets that are linearly separable with some noise work out great:



• But what are we going to do if the dataset is just too hard?

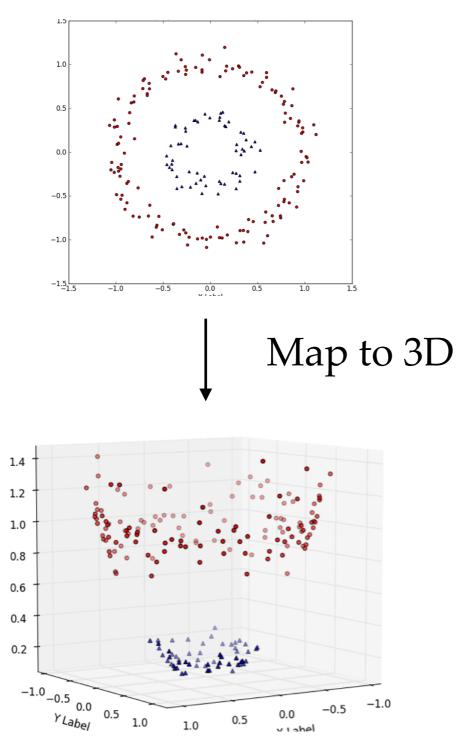
• How about... mapping data to a higher-dimensional space:

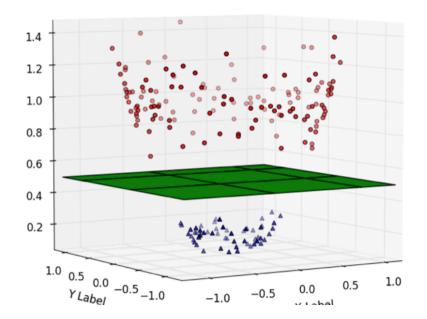




Linearly non-separable

Machine Learning | Virginia Tech





Linearly separable

Machine Learning | Virginia Tech

Higher dimensional space

W . $\phi(\mathbf{X})$

Input feature space

Polynomial of degree d

X

What can go wrong?

 $\phi(\mathbf{x})$

Higher order polynomials

• Number of terms =
$$\begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!}$$

- where m = dimension of input features; d = degree of polynomial
- number of monomial terms d=4 Grows fast! 0 700 m = 100, d = 60 ~1.6 billion terms 0 500 d=3 100 d=2 number of input dimensions

Feature Mappings

- **Pros**: can help turn non-linear classification problem into linear problem
- **Cons**: "feature explosion" creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting

Kernel Methods

 Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?

- By mapping data to higher dimensions where it exhibits linear patterns
- By rewriting linear models so that the mapping never needs to be explicitly computed

The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples
- Replace dot product φ(**x**). φ(**z**)
 by kernel function k(**x**, **z**)
 which computes the dot product implicitly

Example of Kernel function

- Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$
- Let's assume we are given a function *k* (kernel) that takes as inputs **x** and **z**

- **Cool!** taking a dot product and an exponential gives same results as mapping into high dimensional space and then taking dot product
- The above *k* **implicitly** defines a mapping ϕ to a higher dimensional space

Kernel function

Input space

Feature space (higher dimension)

 But, it isn't obvious yet how we will incorporate it into actual learning algorithms.

We will do that next...

© Debswapna Bhattacharya

Machine Learning | Virginia Tech

"Kernelizing" learning algorithms

- Key idea: map to higher dimensional space
 - If **x** is in \mathbb{R}^n , then $\phi(\mathbf{x})$ is in \mathbb{R}^m for m > n
 - We can now learn feature weights \mathbf{w} in \mathbb{R}^m and
 - predict *y* by computing **w** . $\phi(\mathbf{x})$
 - Linear function in the higher dimensional space will be nonlinear in the original space

Question to think about...

How can we "Kernelize" perceptron learning algorithm?