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Deep Neural Networks

∘ DNN: neural network with many hidden layers

∘ Advantage: highly expressive


∘ Challenges:

∘ How to effectively train a deep neural network?

∘ How to avoid overfitting?
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Expressiveness

∘ Neural networks with one hidden layer of sigmoid/tanh units 
can approximate arbitrarily closely neural networks with 
several layers of sigmoid/hyperbolic units 

∘ However, as we increase the number of layers, the number of 
units needed may decrease exponentially (with the number of 
layers)
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Example – Parity Function

∘ Odd or even

X1              X2              X3              X4

∘ Possible odd combinations
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Example – Parity Function

∘ Single layer of hidden nodes
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Example – Parity Function

∘ 2n − 2 layers of hidden nodes
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The power of depth (practice)

∘ Challenge: how to train deepNNs?
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∘ Efficient gradient computation: linear in number of 
weights


∘ Convergence:

∘ Slow convergence (linear rate)

∘ May get trapped in local optima

Gradient-based training
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∘ Issue: gradient is not always ideal

∘ Illustration:

Slow Convergence



Machine Learning | Virginia Tech© Debswapna Bhattacharya 10

∘ Idea: adjust the learning rate of each dimension separately


∘ AdaGrad:

∘                                        (sum of squares of partial derivative) 


∘                                        (update rule) 


∘ Problem: learning rate         decays too quickly

Adaptive Gradients

rt ← rt−1 + ( ∂En

∂wji )
2

wji ← wji −
η

rt

∂En

∂wji

η

rt
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∘ Idea: divide by root mean square (RMS) (instead of square 
root of the sum) of partial derivatives


∘ RMSprop


∘                                        (update rule) 


∘ Problem: gradient lacks momentum

RMSprop

rt ← αrt−1 + (1 − α)( ∂En

∂wji )
2

(0 ≤ α ≤ 1)

wji ← wji −
η

rt

∂En

∂wji
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∘ Idea: replace gradient by its moving average to induce 
momentum


∘ Adam:


∘                                        (update rule) 

Adaptive Moment Estimation

rt ← αrt−1 + (1 − α)( ∂En

∂wji )
2

(0 ≤ α ≤ 1)

st ← βst−1 + (1 − β)( ∂En

∂wji ) (0 ≤ β ≤ 1)

wji ← wji −
η

rt

st
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Challenges in Deep Neural Networks

∘ Deep neural networks often suffer from vanishing gradients


∘ High expressivity of deep neural networks increases the risk of 
overfitting


