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Large Networks

> What kind of neural networks can be used for large or variable
length input vectors (e.g., time series)

o Common networks
o Convolutional networks
o Recursive networks
o Recurrent networks
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Convolutions for feature extraction

o In neural networks
o A convolution denotes the linear combination of a subset of
units based on a specific pattern of weights.

Clj — Z WjiZi
l

o Convolutions are often combined with an activationfunction
to produce a feature

Zj — h(a]) = h z WjiZi
l
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Convolution Neural Network (CNN)

> A CNN refers to any network that consists of an alternation

of convolution and pooling layers, where some of the
convolution weights are shared

o Architecture:
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Pooling

> Pooling: commutative mathematical operation that combines
several units

- Examples:
> max, sum, product, average, Euclidean norm, etc.

- Commutative property (order does not matter):
- max(a, b) =max(b, a)
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Digit Recognition
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Benefits of CNN

° Sparse interactions
o Fewer connections

> Parameter sharing
- Fewer weights

> Locally equivariant representation
> Locally invariant to translations
- Handle inputs of varying length
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Parameters

0]

# of filters: integer indicating the #of filters applied to each
window

- kernel size: tuple (width, height) indicating the size of the
window

- Stride: tuple (horizontal, vertical) indicating the horizontal

and vertical shift between each window

- Padding: “valid” or “same”. Valid indicates no input padding.
Same indicates that the input is padded with a border of zeros
to ensure that the output has the same size as the input

© Debswapna Bhattacharya Machine Learning | Virginia Tech



Examples
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Training CNN

> Convolutional neural networks are trained in the same way

as other neural networks through backpropagation
- AdaGrad, RMSprop, Adam

> Weight sharing:
- Combine gradients of shared weights into a single gradient
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Architecture design

> What is the preferred filter size?

> VGG (Visual Geometry Group at Oxford, 2014): stack of small filters is often preferred to single large
filter
- Fewer parameters
> Deeper network

o Schematic:
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Residual Networks

- Idea: Addressing vanishing gradient problem by introducing residual
connections (a.k.a. skip connections) to shorten paths (He et al. 2015)

o Schematic:
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Applications

> Speech Recognition
- Image recognition
o Machine translation
o Control

- Data with sequential, spatial or tensor patterns
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Image Recognition

o Convolutional Neural Network

- With rectified linear units and dropout

> Data augmentation for transformation invariance

Max
pooling
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ImageNet Breakthrough

> Results: ILSVRC-2012
> Krizhevsky, Sutskever, Hinton

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — — 26.2%

| CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%

| CNN* 39.0% 16.6% —

7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.
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ImageNet Breakthrough

> From Krizhevsky, Sutskever, Hinton
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