CS 4824/ECE 4424: Autoencoder

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Autoencoder

- Special type of feed forward network for
 - Compression
 - Denoising
 - Sparse representation
 - Data generation
Autoencoder

- Encoder: $f(\)$
- Decoder: $g(\)$
- Autoencoder: $g(f(x)) = x$
Linear Autoencoder

- f and g are linear
 - Matrix representation: W_f and W_g

- Schematic
Linear Autoencoder

- **Objective**: find weights W_f and W_g that minimizes the reconstruction error

$$\text{arg min}_W \frac{1}{2} \sum_n \|W_g W_f x_n - x_n\|_2^2$$

- **Algorithm**: Backpropagation
 - Gradient descent

- **Hidden nodes**: compressed representation
Nonlinear Autoencoder

- f and g are nonlinear functions
 \[
 \arg\min_W \frac{1}{2} \sum_n \|g(f(x_n; W_f); W_g) - x_n\|^2
 \]

- Hidden nodes: nonlinear manifold
Deep Autoencoder
Deep Autoencoder

- f and g often consist of multiple layers

- In theory, one hidden layer in f and g is sufficient to represent any possible compression

- Multiple hidden layers in f and g is often better
Sparse Representations

- When more hidden nodes than inputs, use regularization to constrain autoencoder

- Example: force hidden nodes to be sparse

\[
\text{arg min}_w \frac{1}{2} \sum_n \|g(f(x_n; W_f); W_g) - x_n\|_2^2 + \text{cnnz}(f(x_n; W_f))
\]

- Where \(\text{cnnz}(f(x_n; W_f))\) is the number of non-zero entries produced by \(f\)

- Approximate objective: L1 regularization

\[
\text{arg min}_w \frac{1}{2} \sum_n \|g(f(x_n; W_f); W_g) - x_n\|_2^2 + c \|f(x_n; W_f)\|_1
\]
Denoising Autoencoder

- Consider noisy version \tilde{X} of the input X
- Data denoising:
 \[
 \arg \min_W \frac{1}{2} \sum_n \| g(f(\tilde{x}_n; W_f); W_g) - x_n \|_2^2 + c \| f(\tilde{x}_n; W_f) \|_1
 \]

original | perturbed | reconstructed
Probabilistic Autoencoder

- Let f and g represent conditional distributions
 - $f : Pr(h \mid x; W_f)$ and $g : Pr(\tilde{x} \mid h; W_g)$
 - by using sigmoid, softmax or linear units at the hidden and output layers
- Schematic
Probabilistic Autoencoder
Generative Model

- Sample \(h \) from some distribution \(\Pr(h) \)
- sample \(x \) from the decoder: \(Pr(h \mid x; W_g) \)