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CS 4824/ECE 4424: 
Support Vector Machine

1

Acknowledgement:  
Many of these slides are derived from Tom Mitchell, 
Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos 
Guestrin, William Cohen, and Andrew Moore.



Machine Learning | Virginia Tech© Debswapna Bha6acharya 2

Linear classifiers – multiple possibilities

∘ Challenge: How to pick the best classifier?
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Pick the one with the largest margin!
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Parameterizing the decision boundary
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Maximizing the margin

∘ Margin = Distance of 
closest examples from 
the decision line/ 
hyperplane

How to find the Max Margin = ? 
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Maximizing the margin

∘ Margin = Distance of 
closest examples from 
the decision line/ 
hyperplane

γ =
a

∥w∥

arg max
w,b

a
∥w∥

s . t . (WTXj + b)yj ≥ a∀j

Margin = 
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Support Vector Machine

arg max
w,b

a
∥w∥

s . t . (WTXj + b)yj ≥ a∀j

arg min
w,b

WTW

s . t . (WTXj + b)yj ≥ a∀j

Solve efficiently by quadratic 
programming (QP) - well studied 

Note: a is arbitrary (can normalize equations by a)
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Support Vector Machine

arg max
w,b

1
∥w∥

s . t . (WTXj + b)yj ≥ 1∀j

arg min
w,b

WTW

s . t . (WTXj + b)yj ≥ 1∀j

Solve efficiently by quadratic 
programming (QP) - well studied 

Note: a is arbitrary (can normalize equations by a)
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SVM — primal and dual forms

arg min
w,b

WTW

s . t . yl(WTXl + b) ≥ 1∀l ∈

Primal form: solve for w, b

Classification for new  : X (WTX + b) > 0

training examples
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SVM — primal and dual forms

arg min
w,b

WTW

s . t . yl(WTXl + b) ≥ 1∀l ∈

Primal form: solve for w, b

Classification for new  : X (WTX + b) > 0

training examples

Dual form: solve for α1, . . . , αn

arg max
α1...αn

M

∑
l=1

αl −
1
2

M

∑
j=1

M

∑
k=1

αjαkyjyk ⟨Xj, Xk⟩
s . t . αl > 0∀l ∈ training examples

M

∑
l=1

αlyl = 0

Classification for new  : X ∑
l∈SV′ s

αlyl ⟨X, Xl⟩ + b > 0
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Support Vectors

∘ The linear hyperplane is 
defined by “support vectors”

∘ Moving other points a li6le 
doesn’t effect the decision 
boundary

∘ Only need to store the 
support vectors to predict 
labels of new points
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Kernel SVM — primal and dual forms

arg min
w,b

WTW

s . t . yl(WTϕ(Xl) + b) ≥ 1∀l ∈

Primal form: solve for w, b

Classification for new  : X (WTϕ(X) + b) > 0

training examples

Dual form: solve for α1, . . . , αn

arg max
α1...αn

M

∑
l=1

αl −
1
2

M

∑
j=1

M

∑
k=1

αjαkyjykK(Xj, Xk)

s . t . αl > 0∀l ∈ training examples
M

∑
l=1

αlyl = 0

Classification for new  : X ∑
l∈SV′ s

αlylK(X, Xl) > + b > 0

∘ Since the dual 
form depends 
only on inner 
products, we 
can apply the 
kernel trick to 
work in a 
(virtual) 
projected 
higher-
dimensional 
space
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SVM Decision Surface using Gaussian Kernel

∘ Circled points are the support vectors: training examples with 
non-zero

∘  Points plo6ed in original 2-D space 
∘ Contour lines show constant
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SVM Summary
∘ Objective: maximize margin between decision surface and data 

∘ Primal and dual formulations 
∘ dual represents classifier decision in terms of support vectors  

∘ Kernel SVM’s 

∘ learn linear decision surface in high dimension space, 
working in original low dimension space 

∘ SVM algorithm: Quadratic Program optimization 
∘  single global minimum 


