CS 4824/ECE 4424: Perceptron III

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Threshold Perceptron Learning

- Dot products $x^Tx \geq 0$ and $-x^Tx \leq 0$

- Perceptron computes
 - 1 when $w^Tx = \sum_i x_i w_i + w_0 > 0$
 - 0 when $w^Tx = \sum_i x_i w_i + w_0 < 0$

- If output should be 1 instead of 0
 - $w \leftarrow w + x$ since $(w + x)^Tx \geq w^Tx$

- If output should be 1 instead of 0
 - $w \leftarrow w - x$ since $(w - x)^Tx \leq w^Tx$
Sequential Gradient Descent

- Let $y \in \{-1, 1\}$ $\forall y$
- Let $M = \{(x_n, y_n)\}_{\forall n}$ be set of misclassified examples
 - i.e. $y_n w^T x < 0$
- Find w that minimizes misclassification error:
 - $E(w) = -\sum_{(x_n, y_n) \in M} y_n w^T x$
- Gradient $\nabla E = -\sum_{(x_n, y_n) \in M} y_n x_n$

Sequential gradient descent
- Adjust w based on one example (x, y) at a time
 - $w \leftarrow w + \eta y x$
- When $\eta = 1$, we recover the threshold perceptron algorithm
Perceptron Algorithm

- Let \(y \in \{-1, 1\} \) \(\forall y \)
- Start with randomly initialized weights: \(w \)
- For \(t = 1..T \) (\(T \) passes over data)
 - For \(l = 1..n: \) (each training example)
 - Classify with current weights
 - \(\hat{y} = \text{sign} (w^T x) \) where \(\text{sign}(x) = +1 \) if \(x > 0 \) else -1
 - If correct (i.e., \(\hat{y} = y^l \)), no change!
 - If wrong: update:
 - \(w \leftarrow w + y^l x^l \)
Perceptron vs. logistic regression: update rule

- **Logistic regression** when $y \in \{0, 1\}$

 \[w^{(t+1)} \leftarrow w^{(t)} + \eta \sum_l X^l (Y^l - \hat{P}(Y^l = 1 | X^l, W)) \]

 - **NOTE**: considers all training data in the batch mode

- **Perceptron** when $y \in \{-1, 1\}$

 - If misclassified: $w^{(t+1)} \leftarrow w^{(t)} + Y^l X^l$

 - **NOTE**: considers only one data point
Perceptron vs. logistic regression: update rule

- **Logistic regression**

 \[w^{(t+1)} \leftarrow w^{(t)} + \eta \sum_l X^l (Y^l - \hat{P}(Y^l = 1 | X^l, W)) \]

- **Perceptron** when \(y \in \{0, 1\} \)

 \[w^{(t+1)} \leftarrow w^{(t)} + [Y^l - \text{sign}^0(W^T X^l)] X^l \]

 where \(\text{sign}^0(x) = +1 \) if \(x > 0 \) else 0

- **Differences**
 - Batch vs. stochastic
 - Probabilistic vs. error driven learning
Properties of Threshold Perceptron

- Hypothesis space h_w
- Binary classifications with parameters w
- Since $w^T x$ is linear in w, perceptron is a linear separator
- Converges iff the data is linearly separable
Perceptron Linear Separability

- Examples

| Linearly Separable | Linearly Nonseparable |
Sigmoid Perceptron

- “Soft” linear separator

Can we use sigmoid perceptron for linearly nonseparable data points?
Sigmoid Perceptron Learning

- Maximum likelihood estimation
 - Equivalent to logistic regression

- Objective function can be:
 - Mimimim squared error

\[
E(w) = \frac{1}{2} \sum_n E_n(w)^2 = \frac{1}{2} \sum_n (y_n - \sigma(w^T x_n))^2
\]
Gradient

Derivation

\[
\frac{\partial E}{\partial w_i} = \sum_n E_n \frac{\partial E_n}{\partial w_i} \\
= \sum_n E_n(w)\sigma'(w^T x_n)x_i \\
= \sum_n E_n(w)\sigma(w^T x_n)(1 - \sigma(w^T x_n))x_i
\]

Recall,

\[
\sigma(x) = \frac{1}{1 + e^{-x}} \\
\sigma'(x) = \frac{d}{dx} \sigma(x) = \sigma(x)(1 - \sigma(x))
\]

No closed form solution!
Gradient Descent

- Perceptron-Learning(examples, network)
 - Repeat
 - For each \((x_n, y_n)\) in examples, do:
 - \(E_n \leftarrow y_n - \sigma (w^T x)\)
 - \(w \leftarrow w + \eta E_n \sigma (w^T x) (1 - \sigma (w^T x)) x_n\)
 - Until some stopping criteria satisfied
 - Return learnt network
Demo Time 😊

https://playground.tensorflow.org/