CS 4824/ECE 4424: GAN and Diffusion

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Generative networks

- Neural networks are typically used for classification or regression
 - Input: data
 - Output: class or prediction
- Can we design neural networks that can generate data?
 - Input: random vector
 - Output: data

Generative networks

- Several types of generative networks
 - Boltzmann machines
 - Sigmoid belief networks
 - Variational autoencoders
 - Generative adversarial networks
 - Generative moment matching networks
 - Sum-product networks
 - Normalizing flows
 - Diffusion
 - Flow-matching

• • •

Generative Adversarial Networks

Approach based on game theory

- ∘ Two networks: $\sqrt{}$ ∘ Generator $g(\mathbf{z}; \mathbf{W}_g) \rightarrow \mathbf{x}$ ∘ Discriminator $d(\mathbf{x}; \mathbf{W}_d) \rightarrow \Pr(\mathbf{x} \text{ is real})$ $\cancel{\cancel{+}}$
- Objective

 min max $Pr(X_n \text{ is red}; W_d) + Pr(g(Z_n; W_g) \text{ is fake}; W_d)$ $W_g \quad W_d$ $= \min_{W_d} \max_{W_d} A(X_n; W_d) + (1 A(g(Z_n; W_g); W_d))$

Generative Adversarial Networks

- Approach based on game theory
- Two networks:
 - Generator $g(\mathbf{z}; \mathbf{W}_g) \rightarrow \mathbf{x}$
 - Discriminator $d(x; W_d) \rightarrow Pr(x \text{ is real})$
- Objective

$$\min_{\boldsymbol{W}_{g}} \sum_{\boldsymbol{W}_{d}} \log \Pr(\boldsymbol{x}_{n} \text{ is real}; \boldsymbol{W}_{d}) + \log \Pr(g(\boldsymbol{z}_{n}; \boldsymbol{W}_{g}) \text{ is fake}; \boldsymbol{W}_{d})$$

$$\equiv \min_{\boldsymbol{W}_{g}} \max_{\boldsymbol{W}_{d}} \sum_{n} \log d(\boldsymbol{x}_{n}; \boldsymbol{W}_{d}) + \log \left(1 - d(g(\boldsymbol{z}_{n}; \boldsymbol{W}_{g}); \boldsymbol{W}_{d})\right)$$

Generative Adversarial Networks

Schematic

GAN training

- We have a min-max optimization
 - Optimize the discriminator by stochastic gradient ascent
 - Optimize the generator by stochastic gradient descent

GAN training

- Repeat until convergence
 - For k steps do
 - Sample $\mathbf{z}_1, \dots, \mathbf{z}_N$ from $\Pr(\mathbf{z})$
 - Sample $x_1, ..., x_N$ from training set
 - Update discriminator by ascending its stochastic gradient

$$\nabla_{\boldsymbol{W}_d} \left(\frac{1}{N} \sum_{n=1}^{N} \left[\log d(\boldsymbol{x}_n; \boldsymbol{W}_d) + \log \left(1 - d(g(\boldsymbol{z}_n; \boldsymbol{W}_g); \boldsymbol{W}_d) \right) \right] \right)$$

- Sample $\mathbf{z}_1, \dots, \mathbf{z}_N$ from $\Pr(\mathbf{z})$
- Update generator by descending its stochastic gradient

$$\nabla_{\boldsymbol{W}_g} \left(\frac{1}{N} \sum_{n=1}^{N} \log \left(1 - d(g(\boldsymbol{z}_n; \boldsymbol{W}_g); \boldsymbol{W}_d) \right) \right)$$

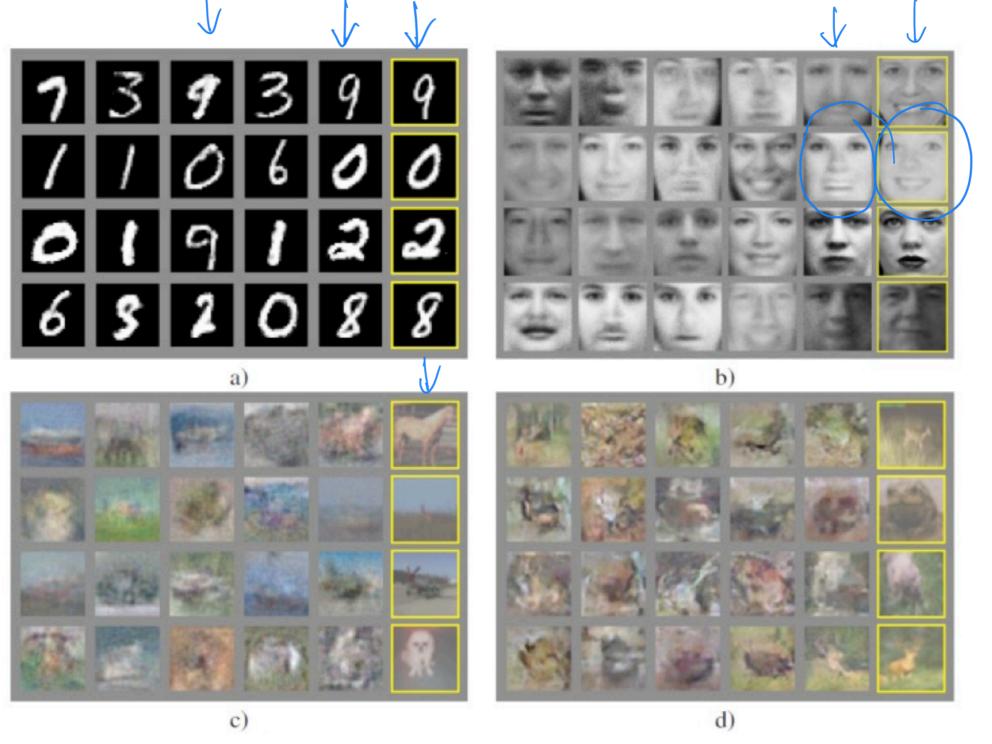
GAN training

 In the limit (with sufficiently expressive networks, sufficient data and global convergence)

```
\Pr(\mathbf{x}|\mathbf{z}; \mathbf{W}_g) \rightarrow true \ data \ distribution
\Pr(\mathbf{x} \ is \ real; \mathbf{W}_d) \rightarrow 0.5 \ (for \ real \ and \ fake \ data)
```

- Problems in practice:
 - Imbalance: one network may dominate the other
 - Local convergence

Images generated with GANs training



Right columns are nearest neighbour training examples of adjacent column

Diffusion

- Diffusion models perform *incremental* updates to generate data from white noise.
- Why increment? It's like turning the direction of a giant ship. You need to turn the ship slowly towards your desired direction or otherwise you will lose control.
- The philosophy: "Bend one inch at a time."

Denoising Diffusion Probabilistic Model (DDPM)

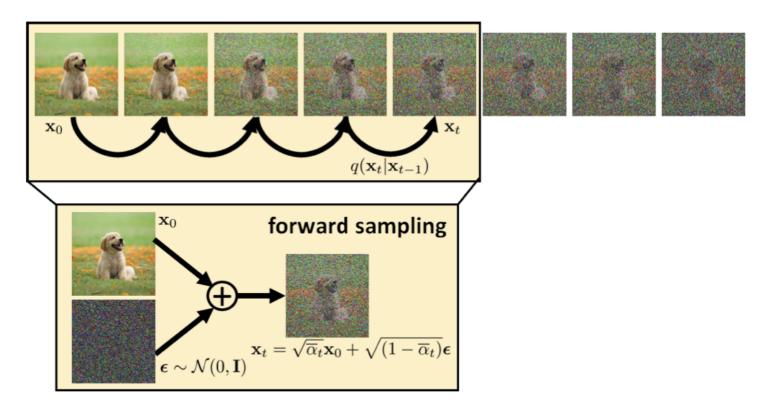
- Two phases:
 - Forward Diffusion (Noising)
 - Reverse Diffusion (Denoising)
- In between the two phases: train DDPM

Forward Diffusion in DDPM

 The goal of forward diffusion is to generate the intermediate variables by using

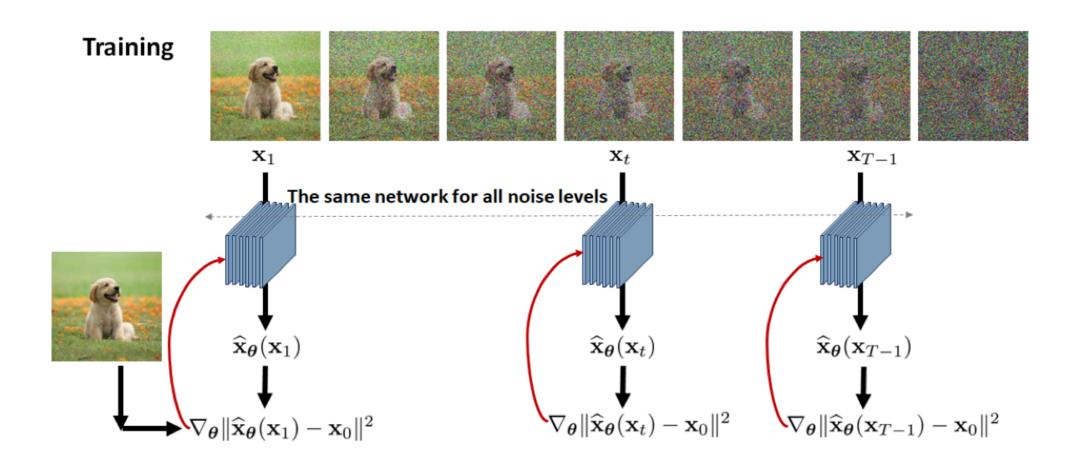
$$\mathbf{x}_t \sim q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \sqrt{\overline{\alpha}_t} \mathbf{x}_0, (1 - \overline{\alpha}_t) \mathbf{I}), \qquad t = 1, \dots, T - 1.$$

 The forward diffusion does not require any training. Given the clean image, we can run the forward diffusion.



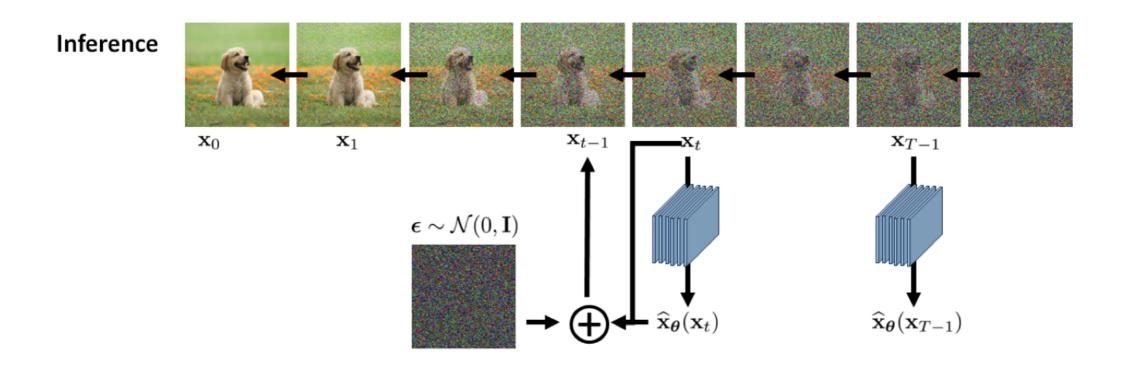
Training DDPM

 The goal is to train a denoiser which takes the clean and noisy images and back-propagates the gradient of the loss is to update the parameters of a neural network.

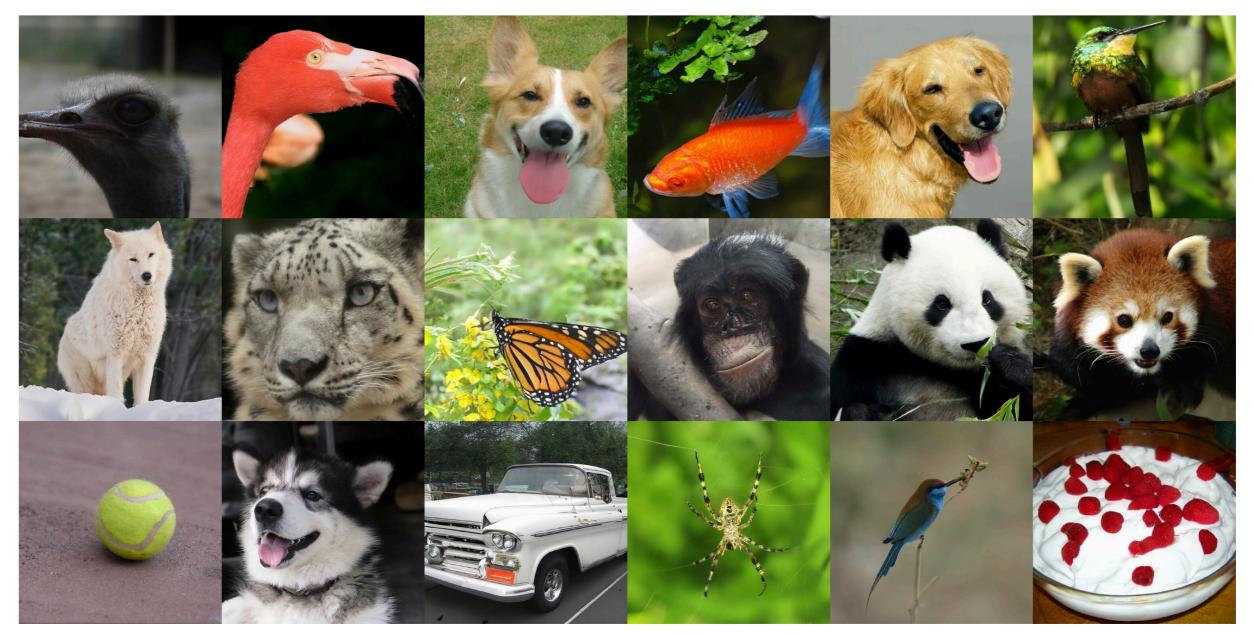


Inference of DDPM – the Reverse Diffusion

 Sequentially run the denoiser T times from white noise back to the generated image.



Diffusion Models Beat GANs on Image Synthesis



https://arxiv.org/pdf/2105.05233

Selected samples from OpenAI best ImageNet 512×512 model (FID 3.85)