CS 4824/ECE 4424: Neural Networks I

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Perceptron Algorithm

- Let $y \in \{-1, 1\} \forall y$

- Start with randomly initialized weights: w

- For $t = 1..T$ (T passes over data)
 - For $l = 1..n$: (each training example)
 - Classify with current weights
 - $\hat{y} = \text{sign} (w^T x)$ where $\text{sign}(x) = +1$ if $x > 0$ else -1
 - If correct (i.e., $\hat{y} = y^l$), no change!)
 - If wrong: update:
 - $w \leftarrow w + y^l x^l$
Properties of Threshold Perceptron

- Hypothesis space h_w
- Binary classifications with parameters w
- Since $w^T x$ is linear in w, perceptron is a linear separator
- Converges *iff* the data is linearly separable
Sigmoid Perceptron

- "Soft" linear separator

Sigmoid perceptron cannot be used for linearly non-separable data points
Multilayer Networks

- Adding two sigmoid nodes with parallel but opposite "cliffs" produces a ridge

- Schematic
Multilayer Networks

- Adding two intersecting ridges (and thresholding) produces a **bump**

- Schematic
Multilayer Networks

- A bump can classify linearly non-separable data points

- By tiling bumps of various heights together, we can approximate any function
Demo Time 😊

https://playground.tensorflow.org/
Multilayer Neural Networks are Expressive!

- Multilayer Neural Networks can approximate any function, hence millions of applications
 - Machine translation
 - Computer vision
 - Speech recognition
 - Word embedding
 - …
Network Architecture

- **Feed-forward Network**
 - Directed *acyclic* graph
 - No internal state

- **Recurrent Network**
 - Directed *cyclic* graph
 - Dynamical system with internal states
 - Can memorize information
Two-layer Feed-forward Network

- **Architecture**

- **Hidden nodes**: $z_j = h_1 (w_j^{(1)T} x)$
- **Output nodes**: $y_k = h_2 (w_k^{(2)T} z)$
- **Overall**: $y_k = h_2 (\sum_j w_{kj}^{(2)} h_1 (\sum_i w_{ji}^{(1)} x_i))$
Two-layer Feed-forward Network

- **Regression**

\[\eta_k = \sum_j w_{kj}^{(2)} \sigma \left(\sum_i w_{ji} x_i \right) \]

- **Classification**

\[P(\eta_k | x) = \sigma \left(\sum_j w_{kj}^{(2)} \sigma \left(\sum_i w_{ji} x_i \right) \right) \]
Common Activation Functions h

- Identity $h(a) = a$
- Threshold $h(a) = \begin{cases} 1 & \text{if } a \geq 0 \\ -1 & \text{if } a < 0 \end{cases}$
- Sigmoid $h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$
- Gaussian $h(a) = e^{-\frac{1}{2}(\frac{a - \mu}{\sigma})^2}$
- Tanh $h(a) = tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$
Optimizing the Weights

- Parameters: \(<W^{(1)}, W^{(2)}, \ldots>\)
- Objective:
 - Error minimization
 - Backpropagation (aka backprop)