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(Generative networks

- Neural networks are typically used for classification or
regression
> Input: data
> QOutput: class or prediction

> Can we design neural networks that can generate data?
° Input: random vector
> QOutput: data
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(Generative networks

- Several types of generative networks

> Boltzmann machines

- Sigmoid belief networks

> Variational autoencoders

- Generative adversarial networks

> Generative moment matching networks
> Sum-product networks

> Normalizing flows

> Diffusion

> Flow-matching
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Generative Adversarial Networks

- Approach based on game theory

o Two networks: [

> Generator 9(z; W@:Q

o Discriminator d(x; W) - Pr(xis real) @

> Objective e
mn MaXx Py CX% P feap; \/\/Op)+ W(j(ZmWﬂ)-’v@W@k@)WOD
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Generative Adversarial Networks

- Approach based on game theory

o Two networks:
o Generator 9z W,) - x

o Discriminator d(x; W) = Pr(x is real)

> Objective

min maxz log Pr(x,, is real; W;) + log Pr(g (zn; Wg) is fake; Wd) f

= mmmaleog d(x,; Wy) +log (1 d(g(zn; Wy); Wd))
g
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Generative Adversarial Networks

o Schematic W oQ

9@6(@?0( QQ Ing@ﬂ‘)/\d@”{
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GAN training

> We have a min-max optimization
> Optimize the discriminator by stochastic gradient ascent
> Optimize the generator by stochastic gradient descent
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GAN training

- Repeat until convergence

> For k steps do
o Sample zy, ... ,zN from@
—~ :
o Sample Xy, ... ,xn from training set

- Update discriminator by ascending its stochastic gradient

|
WZ [10g d(xn; W) +log (1 — d(g(zn; Wy); Wd))]> j
t n=1

o Sample zj, ... ,zn fro@
- Update generator by descending its stochastic gradient

T, (llvi log (1 — d(g(zn: Wy); wd))> J
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GAN training

o In the limit (with sufficiently expressive networks, sufficient data
and global convergence)

(/I:(x‘z; Wgﬂ_) true data distribution

Pr(x is real; W ;) — 0.5 (for real and fake data)

> Problems in practice:
> Imbalance: one network may dominate the other
> Local convergence
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Images ge?erated with GANSs traiILling
J J

> Right columns are nearest neighbour training examples ofadjacent column
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Diffusion

> Diffusion models perform incremental updates to generate data
from white noise.

> Why increment? It’s like turning the direction of a giant ship. You
need to turn the ship slowly towards your desired direction or

otherwise you will lose control.

> The philosophy: “Bend one inch at a time.”
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Denoising Diffusion Probabilistic Model (DDPM)

- Two phases:
- Forward Diffusion (Noising)
> Reverse Diffusion (Denoising)

> In between the two phases: train DDPM
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Forward Diffusion in DDPM

- The goal of forward diffusion is to generate the intermediate
variables by using

Xt v Q(Xt|X()) :N(Xt | \/atX(), (1 — Et)I), t= 1, "o ,T — 1.

- The forward diffusion does not require any training. Given the
clean image, we can run the forward diffusion.

| . .

q(x¢|x¢—1)

| Xo forward sampling

x¢ = Vaixo + /(1 — ar)e

e ~N(0,I)
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Iraining DDPM

> The goal is to train a denoiser which takes the clean and noisy
images and back-propagates the gradient of the loss is to update
the parameters of a neural network.

Training

Xg(x1)

L’ Vol Xe(x1) — Xol|?
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Inference of DDPM — the Reverse Diffusion

> Sequentially run the denoiser T times from white noise back to
the generated image.

Inference
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Diffusion Models Beat GANs on Image Synthesis

https://arxiv.org/pdf/2105.05233

> Selected samples from OpenAl best ImageNet 512x512 model (FID 3.85)
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