CS 4824/ECE 4424: Convolutional Neural Networks

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Large Networks

• What kind of neural networks can be used for large or variable length input vectors (e.g., time series)

- Common networks
 - Convolutional networks
 - Recursive networks
 - Recurrent networks

Convolutions for feature extraction

- In neural networks
 - A convolution denotes the linear combination of a subset of units based on a specific pattern of weights.

$$a_j = \sum_i w_{ji} z_i$$

 Convolutions are often combined with an activation function to produce a feature

$$z_j = h(a_j) = h\left(\sum_i w_{ji} z_i\right)$$

Convolution Neural Network (CNN)

- A CNN refers to any network that consists of an alternation of convolution and pooling layers, where some of the convolution weights are shared
- Architecture:

Pooling

- Pooling: commutative mathematical operation that combines several units
- Examples:
 - max, sum, product, average, Euclidean norm, etc.
- Commutative property (order does not matter):
 - $\max(a, b) = \max(b, a)$

Digit Recognition

Benefits of CNN

- Sparse interactions
 - Fewer connections
- Parameter sharing
 - Fewer weights

- Locally equivariant representation
 - Locally invariant to translations
 - Handle inputs of varying length

Parameters

- *#* of filters: integer indicating the #of filters applied to each window
- kernel size: tuple (width, height) indicating the size of the window
- Stride: tuple (horizontal, vertical) indicating the horizontal and vertical shift between each window
- Padding: "valid" or "same". Valid indicates no input padding.
 Same indicates that the input is padded with a border of zeros to ensure that the output has the same size as the input

Examples

Training CNN

- Convolutional neural networks are trained in the same way as other neural networks through backpropagation
 - AdaGrad, RMSprop, Adam
- Weight sharing:
 - Combine gradients of shared weights into a single gradient

Architecture design

- What is the preferred filter size?
- JVGG (Visual Geometry Group at Oxford, 2014): stack of small filters is often preferred to single large filter
 - Fewer parameters
 - Deeper network
- Schematic:

Residual Networks

- **Idea**: Addressing vanishing gradient problem by introducing residual connections (a.k.a. skip connections) to shorten paths (He et al. 2015)
- Schematic:

Applications

- Speech Recognition
- Image recognition
- Machine translation
- Control
- •••
- Data with sequential, spatial or tensor patterns

Image Recognition

- Convolutional Neural Network
 - With rectified linear units and dropout
 - Data augmentation for transformation invariance

ImageNet Breakthrough

- Results: ILSVRC-2012
 - Krizhevsky, Sutskever, Hinton

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs[7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

ImageNet Breakthrough

• From Krizhevsky, Sutskever, Hinton

