CS 4824/ECE 4424: Graphical Models II

Acknowledgement:
Many of these slides are derived from Tom Mitchell,
Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos
Guestrin, William Cohen, and Andrew Moore.

Bayesian network recap

- A Bayes network represents the joint probability distribution over a collection of random variables
- A Bayes network is a directed acyclic graph and a set of CPD's
- Each node denotes a random variable
- Edges denote dependencies
- CPD for each node X_{i} defines $P\left(X_{i} \mid P a\left(X_{i}\right)\right)$
- The joint distribution over all variables is defined as

$$
P\left(X_{1} \ldots X_{n}\right)=\prod_{i} P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

Bayesian network recap

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- $\mathrm{BN}=$ Graph plus parameters of CPD's
- Defines joint distribution over variables
- Can calculate everything else from that
- Though inference may be intractable

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
- Assigning probability to fully observed set of variables
- Or if just one variable unobserved
- Or for singly connected graphs (ie., no undirected loops)
- Belief propagation
- Sometimes use Monte Carlo methods
- Generate many samples according to the Bayes Net distribution, then count up the results

Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose

Prob. of joint assignment: easy

- Suppose we are interested in joint assignment $<\mathrm{F}=\mathrm{f}, \mathrm{A}=\mathrm{a}, \mathrm{S}=\mathrm{s}, \mathrm{H}=\mathrm{h}, \mathrm{N}=\mathrm{n}>$

- What is $\mathrm{P}(\mathrm{f}, \mathrm{a}, \mathrm{s}, \mathrm{h}, \mathrm{n})$?

Prob. of marginals: not so easy

- How do we calculate $\mathrm{P}(\mathrm{N}=\mathrm{n})$?

let's use $\mathrm{P}(\mathrm{a}, \mathrm{b})$ as shorthand for $\mathrm{P}(\mathrm{A}=\mathrm{a}, \mathrm{B}=\mathrm{b})$

Generating a sample from joint distribution: easy

- How can we generate random samples drawn according to $\mathrm{P}(\mathrm{F}, \mathrm{A}, \mathrm{S}, \mathrm{H}, \mathrm{N})$?

Generating a sample from joint distribution: easy

- How can we generate random samples drawn according to $\mathrm{P}(\mathrm{F}, \mathrm{A}, \mathrm{S}, \mathrm{H}, \mathrm{N})$?
- random sample of F according to $\mathrm{P}(\mathrm{F}=1)=\theta_{\mathrm{F}=1}$:
- draw a value of r uniformly from $[0,1]$
- if $\mathrm{r}<\theta$ then output $\mathrm{F}=1$, else $\mathrm{F}=0$

- Solution:
- draw a random value f for F , using its CPD
- then draw values for A , for $\mathrm{S} \mid \mathrm{A}, \mathrm{F}$, for HIS , for $\mathrm{N} I \mathrm{~S}$

Generating a sample from joint distribution: easy

- Note we can estimate marginals like $\mathrm{P}(\mathrm{N}=\mathrm{n})$ by generating many samples from joint distribution, then count the fraction of samples for which $\mathrm{N}=\mathrm{n}$

- Similarly, for anything else we care about $\mathrm{P}(\mathrm{F}=1 \mid \mathrm{H}=1, \mathrm{~N}=0)$
- weak but general method

Learning of Bayes Nets

- Several types of of learning problems
- Variable values may be fully observed / partly unobserved
- Easy case: learn parameters when data is fully observed
- Interesting case: graph known, data partly known

Learning CPTs from Fully Observed Data

- Example: Consider learning the parameter

$$
\theta_{s \mid i j} \equiv P(S=1 \mid F=i, A=j)
$$

- Max Likelihood Estimate is

$$
\theta_{s \mid i j}=\frac{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j, s_{k}=1\right)}{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j\right)}
$$

Learning CPTs from Fully Observed Data

- Example: Consider learning the parameter

$$
\theta_{s \mid i j} \equiv P(S=1 \mid F=i, A=j)
$$

- Max Likelihood Estimate is

MLE estimate of $\theta_{s i i j}$ from fully observed data

- Maximum likelihood estimate
- Our case

MLE estimate of $\theta_{s \mid i j}$ from fully observed data

- Maximum likelihood estimate

$$
\theta \leftarrow \arg \max _{\theta} \log P(\text { data } \mid \theta)
$$

- Our case

$$
\begin{aligned}
& P(\text { data } \mid \theta)=\prod_{k=1}^{K} P\left(f_{k}, a_{k}, s_{k}, h_{k}, n_{k}\right) \\
& P(\text { data } \mid \theta)=\prod_{k=1}^{K} P\left(f_{k}\right) P\left(a_{k}\right) P\left(s_{k} \mid f_{k} a_{k}\right) P\left(h_{k} \mid s_{k}\right) P\left(n_{k} \mid s_{k}\right) \\
& \log P(\text { data } \mid \theta)=\sum_{k=1}^{K} \log P\left(f_{k}\right)+\log P\left(a_{k}\right)+\log P\left(s_{k} \mid f_{k} a_{k}\right)+\log P\left(h_{k} \mid s_{k}\right)+\log P\left(n_{k} \mid s_{k}\right) \\
& \frac{\partial \log P(\text { data } \mid \theta)}{\partial \theta_{s \mid i j}}=\sum_{k=1}^{K} \frac{\partial \log P\left(s_{k} \mid f_{k} a_{k}\right)}{\partial \theta_{s \mid i j}} \\
& \theta_{s \mid i j}=\frac{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j, s_{k}=1\right)}{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j\right)} \\
& \text { Machine Learning | Virginia Tech }
\end{aligned}
$$

Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can't calculate MLE

$$
\theta \leftarrow \arg \max _{\theta} \log \prod_{k} P\left(f_{k}, a_{k}, s_{k}, h_{k}, n_{k} \mid \theta\right)
$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can't calculate MLE

$$
\theta \leftarrow \arg \max _{\theta} \log P(X, Z \mid \theta)
$$

- What to do?

