CS 4824/ECE 4424: Attention and Transformers

Acknowledgement:

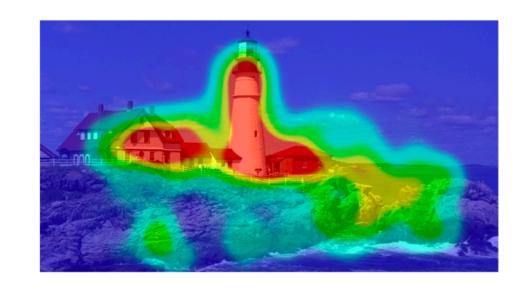
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Attention

- Key idea: highlight important parts of the inputs
- Mechanism for alignment in machine translation, image captioning, etc.
- Attention in machine translation: align each output word with relevant input words by computing a softmax of the inputs

Attention

- Attention in Computer Vision
 - 2014: Attention used to highlight important parts of an image that contribute to a desired output



- Attention in NLP
 - 2015: machine translation
 - 2017: Language modeling with

Transformer networks

Sequence Modeling

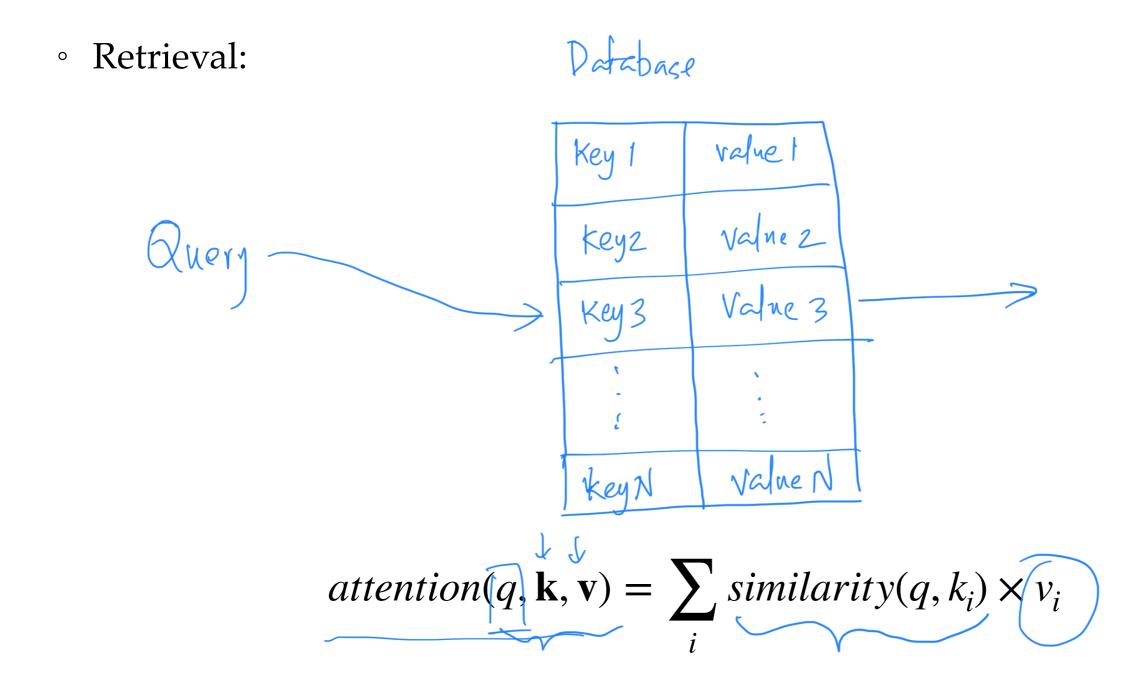
- Challenges with RNNs
 - Long range dependencies
 - Gradient vanishing (and explosion)
 - Large # of training steps
 - Recurrence prevents parallel computation

- Transformer Networks
 - Facilitate long range dependencies
 - No gradient vanishing (and explosion)
 - Fewer training steps
 - No recurrence that facilitate parallel computation

VS

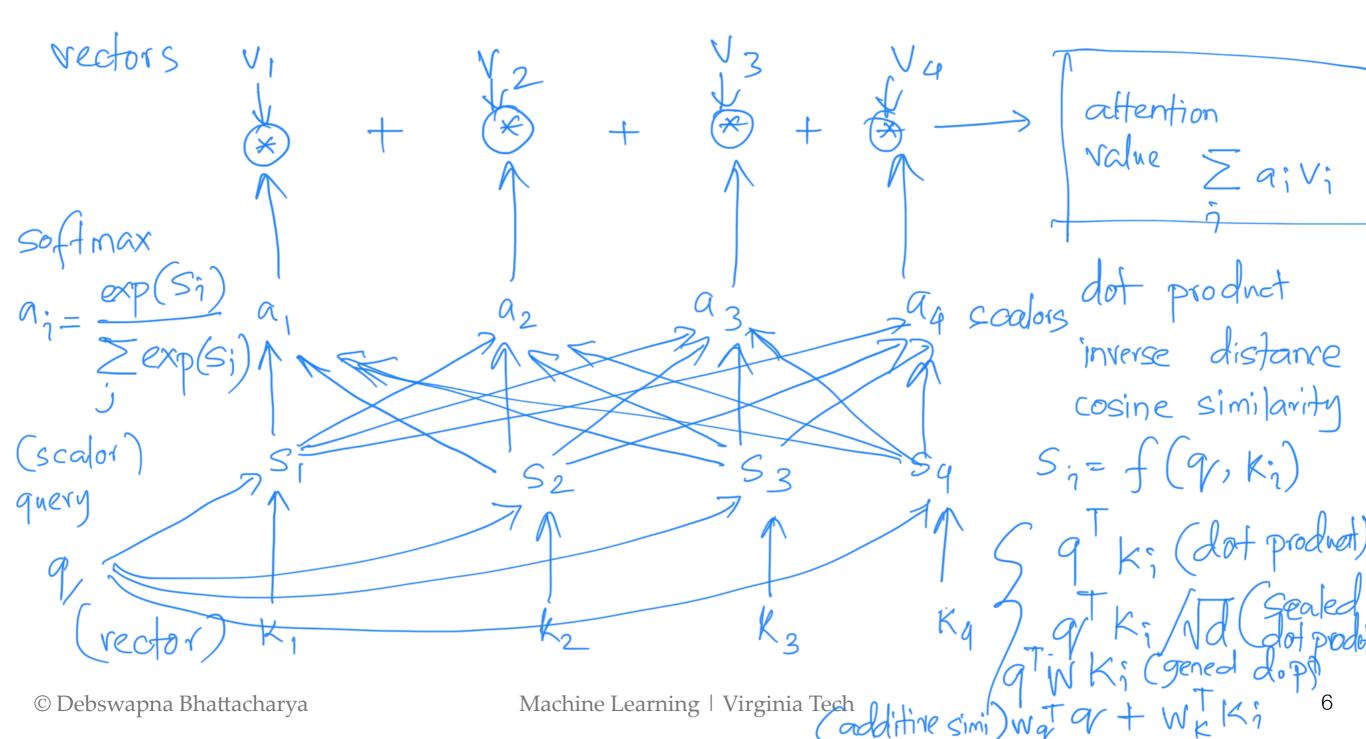
Attention Mechanism

 \circ Mimics the retrieval of a **value** v_i for a **query** q based on a **key** k_i in database



Attention Mechanism

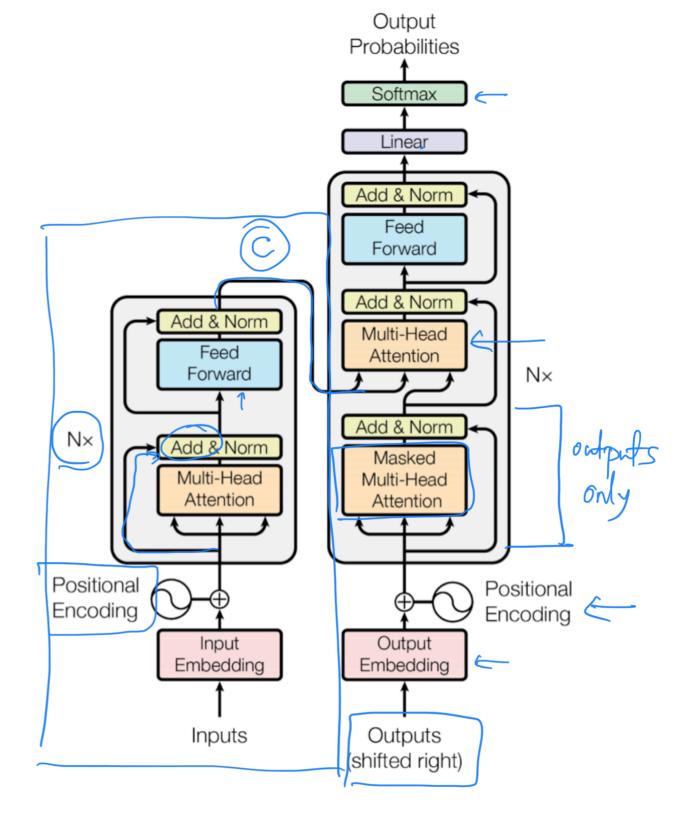
Neural architecture



"Attention is all you need"

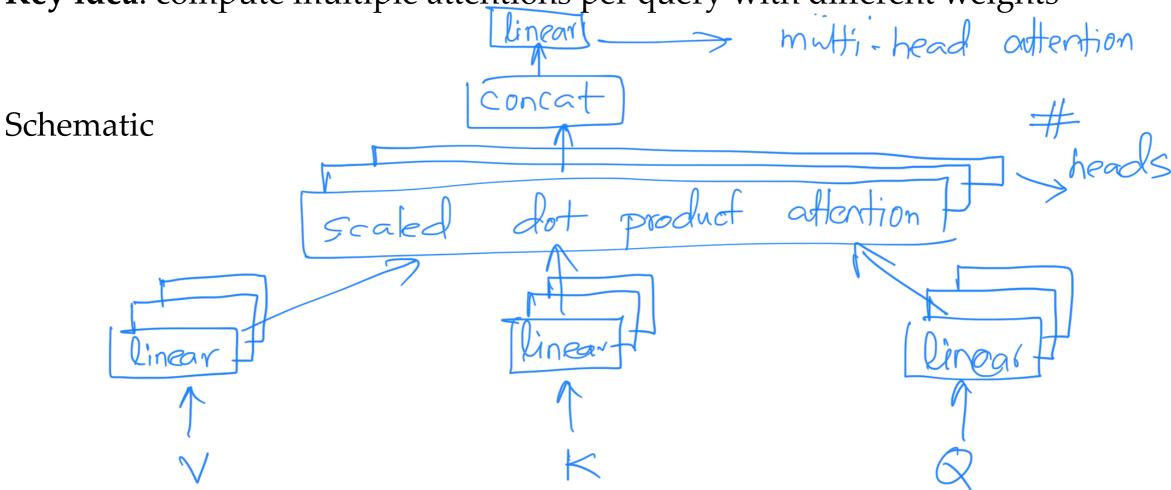
Vaswani et al. (2017) —
 Transformer Network

 Encoder-decoder based on attention (no recurrence)



Multihead attention

Key idea: compute multiple attentions per query with different weights



 $multihead(Q, K, V) = W^0 contact(head_1, head_2, ..., head_h)$

$$head_{i} = attention(W_{i}^{0}Q, W_{i}^{K}K, W_{i}^{V}V)$$

$$attention(Q, K, V) = softmax \left(\frac{q^{T}K}{\sqrt{d_{k}}}\right)V$$
Machine Learning | Virginia Tech

Masked Multi-head attention

- Key idea: multi-head where some values are masked (i.e., probabilities of masked values are nullified to prevent them from being selected)
- When decoding, an output value should only depend on previous outputs (not future outputs). Hence we mask future outputs

$$attention(Q, K, V) = softmax \left(\frac{q^{T}K}{\sqrt{d_{k}}}\right) V$$

$$MaskedAttention(Q, K, V) = softmax \left(\frac{q^{T}K + M}{\sqrt{d_{k}}}\right) V$$

where M is a mask matrix of 0's and -∞'s

Layer normalization and positional embedding

- Layer normalization
 - Normalize values in each layer to have 0 mean and 1 variance
- Positional embedding
 - Embedding to distinguish each position