CS 4824/ECE 4424: Kernels

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
How to generalize linear models for linearly non-separable data?

- Use features of features of features of features....

\[\phi(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_1x_2 \\ x_2x_3 \\ \vdots \\ x_1^2 \\ x_2^2 \\ \vdots \end{pmatrix} \]

- **Challenge**: Feature space can get really large really quickly!
Non-linear features: 1D input

- Datasets that are linearly separable with some noise work out great:

\[\text{Datasets that are linearly separable with some noise work out great:} \]

- But what are we going to do if the dataset is just too hard?
Non-linear features: 1D input

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:
Mapping to higher dimensional space

Linearly non-separable
Mapping to higher dimensional space
Mapping to higher dimensional space

Map to 3D

Linearly separable
Mapping to higher dimensional space

Input feature space

Polynomial of degree d

Higher dimensional space

$\mathbf{w} \cdot \phi(\mathbf{x})$

What can go wrong?

$\phi(\mathbf{x})$
Higher order polynomials

- Number of terms = \(\binom{d + m - 1}{d} = \frac{(d + m - 1)!}{d!(m - 1)!} \)
- where \(m = \) dimension of input features; \(d = \) degree of polynomial
- Grows fast!
 - \(m = 100, d = 6 \)
 - \(\sim 1.6 \text{ billion terms} \)
Feature Mappings

- **Pros**: can help turn non-linear classification problem into linear problem

- **Cons**: “feature explosion” creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting
Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed
The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples

- Replace dot product $\phi(x) \cdot \phi(z)$ by kernel function $k(x, z)$ which computes the dot product implicitly
Example of Kernel function

- Consider two examples $x = \{x_1, x_2\}$ and $z = \{z_1, z_2\}$

- Let’s assume we are given a function k (kernel) that takes as inputs x and z.

- Cool! taking a dot product and an exponential gives same results as mapping into high dimensional space and then taking dot product.

- The above k implicitly defines a mapping ϕ to a higher dimensional space.
Kernel function

- But, it isn’t obvious yet how we will incorporate it into actual learning algorithms.

We will do that next…
“Kernelizing” learning algorithms

- **Key idea**: map to higher dimensional space
 - If x is in \mathbb{R}^n, then $\phi(x)$ is in \mathbb{R}^m for $m > n$
 - We can now learn feature weights w in \mathbb{R}^m and
 - predict y by computing $w \cdot \phi(x)$
 - Linear function in the higher dimensional space will be non-linear in the original space