ACKNOWLEDGEMENT:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Variable length data

- Traditional feed forward neural networks can only handle fixed length data

- Variable length data (e.g., sequences, time-series, spatial data) leads to a variable # of parameters

- Solutions:
 - Recurrent neural networks
 - Recursive neural networks
Recurrent Neural Network (RNN)

- In RNNs, outputs can be fed back to the network as inputs, creating a recurrent structure that can be unrolled to handle varying length data.

\[h^{(t)} = f(h^{(t-1)}, x_t) = \sigma(W^h h^{(t-1)} + W^x x_t) \]
Training

- Recurrent neural networks are trained by backpropagation on the unrolled network
 - backpropagation through time

- Weight sharing:
 - Combine gradients of shared weights into a single gradient

- Challenges
 - Gradient vanishing (and explosion)
 - Long range memory
 - Prediction drift
RNN for forward propagation

\[h_t = f(h_{t-1}, x_t) = \sigma(W_h h_{t-1} + W_x x_t) \]

- The inputs enter and move forward at each time step

\[y_t = g(h_t) = \sigma(W_c (c_t), h_t) \]
Limitation of RNN

- The inputs enter and **ONLY move forward** at each time step.
- In some application, we would like to combine past and future evidence, i.e. perform backward propagation.
Bi-Directional RNN (Bi-RNN)

- We can combine past and future evidence in separate chains
Encoder-Decoder Model

- Also known as sequence2sequence
 - $X(i)$: i^{th} input
 - $y(i)$: i^{th} output
 - c: context (embedding)

- Usage:
 - Machine translation
 - Question answering
 - Dialog
Long Short Term Memory (LSTM)

- Special gated structure to control memorization and forgetting in RNNs
- Facilitate long term memory
Unrolled LSTM

- Schematic