CS 4824/ECE 4424: Support Vector Machine

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Linear classifiers – multiple possibilities

- **Challenge**: How to pick the best classifier?
Pick the one with the largest margin!
Parameterizing the decision boundary

\[w^T x + b > 0 \quad \text{and} \quad w^T x + b < 0 \]

Labels \(y_i \in \{-1, +1\} \) — class
Maximizing the margin

- Margin = Distance of closest examples from the decision line/hyperplane

How to find the Max Margin = ?
Maximizing the margin

- Margin = Distance of closest examples from the decision line/hyperplane

\[\text{Margin} = \gamma = \frac{a}{\|w\|} \]

\[\arg\max_{w,b} \frac{a}{\|w\|} \]

\[s.t. \ (W^T X_j + b)y_j \geq a \ \forall j \]
Support Vector Machine

\[
\begin{align*}
\text{arg max} & \quad \frac{a}{\|w\|} \\
\text{subject to} & \quad (w^T x_j + b) y_j \geq a \quad \forall j
\end{align*}
\]

\[
\begin{align*}
\text{arg min} & \quad W^T W \\
\text{subject to} & \quad (W^T x_j + b) y_j \geq a \quad \forall j
\end{align*}
\]

Solve efficiently by quadratic programming (QP) - well studied

Note: a is arbitrary (can normalize equations by a)
Support Vector Machine

\[
\begin{align*}
\text{arg max}_{w,b} & \quad \frac{1}{\|w\|} \\
\text{s.t.} & \quad (w^T x_j + b) y_j \geq 1 \quad \forall j
\end{align*}
\]

\[
\begin{align*}
\text{arg min}_{w,b} & \quad W^T W \\
\text{s.t.} & \quad (w^T x_j + b) y_j \geq 1 \quad \forall j
\end{align*}
\]

Solve efficiently by quadratic programming (QP) - well studied

Note: \(a \) is arbitrary (can normalize equations by \(a \))
SVM — primal and dual forms

Primal form: solve for \(w, b \)

\[
\begin{align*}
\arg\min_{w,b} & \quad W^T W \\
\text{s. t.} & \quad y_l(W^T X_l + b) \geq 1 \quad \forall l \in \text{training examples}
\end{align*}
\]

Classification for new \(X \) : \((W^T X + b) > 0\)
SVM — primal and dual forms

Primal form: solve for w, b

$$\arg \min_{w,b} W^T W$$

$$s.t. \ y_l (W^T X_l + b) \geq 1 \ \forall \ l \ \in \ \text{training examples}$$

Classification for new $X: (W^T X + b) > 0$

Dual form: solve for $\alpha_1, \ldots, \alpha_n$

$$\arg \max_{\alpha_1, \ldots, \alpha_n} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k \langle X_j, X_k \rangle$$

$$s.t. \ \alpha_l > 0 \ \forall \ l \ \in \ \text{training examples} \ \sum_{l=1}^{M} \alpha_l y_l = 0$$

Classification for new $X: \sum_{l \in SV's} \alpha_l y_l \langle X, X_l \rangle + b > 0$
Support Vectors

- The linear hyperplane is defined by "support vectors"
- Moving other points a little doesn’t effect the decision boundary
- Only need to store the support vectors to predict labels of new points

\[\sum_{i \in sv's} \alpha_i y_i \langle x, x_i \rangle + b > 0 \]

\[w^T x + b > 0 \]

\[\sum_{i \in sv's} \alpha_i y_i \langle x, x_i \rangle + b < 0 \]

\[w^T x + b < 0 \]
Kernel SVM — primal and dual forms

Primal form: solve for w, b

$$\arg \min_{w,b} W^T W$$

$$s.t. y_l (W^T \phi(X_l) + b) \geq 1 \forall l \in \text{training examples}$$

Classification for new X: $(W^T \phi(X) + b) > 0$

Dual form: solve for $\alpha_1, \ldots, \alpha_n$

$$\arg \max_{\alpha_1, \ldots, \alpha_n} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k K(X_j, X_k)$$

$$s.t. \alpha_l > 0 \forall l \in \text{training examples} \sum_{l=1}^{M} \alpha_l y_l = 0$$

Classification for new X: $\sum_{l \in SV's} \alpha_l y_l K(X, X_l) > + b > 0$

Since the dual form depends only on inner products, we can apply the kernel trick to work in a (virtual) projected higher-dimensional space
SVM Decision Surface using Gaussian Kernel

- Circled points are the support vectors: training examples with non-zero α_l
- Points plotted in original 2-D space
- Contour lines show constant $\hat{f}(x)$

$$\hat{f}(x) = b + \sum_{l=1}^{M} \alpha_l y_l \kappa(x, x_l) = b + \sum_{l=1}^{M} \alpha_l y_l \exp(-\|x - x_l\|^2/2\sigma^2)$$
SVM Summary

- **Objective**: maximize margin between decision surface and data

- Primal and dual formulations
 - dual represents classifier decision in terms of *support vectors*

- Kernel SVM’s
 - learn linear decision surface in high dimension space, working in original low dimension space

- SVM algorithm: Quadratic Program optimization
 - single global minimum