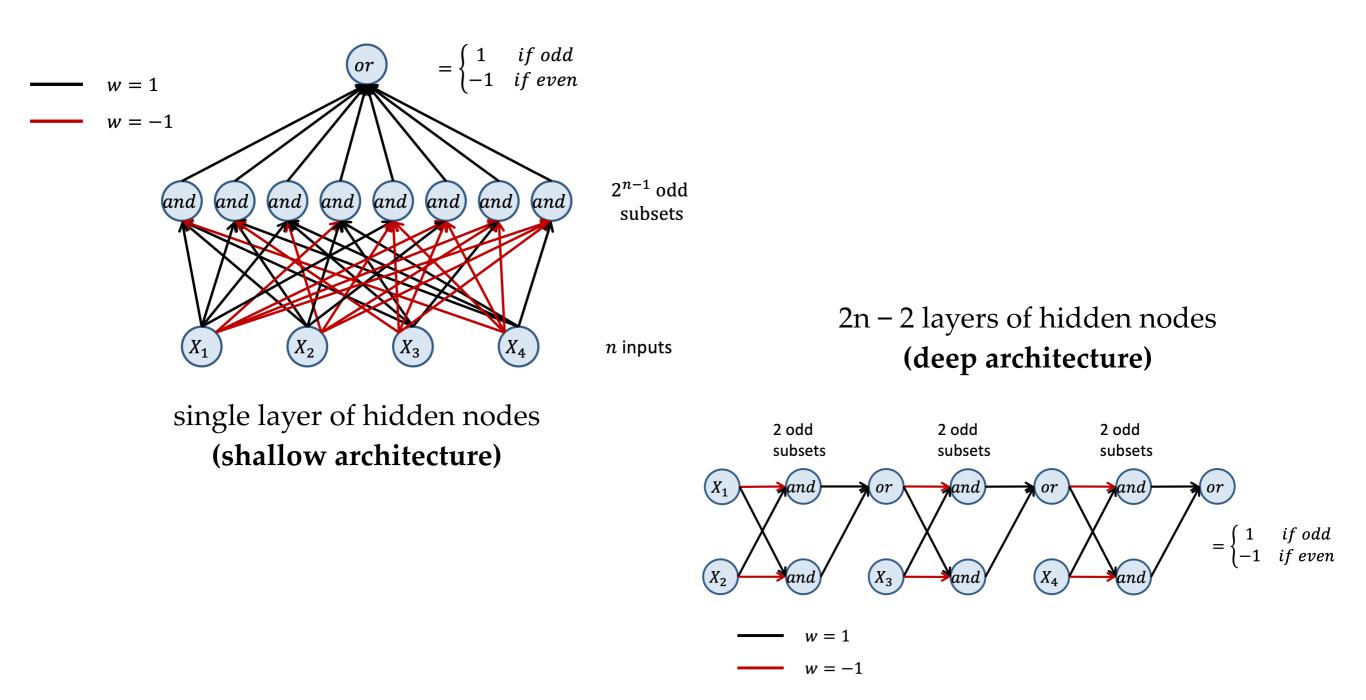
CS 4824/ECE 4424: Deep Neural Networks II

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Parity Function — from shallow to deep neural network

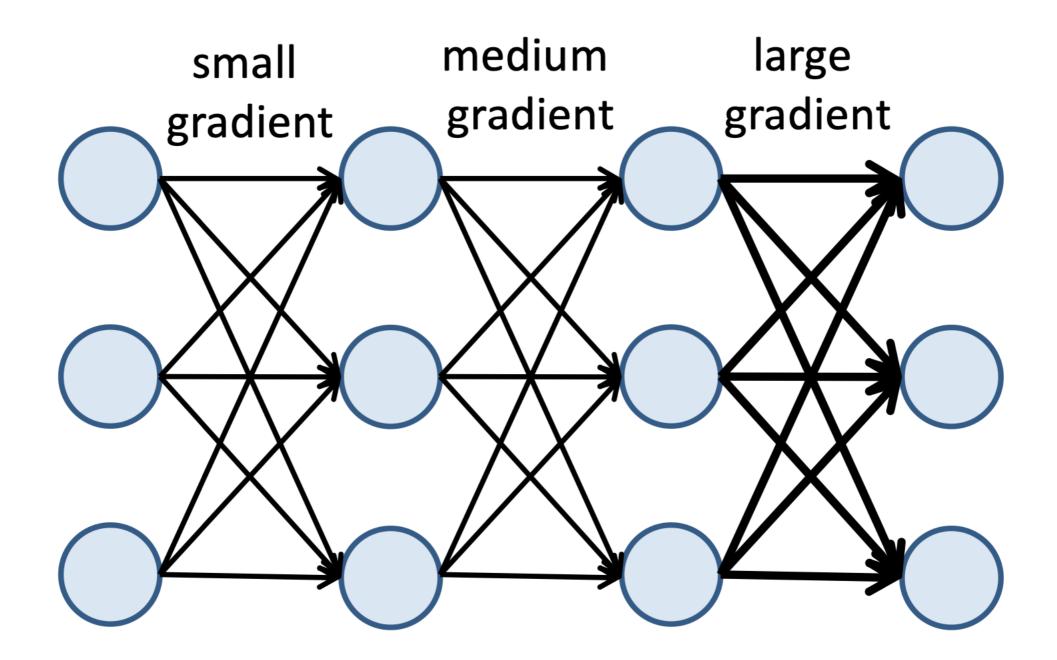
• Deep neural networks of sigmoid and hyperbolic units often suffer from vanishing gradients



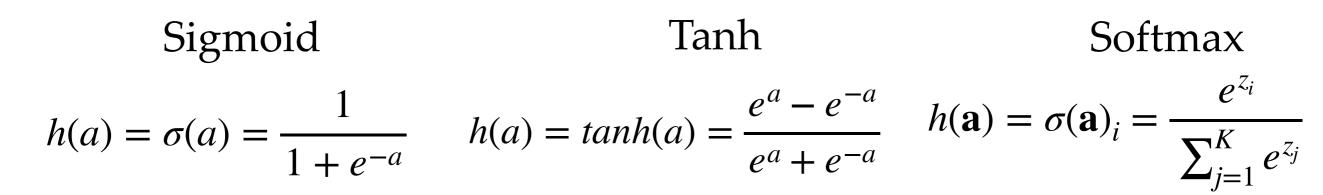
Machine Learning | Virginia Tech

Vanishing Gradients

• Deep neural networks often suffer from vanishing gradients



Common activation functions



$$\sigma'(a) = \sigma(a)(1 - (\sigma(a)))$$

$$tanh'(a) = (1 - (tanh(a))^2)$$

Generalization of sigmoid/logistic fⁿ to multiple dimension

Machine Learning | Virginia Tech

Simple Example

$$y = \sigma \left(w_4 \sigma \left(w_3 \sigma (w_2 \sigma (w_1 x)) \right) \right)$$

$$(x \xrightarrow{w_1} h_1 \xrightarrow{w_2} h_2 \xrightarrow{w_3} h_3 \xrightarrow{w_4} y)$$

- Common weight initialization in (0,1) or in (-1, 1)
- Sigmoid function and its derivative always less than 1
- This leads to vanishing gradients:

$$\begin{aligned} \frac{\partial y}{\partial w_4} &= \sigma'(a_4)\sigma(a_3)\\ \frac{\partial y}{\partial w_3} &= \sigma'(a_4)w_4\sigma'(a_3)\sigma(a_2)\\ \frac{\partial y}{\partial w_2} &= \sigma'(a_4)w_4\sigma'(a_3)w_3\sigma'(a_2)\sigma(a_1)\\ \frac{\partial y}{\partial w_1} &= \sigma'(a_4)w_4\sigma'(a_3)w_3\sigma'(a_2)w_2\sigma'(a_1)x\end{aligned}$$

As products of factors less than 1 gets longer, gradient vanishes

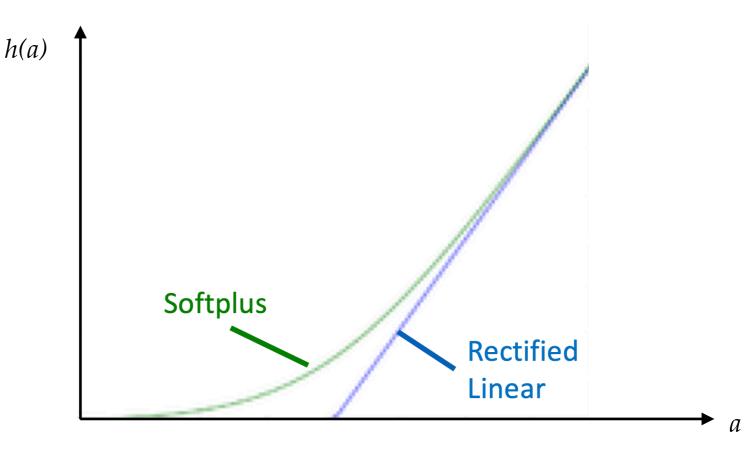
© Debswapna Bhattacharya

Avoiding Vanishing Gradients

- Several popular solutions:
 - Pre-training
 - Rectified linear units and maxout units
 - Skip connections
 - Batch normalization

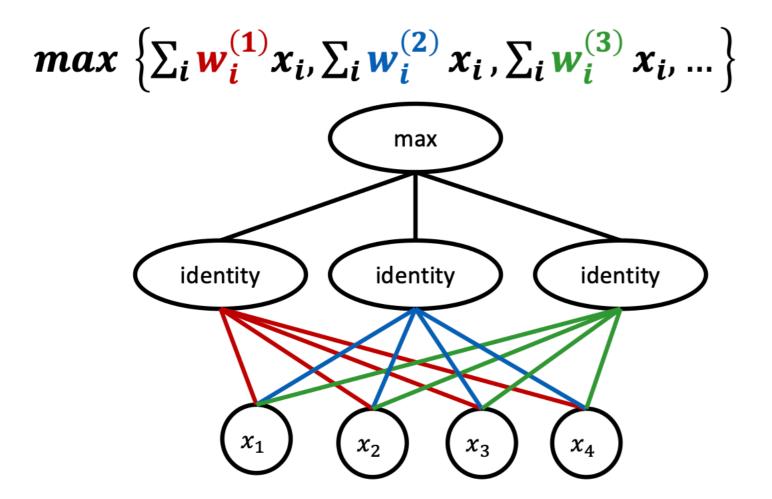
Rectified Linear Units (ReLU)

- **Rectified linear**: $h(a) = \max(0, a)$
 - Gradient is 0 or 1 w.r.t. *a*
 - Sparse computation
- Soft version ("softplus"): $h(a) = \log(1 + e^a)$
 - But softplus does not prevent gradient vanishing (gradient < 1)
 - Making rectified linear unit smooth does not help!



Maxout Units

• Generalization of rectified linear units



Overfitting

- High expressivity increases the risk of overfitting
 - # of parameters is often larger than the amount of data

- Some solutions:
 - Regularization
 - Dropout
 - Data augmentation

Dropout – Training

- **Idea**: randomly "drop" some units from the network when training
- Training: at each iteration of gradient descent
 - Each input unit is dropped with probability p_1 (e.g., 0.2)
 - Each hidden unit is dropped with probability p_2 (e.g., 0.5)

Dropout – Prediction

- **Idea**: during prediction, probabilistically account for the effect of randomly "dropped" units from the network during training
- Prediction(testing):
 - Multiply each input unit by $1 p_1$
 - Multiply each hidden unit 1 p_2

Dropout – Intuition

- Dropout can be viewed as an approximate form of ensemble learning
- In each training iteration, a different subnetwork is trained
- At test time, these subnetworks are "merged" by averaging their weights

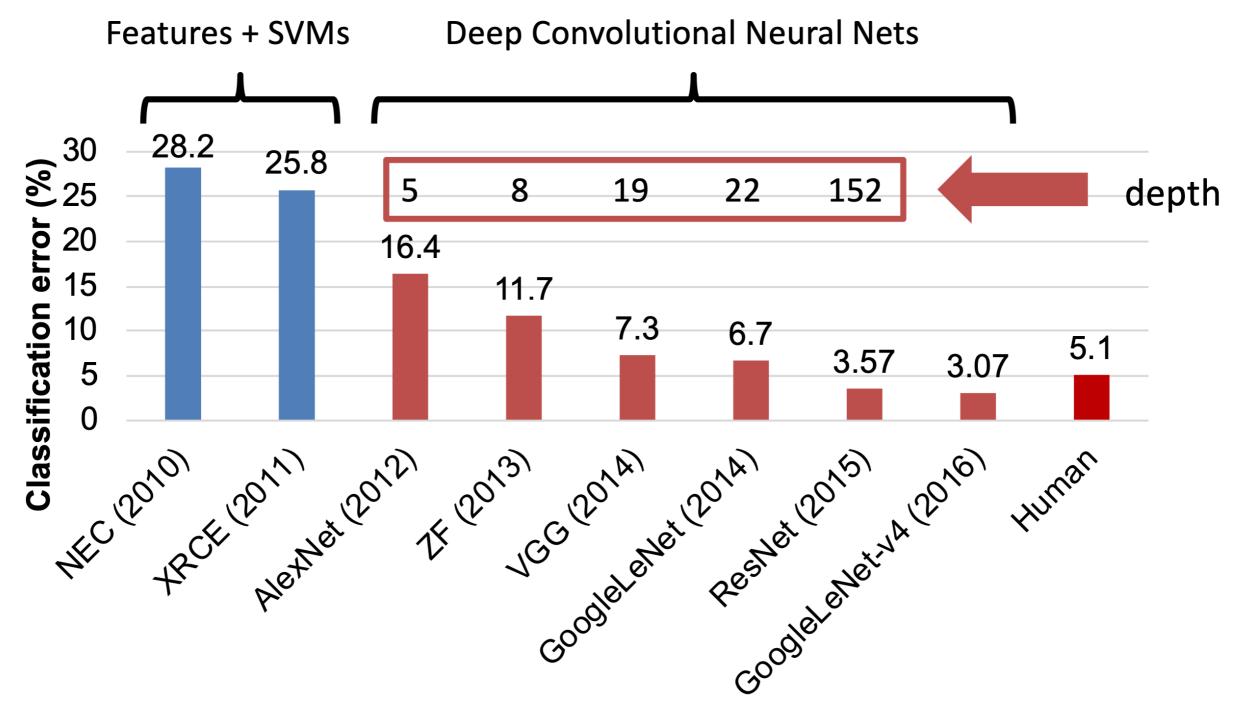
Speech

- 2006 (Hinton and coworkers): first effective algorithm for deep NN
 - layer-wise training of Stacked Restricted Boltzmann Machines (SRBM)s
- **2009**: Breakthrough in acoustic modeling
 - replace Gaussian Mixture Models by SRBMs
 - Improved speech recognition at Google, Microsoft, IBM
- **2013**: recurrent neural nets (LSTM)
 - Google error rate: **23**% (2013) to **8**% (2015)
 - Microsoft error rate: 5.9% (Oct 17, 2016) same as human performance

0

Image Classification

ImageNet Large Scale Visual Recognition Challenge



Machine Learning | Virginia Tech