CS 4824/ECE 4424:
Deep Neural Networks I
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Deep Neural Networks

> DNN: neural network with many hidden layers
- Advantage: highly expressive
> Challenges:

- How to effectively train a deep neural network?
- How to avoid overfitting?
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Expressiveness

> Neural networks with one hidden layer of sigmoid/tanh units
can approximate arbitrarily closely neural networks with
several layers of sigmoid/hyperbolic units

- However, as we increase the number of layers, the number of

units needed may decrease exponentially (with the number of
layers)
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Example — Parity Function

o Odd or even { 1 if odd

—1 if even

o Possible odd combinations

X1 X2 X3 X4
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Example — Parity Function

- Single layer of hidden nodes

={1 if odd

—1 if even

21 odd
subsets

n inputs
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Example — Parity Function

> 2n -2 layers of hidden nodes

2 odd 2 odd 2 odd
subsets subsets subsets

(31 k—fand)—{or —and)—{or k—hand)—or
@XQ@XQQXQ {4
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The power of depth (practice)

Deep neural
networks learn

hierarchical feature
representations
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> Challenge: how to train deepNNs?
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Gradient-based training

- Efficient gradient computation: linear in number of
weights

> Convergence:

- Slow convergence (linear rate)
- May get trapped in local optima
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Slow Convergence

- Issue: gradient is not always ideal
> Illustration:
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Adaptive Gradients

> lIdea: adjust the learning rate of each dimension separately
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> Problem: learning rate 1 decays too quickly
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RMS5prop

> Idea: divide by root mean square (RMS) (instead of square
root of the sum) of partial derivatives

- RMSprop
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> Problem: gradient lacks momentum
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Adaptive Moment Estimation

- Idea: replace gradient by its moving average to induce

momentum
o Adam:
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Challenges in Deep Neural Networks

> Deep neural networks often suffer from vanishing gradients

- High expressivity of deep neural networks increases the risk of
overfitting
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