
Machine Learning | Virginia Tech© Debswapna Bha6acharya
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Deep Neural Networks II
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Parity Function — from shallow to deep neural network

∘ Deep neural networks of sigmoid and hyperbolic units often suffer from vanishing gradients

2n − 2 layers of hidden nodes 
(deep architecture)

single layer of hidden nodes 
(shallow architecture)
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Vanishing Gradients
∘ Deep neural networks often suffer from vanishing gradients
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Common activation functions
Sigmoid

h(a) = σ(a) =
1

1 + e−a
h(a) = tanh(a) =

ea − e−a

ea + e−a

Tanh

tanh′ (a) = (1 − (tanh(a))2σ′ (a) = σ(a)(1 − (σ(a))

Softmax

h(a) = σ(a)i =
ezi

∑K
j=1 ezj

Generalization of 
sigmoid/logistic fn to  
multiple dimension
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Simple Example

∘ Common weight initialization in (0,1) or in (-1, 1) 
∘ Sigmoid function and its derivative always less than 1 
∘ This leads to vanishing gradients: 
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Avoiding Vanishing Gradients
∘ Several popular solutions: 

∘ Pre-training 
∘ Rectified linear units and maxout units 
∘ Skip connections 
∘ Batch normalization



Machine Learning | Virginia Tech© Debswapna Bha6acharya 7

Rectified Linear Units (ReLU)
∘ Rectified linear:  

∘ Gradient is 0 or 1 w.r.t. a 
∘ Sparse computation

∘ Soft version (“softplus”):  
∘ But softplus does not prevent gradient vanishing (gradient < 1) 
∘ Making rectified linear unit smooth does not help!

h(a) = max(0,a)

h(a) = log(1 + ea)

a

h(a)
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Maxout Units
∘ Generalization of rectified linear units
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Overfi6ing

∘ High expressivity increases the risk of overfi6ing 
∘ # of parameters is often larger than the amount of data

∘ Some solutions: 
∘ Regularization 
∘ Dropout 
∘ Data augmentation
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Dropout — Training
∘ Idea: randomly “drop”some units from the network when training

∘ Training: at each iteration of gradient descent 
∘ Each input unit is dropped with probability p1 (e.g., 0.2) 
∘ Each hidden unit is dropped with probability p2 (e.g., 0.5)
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Dropout — Prediction
∘ Idea: during prediction, probabilistically account for the effect of 

randomly “dropped” units from the network during training 

∘ Prediction(testing): 
∘ Multiply each input unit by 1 − p1 

∘ Multiply each hidden unit 1 - p2
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Dropout — Intuition

∘ Dropout can be viewed as an approximate form of ensemble 
learning  

∘ In each training iteration, a different subnetwork is trained  

∘ At test time, these subnetworks are “merged” by averaging 
their weights
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Speech
∘ 2006 (Hinton and coworkers): first effective algorithm for deep NN

∘ layer-wise training of Stacked Restricted Bolgmann Machines 
(SRBM)s

∘ 2009: Breakthrough in acoustic modeling 
∘ replace Gaussian Mixture Models by SRBMs 
∘ Improved speech recognition at Google, Microsoft, IBM

∘ 2013: recurrent neural nets (LSTM)
∘ Google error rate: 23% (2013)  to 8% (2015) 
∘ Microsoft error rate: 5.9% (Oct 17, 2016) same as human 

performance  
∘ …
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Image Classification
∘ ImageNet Large Scale Visual Recognition Challenge


