Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed
The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples.
- Replace dot product $\phi(x)^T \phi(z)$ by kernel function $k(x, z)$ which computes the dot product implicitly.

How?
Recall perceptron

- Let \(y \in \{-1, 1\} \forall y \)

- Initialize weights \(w = 0, b = 0 \)

- Run through the training data \(i = 1, \ldots, n \)
 - if \(y^i (w \cdot x^i + b) < 0 \) checks if \(x^i \) is misclassified
 - \(w \leftarrow w - x^i \) if \(y \) is -1
 - \(w \leftarrow w + x^i \) if \(y \) is +1
 - \(w \leftarrow w + y^i x^i \)
 - \(b \leftarrow b + y^i \)
“Kernelizing” the perceptron

- **Naïve approach**: let’s explicitly train a perceptron in the new feature space

- Let $y \in \{-1, 1\} \forall y$

- Initialize weights $w = 0, b = 0$

- Run through the training data $i = 1,...,n$
 - if $y^i(w \cdot \phi(x^i) + b) < 0$
 - $w \leftarrow w + y^i \phi(x^i)$
 - $b \leftarrow b + y^i$
 - if $\phi(x^i)$ is misclassified
 - if $y = +1$ then $w \leftarrow w + \phi(x^i)$
 - if $y = -1$ then $w \leftarrow w - \phi(x^i)$

- And then summarize

$$w = \sum_{j=1}^{n} \left[\alpha_j \ y^j \ \phi(x_j) \right]$$

- For making prediction on a new example x^i

$$w \cdot \phi(x^i) + b = \sum_{j=1}^{n} \left(\alpha_j \ y^j \phi(x_j) \cdot \phi(x_i) \right) + b$$
“Kernelizing” the perceptron

- **Naïve approach**: let’s explicitly train a perceptron in the new feature space

- Let \(y \in \{-1, 1\} \) \(\forall y \)

- Initialize weights \(w = 0, b = 0 \)

- Run through the training data \(i = 1, \ldots, n \)
 - if \(y^i (w \cdot \phi(x^i) + b) < 0 \)
 - \(w \leftarrow w + y^i \phi(x^i) \)
 - \(b \leftarrow b + y^i \)

- And then summarize
 - \(w = \sum_{j=1}^{n} \alpha_j y^j \phi(x^j) \), where \(\alpha_j \) is the number of misclassifications

- For making prediction on a new example \(x^i \)
 - \(w \cdot \phi(x^i) + b = \sum_{j=1}^{n} \alpha_j y^j \phi(x^j) \cdot \phi(x^i) + b = \sum_{j=1}^{n} \alpha_j y^j k(x^j, x^i) + b \)
Kernel perceptron

- Let $y \in \{-1, 1\} \forall y$

- Initialize $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$, $b = 0$

- Run through the training data $i = 1, \ldots, n$
 - if $y_i \left(\sum_{j=1}^{n} \alpha_j y_j \left[\phi(x_j) \cdot \phi(x_i) \right] + b \right) < 0$
 - $\alpha_i \leftarrow \alpha_i + 1$
 - $b \leftarrow b + y_i$

- So we can plug in kernel functions and implicitly operate in the higher-dimensional space
Kernel perceptron

- Let \(y \in \{-1, 1\} \forall y \)

- Initialize \(\alpha_1 = \ldots = \alpha_n = 0, b = 0 \)

- Run through the training data \(i = 1, \ldots, n \)
 - if \(y^i (\sum_{j=1}^{n} \alpha_j y^j k(x^j, x^i) + b) < 0 \)
 - \(\alpha_i \leftarrow \alpha_i + 1 \)
 - \(b \leftarrow b + y^i \)

- So we can plug in kernel functions and implicitly operate in the higher-dimensional space
Kernel perceptron: primal and dual forms

Primal form

- Let $y \in \{-1, 1\} \ \forall y$
- Initialize weights $w = 0, b = 0$
- Run through the training data $i = 1, \ldots, n$
 - if $y^i (w \cdot \phi(x^i) + b) < 0$
 - $w \leftarrow w + y^i \phi(x^i)$
 - $b \leftarrow b + y^i$

Dual form

- Let $y \in \{-1, 1\} \ \forall y$
- Initialize $\alpha_1 = \ldots = \alpha_n = 0, b = 0$
- Run through the training data $i = 1, \ldots, n$
 - if $y^i (\sum_{j=1}^{n} \alpha_j y^j k(x^j, x^i) + b) < 0$
 - $\alpha_i \leftarrow \alpha_i + 1$
 - $b \leftarrow b + y^i$
Commonly used Kernels

- Polynomial Kernel of degree exactly d
 \[K(u, v) = (u \cdot v)^d \]

- Polynomial Kernel of degree up to d
 \[K(u, v) = (u \cdot v + 1)^d \]

- Gaussian Kernel
 \[K(u, v) = \exp \left(-\frac{||u - v||^2}{2\sigma^2} \right) \]

- ...and many others
Which functions can be Kernels?

- not all functions
- for some definitions of $k(x,z)$ there is no corresponding projection $\varphi(x)$

- Well developed theory on this, including how to construct new kernels from existing ones

- Initially kernels were defined over data points in Euclidean space, but more recently over strings, over trees, over graphs, ...
Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed
Discussion

- Other algorithms can be “Kernelized”:
 - Logistic regression
 - We’ll talk about Support Vector Machines next…

- Do Kernels address all the downsides of “feature explosion”?
 - Helps reduce computation cost during training
 - But overfitting remains an issue