CS 4824/ECE 4424: Clustering

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
EM algorithm — recap

- EM is a general procedure for learning from partly observed data
- Given observed variables X, unobserved Z (\(X=\{F,A,H,N\}, \ Z=\{S\}\))

Begin with arbitrary choice for parameters θ

Iterate until convergence:

- **E Step**: estimate the values of unobserved Z conditioned on X using θ
- **M Step**: use observed values plus E-step estimates to derive a better θ

- Guaranteed to find local maximum. Each iteration increases

\[
E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]
\]
What if we have no labeled data at all?

un

semi-supervised learning
Unsupervised clustering

Just extreme case of EM with zero labeled examples…
From partially unlabeled data to no labeled data at all...

<table>
<thead>
<tr>
<th>Y</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

semi-supervised learning

unsupervised learning

Learn $P(Y|X)$
Clustering

- Given set of data points, without class labels, group them
- Unsupervised learning
- Which news items are similar? (or which customers, faces, web pages, ...)
- Many practical applications...
Clustering
Mixture Distributions

- Model joint distribution $P(X_1 \ldots X_n)$ as mixture of multiple distributions.

- Use discrete-valued random variable Z to indicate which distribution is being used for each random draw.

$$P(X_1 \ldots X_n) = \sum_i P(Z = i) \ P(X_1 \ldots X_n | Z)$$

- Mixture of Gaussians:
 - Assume each data point $X=\langle X_1, \ldots, X_n \rangle$ is generated by one of several Gaussians, as follows:
 - randomly choose Gaussian i, according to $P(Z=i)$
 - randomly generate a data point $\langle x_1, x_2, \ldots, x_n \rangle$ according to the parameters of the Gaussian distributions corresponding to i
Mixture of Gaussians
EM for Mixture of Gaussian Clustering

- Let’s simplify to make this easier:
 - Assume $X = \langle X_1 \ldots X_n \rangle$, and the X_i are conditionally independent given Z. $P(X|Z = j) = \prod_{i} N(X_i|\mu_{ji}, \sigma_{ji})$
 - Assume only 2 clusters (values of Z), and $\forall i, j, \sigma_{ji} = \sigma$
 - $P(X) = \sum_{j=1}^{2} P(Z = j|\pi) \prod_{i} N(x_i|\mu_{ji}, \sigma)$
 - Assume σ known, $\pi_1 \ldots \pi_K, \mu_{1i} \ldots \mu_{Ki}$

- Observed: $X = \langle X_1 \ldots X_n \rangle$
- Unobserved: Z
EM

- Given observed variables X, unobserved Z,
 - define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$ where $\theta = (\pi, \mu_{ji})$

- Iterate until convergence:
 - E Step:
 - Calculate $P(Z(n)|X(n),\theta)$ for each example $X(n)$.
 - Use this to construct $Q(\theta'|\theta)$
 - M Step:
 - Replace current θ by
 $$\theta \leftarrow \arg\max_{\theta'} Q(\theta'|\theta)$$
EM — E Step

- Calculate $P(Z(n) \mid X(n), \theta)$ for each observed example $X(n) = \langle x_1(n), x_2(n), \ldots, x_T(n) \rangle$

\[
P(z(n) = k \mid x(n), \theta) = \frac{P(x(n) \mid z(n) = k, \theta) \cdot P(z(n) = k \mid \theta)}{\sum_{j=0}^{1} P(x(n) \mid z(n) = j, \theta) \cdot P(z(n) = j \mid \theta)}
\]

\[
P(z(n) = k \mid x(n), \theta) = \frac{\left[\prod_i P(x_i(n) \mid z(n) = k, \theta) \right] \cdot P(z(n) = k \mid \theta)}{\sum_{j=0}^{1} \prod_i P(x_i(n) \mid z(n) = j, \theta) \cdot P(z(n) = j \mid \theta)}
\]

\[
P(z(n) = k \mid x(n), \theta) = \frac{\left[\prod_i N(x_i(n) \mid \mu_{k,i}, \sigma) \right] \cdot \left(\pi^k(1 - \pi)^{(1-k)}\right)}{\sum_{j=0}^{1} \left[\prod_i N(x_i(n) \mid \mu_{j,i}, \sigma) \right] \cdot \left(\pi^j(1 - \pi)^{(1-j)}\right)}
\]
EM — M Step

- First consider update for π

\[Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')] = E[\log P(X|Z, \theta') + \log P(Z|\theta')] \]

\[\pi \leftarrow \arg \max_{\pi'} E_{Z|X,\theta}[\log P(Z|\pi')] \]

\[E_{Z|X,\theta}[\log P(Z|\pi')] = \]

\[\frac{\partial E_{Z|X,\theta}[\log P(Z|\pi')]}{\partial \pi'} = \]
EM — M Step

- First consider update for π

\[
Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')] = E[\log P(X|Z, \theta') + \log P(Z|\theta')]
\]

\[
\pi \leftarrow \arg\max_{\pi'} E_{Z|X,\theta}[\log P(Z|\pi')]
\]

\[
E_{Z|X,\theta}[\log P(Z|\pi')] = E_{Z|X,\theta}\left[\log \left(\pi' \sum_n z(n) (1 - \pi') \sum_n (1 - z(n))\right)\right]
\]

\[
= E_{Z|X,\theta}\left[\left(\sum_n z(n)\right) \log \pi' + \left(\sum_n (1 - z(n))\right) \log (1 - \pi')\right]
\]

\[
= \left(\sum_n E_{Z|X,\theta}[z(n)]\right) \log \pi' + \left(\sum_n E_{Z|X,\theta}[(1 - z(n))]\right) \log (1 - \pi')
\]

\[
\frac{\partial E_{Z|X,\theta}[\log P(Z|\pi')]}{\partial \pi'} = \left(\sum_n E_{Z|X,\theta}[z(n)]\right) \frac{1}{\pi'} + \left(\sum_n E_{Z|X,\theta}[(1 - z(n))]\right) \frac{-1}{1 - \pi'}
\]

\[
\pi \leftarrow \frac{\sum_{n=1}^{N} E[z(n)]}{\left(\sum_{n=1}^{N} E[z(n)]\right) + \left(\sum_{n=1}^{N} (1 - E[z(n)])\right)} = \frac{1}{N} \sum_{n=1}^{N} E[z(n)]
\]
Now consider update for μ_{ji}

$$Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')] = E[\log P(X|Z, \theta') + \log P(Z|\theta')]$$

$$\mu_{ji} \leftarrow \arg \max_{\mu'_{ji}} E_{Z|X,\theta}[\log P(X|Z, \theta')]$$

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j|x(n), \theta)}{\sum_{n=1}^{N} P(z(n) = j|x(n), \theta)} \cdot x_{i}(n)$$

Compare above to MLE if Z were observable:

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} \delta(z(n) = j)}{\sum_{n=1}^{N} \delta(z(n) = j)} \cdot x_{i}(n)$$
EM — putting it together

- Given observed variables X, unobserved Z,
 - define $Q(\theta' | \theta) = E_Z|X,\theta[\log P(X, Z | \theta')]$ where $\theta = \langle \pi, \mu_{ji} \rangle$

- Iterate until convergence:
 - E Step:
 - For each observed example $X(n)$, calculate $P(Z(n)|X(n), \theta)$
 \[
P(z(n) = k \mid x(n), \theta) = \frac{[\prod_i N(x_i(n)|\mu_{k,i}, \sigma)] (\pi^k(1-\pi)^{(1-k)})}{\sum_j^1[\prod_i N(x_i(n)|\mu_{j,i}, \sigma)] (\pi^j(1-\pi)^{(1-j)})}
 \]
 - M Step:
 - Update current θ by $\theta' \leftarrow \arg \max_{\theta'} Q(\theta' | \theta)$
 \[
 \pi \leftarrow \frac{1}{N} \sum_{n=1}^N E[z(n)]
 \]
 \[
 \mu_{ji} \leftarrow \frac{\sum_{n=1}^N P(z(n) = j|x(n), \theta) \cdot x_i(n)}{\sum_{n=1}^N P(z(n) = j|x(n), \theta)}
 \]
Demo Time 😊

https://lukapopijac.github.io/gaussian-mixture-model/
What you should know

- For learning from partly observed data
- Instead of MLE: \(\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta) \)
- EM estimates: \(\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta} [\log P(X, Z|\theta)] \)
 - where \(X \) is observed part of the data, and \(Z \) is (partly) unobserved
- EM for training Bayes Nets
- Can also develop MAP version instead of EM
 - Write out expression for \(E_{Z|X,\theta} [\log P(X, Z|\theta)] \)
 - E step: for each training example \(X^k \), calculate \(P(Z^k|X^k,\theta) \)
 - M step: choose new to maximize \(E_{Z|X,\theta} [\log P(X, Z|\theta)] \)
Bayes Net—summary

- Representation
 - Bayes Net represent joint distributions as a DAG + conditional distributions
 - Let’s us calibrate conditional independence assumptions
- Inference
 - NP-hard in general
 - For some graph, closed form inference possible
 - Approximate methods exists too, e.g., Monte Carlo methods,…
- Learning
 - Easy for known graph, fully observed data (MLE, MAP etc.)
 - EM for partly observed data
 - Can handle the extreme case of completely unlabeled data