Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Linear classifiers – multiple possibilities

- Challenge: How to pick the best classifier?
Pick the one with the largest margin!
Parameterizing the decision boundary

\[\mathbf{w}^\top \mathbf{x} + b > 0 \quad \text{and} \quad \mathbf{w}^\top \mathbf{x} + b < 0 \]

Labels \(y_i \in \{-1, +1\} \) — class
Maximizing the margin

- Margin = Distance of closest examples from the decision line/hyperplane

How to find the Max Margin = ?

\[
\begin{align*}
 w^T(x_1 + x_\gamma) + b &= a \\
 w^Tx_1 + b + w^Tx_\gamma &= a \\
 0 + w^Tx_\gamma &= a \\
 \|w\| \|x_\gamma\| &= a \\
 \|w\| \gamma &= a \Rightarrow \gamma &= \frac{a}{\|w\|}
\end{align*}
\]
Maximizing the margin

- Margin = Distance of closest examples from the decision line/hyperplane

\[
\gamma = \frac{a}{\|w\|}
\]

\[
\arg\max_{w,b} \frac{a}{\|w\|}
\]

\[
s.t. (W^T X_j + b)y_j \geq a \forall j
\]
Support Vector Machine

\[
\begin{align*}
\text{arg max}_{w,b} & \quad \frac{a}{\|w\|} \\
\text{s.t.} & \quad (W^T X_j + b) y_j \geq a \ \forall j
\end{align*}
\]

\[
\begin{align*}
\text{arg min}_{w,b} & \quad W^T W \\
\text{s.t.} & \quad (W^T X_j + b) y_j \geq a \ \forall j
\end{align*}
\]

Solve efficiently by quadratic programming (QP) - well studied

Note: a is arbitrary (can normalize equations by a)
Support Vector Machine

\[\text{arg max}_{w,b} \frac{1}{\|w\|} \]
\[s.t. (W^T X_j + b)y_j \geq 1 \forall j \]

\[\text{arg min}_{w,b} W^T W \]
\[s.t. (W^T X_j + b)y_j \geq 1 \forall j \]

Solve efficiently by quadratic programming (QP) - well studied

Note: a is arbitrary (can normalize equations by a)
SVM — primal and dual forms

Primal form: solve for \mathbf{w}, b

$$\begin{align*}
\text{arg min}_{\mathbf{w}, b} & \quad \mathbf{w}^T \mathbf{w} \\
\text{s.t.} & \quad y_l (\mathbf{w}^T \mathbf{x}_l + b) \geq 1 \quad \forall l \in \text{training examples}
\end{align*}$$

Classification for new \mathbf{x}: $$(\mathbf{w}^T \mathbf{x} + b) > 0$$
SVM — primal and dual forms

Primal form: solve for w, b

$$\arg \min_{w,b} W^T W$$

$$s.t. y_l(W^T X_l + b) \geq 1 \forall l \in \text{training examples}$$

Classification for new X: $(W^T X + b) > 0$

Dual form: solve for $\alpha_1, \ldots, \alpha_n$

$$\arg \max_{\alpha_1, \ldots, \alpha_n} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k \langle X_j, X_k \rangle$$

$$s.t. \alpha_l > 0 \forall l \in \text{training examples} \quad \sum_{l=1}^{M} \alpha_l y_l = 0$$

Classification for new X: $\sum_{l \in SV's} \alpha_l y_l \langle X, X_l \rangle + b > 0$
Support Vectors

- The linear hyperplane is defined by "support vectors"
- Moving other points a little doesn’t effect the decision boundary
- Only need to store the support vectors to predict labels of new points

\[\sum_{i \in SV's} \alpha_i y_i \langle x_i, x \rangle + b > 0 \]
\[\sum_{i \in SV's} \alpha_i y_i \langle x_i, x \rangle + b < 0 \]

\[w^T x + b > 0 \]
\[w^T x + b < 0 \]
Kernel SVM — primal and dual forms

Primal form: solve for \(\mathbf{w}, b \)

\[
\arg \min_{\mathbf{w},b} \mathbf{W}^T \mathbf{W} \\
\text{s.t. } y_l (\mathbf{W}^T \phi(\mathbf{X}_l) + b) \geq 1 \forall l \in \text{training examples}
\]

Classification for new \(\mathbf{X} \) : \((\mathbf{W}^T \phi(\mathbf{X}) + b) > 0 \)

Dual form: solve for \(\alpha_1, \ldots, \alpha_n \)

\[
\arg \max_{\alpha_1 \ldots \alpha_n} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k K(\mathbf{X}_j, \mathbf{X}_k) \\
\text{s.t. } \alpha_l > 0 \forall l \in \text{training examples} \sum_{l=1}^{M} \alpha_l y_l = 0
\]

Classification for new \(\mathbf{X} \) : \(\sum_{l \in SV's} \alpha_l y_l K(\mathbf{X}, \mathbf{X}_l) + b > 0 \)

- Since the dual form depends only on inner products, we can apply the kernel trick to work in a (virtual) projected higher-dimensional space
SVM Decision Surface using Gaussian Kernel

- Circled points are the support vectors: training examples with non-zero α_i
- Points plotted in original 2-D space
- Contour lines show constant $\hat{f}(x)$

$$\hat{f}(x) = w^T \Phi(x) + b$$

$$\hat{f}(x) = b + \sum_{l=1}^{M} \alpha_l y_l \kappa(x, x_l) = b + \sum_{l=1}^{M} \alpha_l y_l \exp(-\|x - x_l\|^2 / 2\sigma^2)$$
SVM Summary

- **Objective**: maximize margin between decision surface and data

- Primal and dual formulations
 - dual represents classifier decision in terms of *support vectors*

- Kernel SVM’s
 - learn linear decision surface in high dimension space, working in original low dimension space

- SVM algorithm: Quadratic Program optimization
 - single global minimum