CS 4824/ECE 4424: Graphical Models I

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Graphical Models

• Key Idea:

- Express sets of conditional independence assumptions via graph structure
- Graph structure plus associated parameters define joint probability distribution over set of variables/ nodes

Conditional independence

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y given the value of Z
 - $(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$
 - Or equivalently, P(X | Y Z) = P(X | Z)
- P(Thunder | Rain, Lightning) = P(Thunder | Lightning)
 - That is, Thunder and Rain are conditionally independent

Marginal independence

• X is marginally independent of Y if

•
$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

• Equivalently if

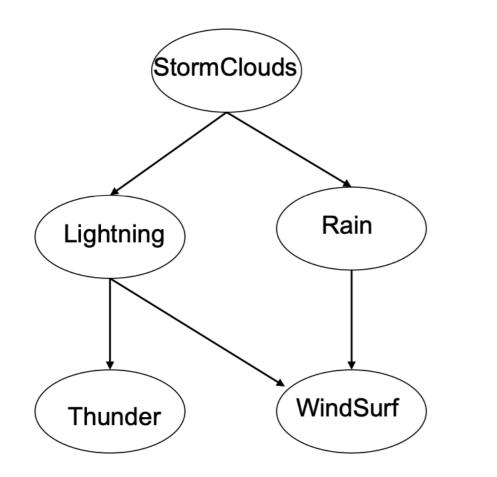
•
$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

• Equivalently if

•
$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Bayesian network

- A directed acyclic graph defining a joint probability distribution over a set of variables
- Each node denotes a random variable
- A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))



Parents	P(W Pa)	P(¬W∣Pa)		
L, R	0	1.0		
L, ¬R	0	1.0		
¬L, R	0.2	0.8		
¬L, ¬R	0.9	0.1		
WindSurf				

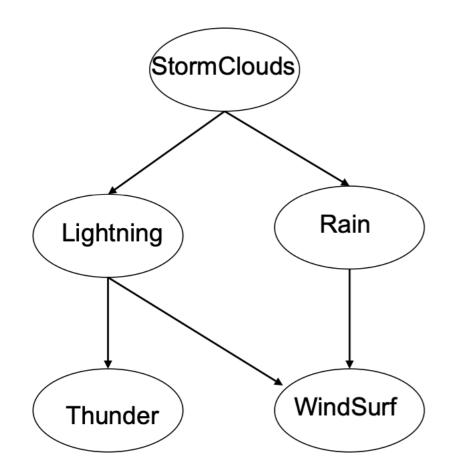
The joint distribution over all variables in the network is defined in terms of these CPD's, plus the graph

Bayesian network more formally

- A Bayes network represents the joint probability distribution over a collection of random variables
- A Bayes network is a directed acyclic graph and a set of CPD's
 - Each node denotes a random variable
 - Edges denote dependencies
 - CPD for each node X_i defines $P(X_i | Pa(X_i))$
 - The joint distribution over all variables is defined as $P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$

Bayesian network: conditional independence

- What can we say about conditional independence in a Bayes Net?
- Each node is conditionally independent of its non-descendents, given only its immediate parents

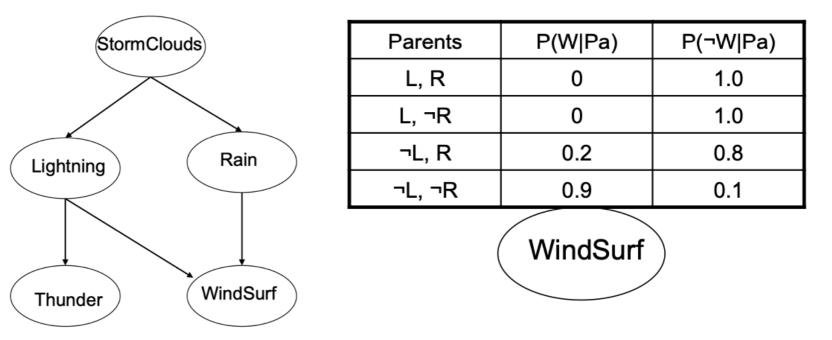


Parents	P(W Pa)	P(¬W∣Pa)	
L, R	0	1.0	
L, ¬R	0	1.0	
¬L, R	0.2	0.8	
ר, ¬R	0.9	0.1	

WindSurf

Bayesian network

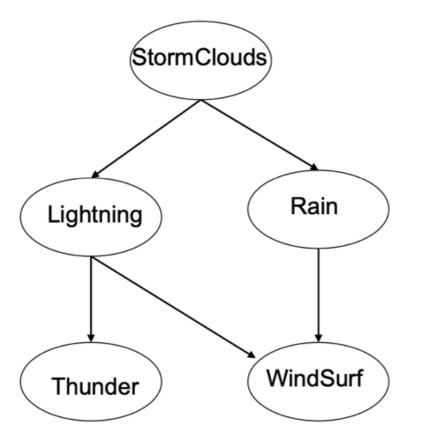
• CPD for each node X_i describes $P(X_i | Pa(X_i))$



• Chain rule of probability P(S, L, R, T, W) = P(S)P(L|S)P(R|S, L)P(T|S, L, R)P(W|S, L, R, T)

• But in Bayes net:
$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

How many parameters?



Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
ר, ¬R	0.9	0.1

WindSurf

• In full joint distribution?

• Given this Bayes net?

Algorithm for constructing Bayes network

- Choose an ordering over variables, e.g. $X_1, X_2, ..., X_n$
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 \dots X_{i-1}$ such that $P(X_i | Pa(X_i)) = P(X_i | X_1 \dots X_{i-1})$

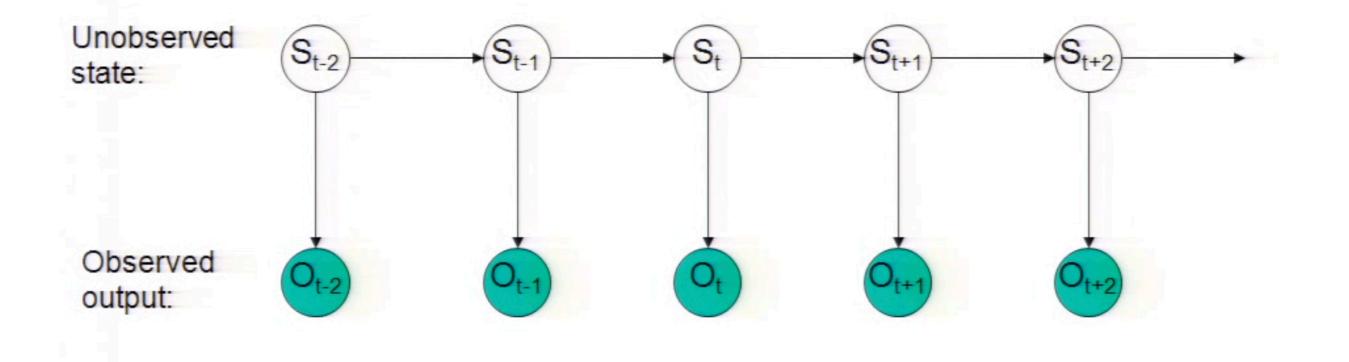
• Notice this choice of parents assures $P(X_1 \dots X_n) = \prod_i P(X_i | X_1 \dots X_{i-1}) = \prod_i P(X_i | Pa(X_i))$

What is the Bayes net for $X_1, X_2, ..., X_n$ with NO assumed conditional independence ?

What is the Bayes net for Naïve Bayes?

Hidden Markov Model

• Assume the future is conditionally independent of the past, given the present



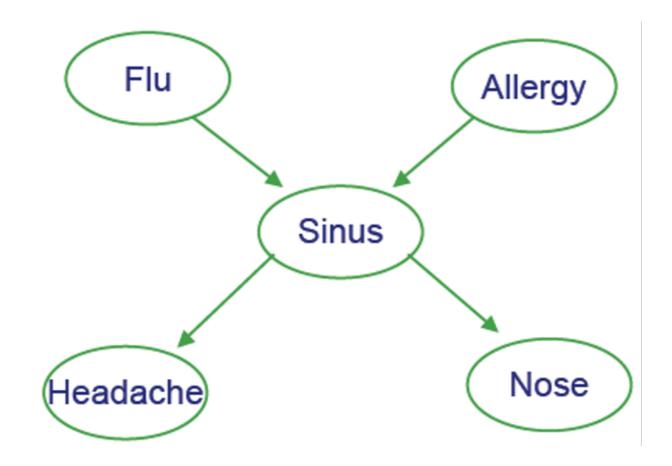
 $P(S_{t-2}, O_{t-2}, S_{t-1}, \dots, O_{t+2}) =$

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 Belief propagation
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results

Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose



Prob. of joint assignment: easy

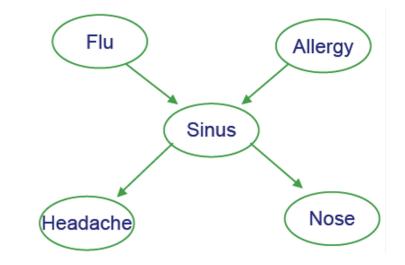
- Suppose we are interested in joint assignment
 <F=f,A=a,S=s,H=h,N=n>
- Flu Allergy Sinus Nose

• What is P(f,a,s,h,n)?

let's use P(a,b) as shorthand for P(A=a, B=b)

Prob. of marginals: not so easy

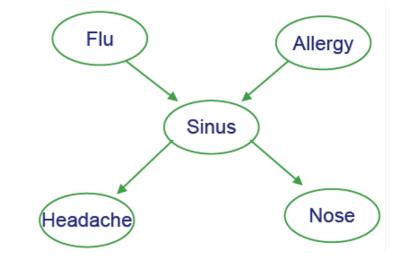
• How do we calculate P(N=n)?



let's use P(a,b) as shorthand for P(A=a, B=b)

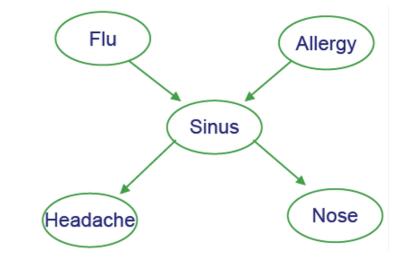
Generating a sample from joint distribution: easy

• How can we generate random samples drawn according to P(F,A,S,H,N)?



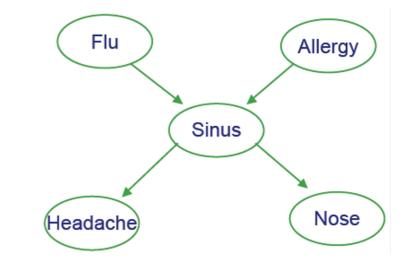
Generating a sample from joint distribution: easy

- How can we generate random samples drawn according to P(F,A,S,H,N)?
- random sample of F according to $P(F=1) = \theta_{F=1}$:
 - draw a value of r uniformly from [0,1]
 - if r< θ then output F=1, else F=0
- Solution:
 - draw a random value f for F, using its CPD
 - then draw values for A, for S|A,F, for H|S, for N|S



Generating a sample from joint distribution: easy

- Note we can estimate marginals
 like P(N=n) by generating many samples
 from joint distribution, then count the
 fraction of samples for which N=n
- Similarly, for anything else we care about P(F=1|H=1, N=0)
 - weak but general method



Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 Belief propagation
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results