CS 4824/ECE 4424: Expectation Maximization

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Estimate θ from partly observed data — recap

- What if FAHN observed, but not S?
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_\theta \log \prod_k P(f_k, a_k, s_k, h_k, n_k|\theta)$$

- Let X be all *observed* variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_\theta \log P(X, Z|\theta)$$

- Estimate:

$$\theta \leftarrow \arg \max_\theta E_{Z|X,\theta}[\log P(X, Z|\theta)]$$
MLE estimate of $\theta_{s|ij}$ from fully observed data - recap

- **Maximum likelihood estimate**

 $$\theta \leftarrow \arg \max_{\theta} \log P(data|\theta)$$

- **Our case**

 $$P(data|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$

 $$P(data|\theta) = \prod_{k=1}^{K} P(f_k)P(a_k)P(s_k|f_ka_k)P(h_k|s_k)P(n_k|s_k)$$

 $$\log P(data|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

 $$\frac{\partial \log P(data|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_ka_k)}{\partial \theta_{s|ij}}$$

 $$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$
Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_{\theta} \log \prod_k P(f_k, a_k, s_k, h_k, n_k|\theta)$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE

$$\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta)$$

- What to do?
Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can’t calculate MLE
 $$\theta \leftarrow \arg \max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$$
- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE
 $$\theta \leftarrow \arg \max_{\theta} \log P(X, Z | \theta)$$
- EM seeks* to estimate:
 $$\theta \leftarrow \arg \max_{\theta} E_{Z | X, \theta} [\log P(X, Z | \theta)]$$

* EM guaranteed to find local optima
Estimate θ from partly observed data

- EM seeks to estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta} \left[\log P(X, Z|\theta) \right]$$

- here, observed $X=$\{F,A,H,N\}, unobserved $Z=$\{S\}

\[
\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k,a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)
\]

$$E_{P(Z|X,\theta)} \log P(X, Z|\theta) =$$
Estimate θ from partly observed data

- EM seeks to estimate:

$$\theta \leftarrow \arg \max \theta E_{Z|X,\theta}[\log P(X, Z|\theta)]$$

- here, observed $X=\{F,A,H,N\}$, unobserved $Z=\{S\}$

$$\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k, a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

$$E_{P(Z|X,\theta)} \log P(X, Z|\theta) = \sum_{k=1}^{K} \sum_{i=0}^{1} P(s_k = i|f_k, a_k, h_k, n_k)$$

$$[\log P(f_k) + \log P(a_k) + \log P(s_k|f_k, a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)]$$
EM algorithm — informally

- EM is a general procedure for learning from partly observed data
- Given observed variables X, unobserved Z ($X=\{F,A,H,N\}$, $Z=\{S\}$)

Begin with arbitrary choice for parameters θ

Iterate until convergence:

- E Step: estimate the values of unobserved Z conditioned on X using θ
- M Step: use observed values plus E-step estimates to derive a better θ

- Guaranteed to find local maximum. Each iteration increases

$$E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$$
E Step: Use X, θ to Calculate $P(Z|X,\theta)$

- observed X={F,A,H,N}
- unobserved Z={S}

- How? Bayes net inference problem

$$P(S_k = 1|f_k,a_k,h_k,n_k, \theta) =$$
E Step: Use X, θ to Calculate $P(Z \mid X, \theta)$

- observed $X = \{F, A, H, N\}$
- unobserved $Z = \{S\}$

- How? Bayes net inference problem

$$P(S_k = 1 \mid f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k \mid \theta)}{P(S_k = 1, f_k a_k h_k n_k \mid \theta) + P(S_k = 0, f_k a_k h_k n_k \mid \theta)}$$
EM and estimating $\theta_{s|ij}$

- observed $X=\{F,A,H,N\}$; unobserved $Z=\{S\}$

- **E Step**: Calculate $P(Z_k|X_k; \theta)$ for each training example, k

 \[
P(S_k = 1|f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k|\theta)}{P(S_k = 1, f_k a_k h_k n_k|\theta) + P(S_k = 0, f_k a_k h_k n_k|\theta)}
 \]

- **M Step**: update all relevant parameters.

What was MLE? $\theta_{s|ij} =$
EM and estimating $\theta_{s|i,j}$

- observed $X=\{F,A,H,N\}$; unobserved $Z=\{S\}$

- **E Step:** Calculate $P(Z_k|X_k; \theta)$ for each training example, k

 $$P(S_k = 1|f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k|\theta)}{P(S_k = 1, f_k a_k h_k n_k|\theta) + P(S_k = 0, f_k a_k h_k n_k|\theta)}$$

- **M Step:** update all relevant parameters. For example:

 $$\theta_{s|i,j} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) E[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

 Recall MLE was:

 $$\theta_{s|i,j} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$
Generalizing: EM and estimating θ

- More generally, given observed set X, unobserved set Z of boolean values

- **E Step:** Calculate for each training example, k the expected value of each unobserved variable

- **M Step:** Calculate estimates similar to MLE, but replacing each count by its expected count

\[
\delta(Y = 1) \rightarrow E_{Z|X,\theta}[Y] \quad \delta(Y = 0) \rightarrow (1 - E_{Z|X,\theta}[Y])
\]
Using (partially) unlabeled data to help train naïve Bayes classifier

Learn $P(Y|X)$

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

semi-supervised learning
EM and estimating θ

- **E step**: Calculate for each training example k, the expected value of each unobserved variable Y.
EM and estimating θ

- Observed set X
- Partially unobserved set Y of boolean values

E step: Calculate for each training example k, the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \ldots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^{1} P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count
EM and estimating θ

- Observed set X
- Partially unobserved set Y of boolean values

- **E step:** Calculate for each training example k, the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \ldots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^{1} P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

- **M step:** Calculate estimates similar to MLE, but replacing each count by its expected count

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k)) \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k))}$$

MLE would be:

$$\hat{P}(X_i = j|Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$
EM algorithm — summary

- EM is a general procedure for learning from partly observed data
- Given observed variables X, unobserved Z ($X=\{F, A, H, N\}$, $Z=\{S\}$)
- Define $Q(\theta'|\theta) = E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

Begin with arbitrary choice for parameters θ

Iterate until convergence:

- E Step: Use X and current θ to calculate $P(Z|X,\theta)$
- M Step: Replace current θ by $\theta = \arg\max_{\theta'} Q(\theta'|\theta)$

- Guaranteed to find local maximum. Each iteration increases

$$E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$$
What if we have no labeled data at all?

semi-supervised learning

<table>
<thead>
<tr>
<th>Y</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Unsupervised clustering

Just extreme case of EM with zero labeled examples…