CS 4824/ECE 4424: Function Approximation

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Supervised function approximation

- Problem setting
 - Set of possible instances X
 - Unknown target function f
 - Set of function hypotheses: $H = \{ h | h: X \to Y \}$

- Input
 - Training examples \{<X^{(i)}, Y^{(i)}>\} of unknown function f

- Output
 - Hypothesis $h \in H$ that best approximates f
Example data

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Example function approximator

- Each internal node
 - Tests one attribute X_i

- Each branch from a node
 - Selects on value for X_i

- Each leaf node:
 - Predicts Y or $P(Y|X \in \text{leaf})$

A decision tree for $F: \langle \text{Outlook, Humidity, Wind, Temp} \rightarrow \text{PlayTennis?} \rangle$
Dynamics of the function approximator

- Set of possible instances X
 - Each instance x is a feature vector

- Unknown target function f
 - Y is discrete valued

- Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a decision tree
 - Tree sorts x to leaf, which assigns y
Dynamics of the function approximator

- Set of possible instances X
 - Each instance x is a feature vector

- Unknown target function f
 - Y is discrete valued

- Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a decision tree
 - Tree sorts x to leaf, which assigns y

Q. How many decision trees are possible?
Function approximation using decision trees

- Suppose $X = <X_1, ..., X_n>$, $X_i \in \{0, 1\}$

- How would you represent $Y = X_2 X_5$? $Y = X_2 \lor X_5$?

- Or a more complicated one $X_2 X_5 \lor X_3 X_4 (\neg X_1)$?
Function approximation using decision trees

Q. Can we represent arbitrary boolean (or discrete-valued) functions using decision trees?
Decision tree as function approximator

- Decision trees are expressive
 - Can represent any Boolean (or discrete-valued) functions
 - This makes decision trees universal function approximator
Top-down induction of decision trees

\[\text{node} = \text{Root} \]

Main loop:
1. \(A \leftarrow \text{the “best” decision attribute for next node} \)
2. Assign \(A \) as decision attribute for node
3. For each value of \(A \), create new descendant of node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Intuition: top-down greedy growth of decision tree using “best” attribute until all examples are perfectly classified.

Q. How to pick “best” attribute?
Sample Entropy

- S is a sample of training examples
- p_\oplus is the proportion of positive examples in S
- p_\ominus is the proportion of negative examples in S
- Entropy measures the impurity of S

\[H(S) \equiv -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus \]
Entropy

- Entropy $H(X)$ of a random variable X is defined as:
 - $H(X) = -\sum_i P(X=i) \log_2 P(X=i)$

- Specific conditional entropy $H(X | Y=v)$ is
 - $H(X | Y=v) = -\sum_i P(X=i | Y=v) \log_2 P(X=i | Y=v)$

- Conditional entropy $H(X | Y)$ is
 - $H(X | Y) = \sum_{v \in \text{values}(Y)} P(Y=v) H(X | Y=v)$

- Mutual information (a.k.a. information gain) of X and Y
 - $I(X, Y) = H(X) - H(X | Y) = H(Y) - H(Y | X)$
Information gain

- Mutual information (a.k.a. information gain) of X and Y
 - $I(X, Y) = H(X) - H(X | Y) = H(Y) - H(Y | X)$

- Information Gain is the expected reduction in entropy of target variable Y for data sample S, due to sorting on variable A
 - $Gain (S, A) = I_s(A, Y) = H_s(Y) - H_s(Y | A)$

Q. How to pick “best” attribute?
A. One that reduces entropy the most. i.e. highest information gain
Example data

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play/Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Selecting the “best” attribute

\[
S: [9+, 5-] \\
E = 0.940
\]

Humidity

- **High**
 - [3+, 4-]
 - \(E = 0.985 \)

- **Normal**
 - [6+, 1-]
 - \(E = 0.592 \)

Gain \((S, \text{Humidity})\)
\[
= 0.940 - \left(\frac{7}{14} \right) 0.985 - \left(\frac{7}{14} \right) 0.592 \\
= 0.151
\]

\[
S: [9+, 5-] \\
E = 0.940
\]

Wind

- **Weak**
 - [6+, 2-]
 - \(E = 0.811 \)

- **Strong**
 - [3+, 3-]
 - \(E = 1.00 \)

Gain \((S, \text{Wind})\)
\[
= 0.940 - \left(\frac{8}{14} \right) 0.811 - \left(\frac{6}{14} \right) 1.0 \\
= 0.048
\]
Questions to think about…

Is there more than one decision tree that will perfectly sort the data?

If so, which one do you choose and why?